[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6261670B2 - - Google Patents

Info

Publication number
JPS6261670B2
JPS6261670B2 JP58007476A JP747683A JPS6261670B2 JP S6261670 B2 JPS6261670 B2 JP S6261670B2 JP 58007476 A JP58007476 A JP 58007476A JP 747683 A JP747683 A JP 747683A JP S6261670 B2 JPS6261670 B2 JP S6261670B2
Authority
JP
Japan
Prior art keywords
solution
amount
composition
hard surface
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58007476A
Other languages
Japanese (ja)
Other versions
JPS58130280A (en
Inventor
Ii Sariban Toomasu
Daburyuu Buriikusu Toomasu
Burindeiji Junia Furanku
Ee Baanzu Debura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDermid Enthone Inc
Original Assignee
Enthone Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enthone Inc filed Critical Enthone Inc
Publication of JPS58130280A publication Critical patent/JPS58130280A/en
Publication of JPS6261670B2 publication Critical patent/JPS6261670B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • ing And Chemical Polishing (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はセラミツク、セルメツトおよび金属の
コーテイングを高強度高温性金属基体から除去す
ることに関し、さらに詳しくは、高エネルギー密
度撹拌手段を備えた水性酸性剥離浴を使用してこ
れらの硬質表面コーテイングを超合金とくにニツ
ケル系基体から除去することに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the removal of ceramic, celmet, and metal coatings from high strength, high temperature metal substrates, and more particularly, to the removal of ceramic, celmet, and metal coatings from high strength, high temperature metal substrates using an aqueous acidic stripping bath equipped with high energy density agitation means. The present invention relates to the removal of these hard surface coatings from superalloys, particularly nickel-based substrates.

化学的剥離技術の最も困難な要件の一つは「硬
質表面」コーテイング、すなわちジエツトエンジ
ン燃焼室のようなニツケルをベースとする金属表
面にデトネーシヨン・ガン、プラズマ、および火
炎吹付法により適用される溶融粒子コーテイング
を化学的に除去する組成物を開発することであつ
た。このようなコーテイングは通常薄層として適
用されて高温の酸化性ガス流に対する保護を与え
ているが、これらには耐熱性セラミツク、セルメ
ツトおよびニツケルをベースとする混合物が含ま
れる。
One of the most difficult requirements for chemical stripping techniques is the application of "hard surface" coatings to nickel-based metal surfaces, such as jet engine combustion chambers, by detonation guns, plasma, and flame spray methods. The objective was to develop a composition that chemically removes fused particle coatings. Such coatings, usually applied as thin layers to provide protection against hot oxidizing gas flows, include heat-resistant ceramics, Celmet and nickel-based mixtures.

従来技術にはこのようなコーテイングをその下
にある基体を損傷せずに迅速にかつ選択的に除去
できる効率的な化学的剥離剤が欠けていた。これ
まで使用されている技術の特徴はコーテイングの
機械加工、研磨、および吹付研磨のような機械的
方法、ならびにセラミツクコーテイングを軟化す
るだけの溶液、たとえば塩酸、への化学的浸漬お
よび溶融塩浴の使用のような非機械的方法にあ
る。しかしながら、機械的方法は非常に時間がか
かり、その上、「先端技術」への適用において頻
繁に使用される金属基体に大きな寸法上の狂いを
生じ易いため装置の非常に高価な部品を損傷し易
い。従来の化学的方法により若干のセラミツクコ
ーテイングは軟化するが、引き続いてセラミツク
をその下にある内側接着コーテイングと一緒に機
械的に除去することが依然として必要である。溶
融塩浴は操作が面倒であり、コーテイングと基体
の限られた数の組み合わせだけに有効であるに過
ぎない。また、これらの技術は除去速度、操作費
用および結果の有効性のすべてにおいて欠陥があ
る。米国特許第2698781号は銅基体から酸化物ス
ケールと電着ニツケルを除去するのに有効なニト
ロ芳香族添加物を含有する硫酸溶液を開示してい
る。しかしながら、セラミツク、セルメツトまた
は金属の硬質表面コーテイングがニツケルをベー
スとする基体から化学的に除去することに対して
は有効ではない。
The prior art lacks an efficient chemical stripper that can quickly and selectively remove such coatings without damaging the underlying substrate. The techniques used so far are characterized by mechanical methods such as machining, polishing, and blasting of the coating, as well as chemical immersion in solutions that only soften the ceramic coating, such as hydrochloric acid, and molten salt baths. There are non-mechanical methods such as use. However, mechanical methods are very time consuming and, moreover, are prone to large dimensional deviations in the metal substrates frequently used in "high technology" applications, damaging very expensive parts of the equipment. easy. Although conventional chemical methods soften some ceramic coatings, it is still necessary to subsequently mechanically remove the ceramic together with the underlying inner adhesive coating. Molten salt baths are cumbersome to operate and are only effective for a limited number of coating and substrate combinations. Also, these techniques are all deficient in removal speed, operating cost, and effectiveness of results. U.S. Pat. No. 2,698,781 discloses a sulfuric acid solution containing nitroaromatic additives effective in removing oxide scale and electrodeposited nickel from copper substrates. However, ceramic, Celmet or metal hard surface coatings are not effective for chemical removal from nickel-based substrates.

本発明の目的は硬質表面コーテイングを高強度
耐高温性合金属基体から除去するための有効な組
成物およびそれに伴なう方法を創出することであ
る。
It is an object of the present invention to create an effective composition and associated method for removing hard surface coatings from high strength, high temperature resistant alloy substrates.

本発明の別の目的は付着された硬質耐高温性セ
ラミツク、セルメツトおよびニツケルをベースと
するコーテイングをニツケルをベースとする基体
から選択的にしかも非腐蝕的に除去するのに有効
な組成物およびそれに伴なう方法を創出すること
にある。
Another object of the present invention is to provide compositions and compositions effective for selectively and non-corrosively removing deposited hard high temperature ceramic, Celmet and nickel based coatings from nickel based substrates. The goal is to create a method to accompany this.

本発明のまた別の目的は剥離処理を受ける金属
表面に寸法の狂いを与えず硬質表面コーテイング
だけをジエツトエンジン部品の金属表面から選択
的に剥離する方法を案出することにある。
Another object of the present invention is to devise a method for selectively stripping hard surface coatings from the metal surfaces of jet engine components without causing dimensional distortion of the metal surfaces undergoing the stripping process.

本発明の上記目的およびその他の目的は硬質表
面コーテイングとくに耐熱性セラミツク、セルメ
ツトおよびニツケルをベースとするコーテイング
を高強度耐高温性金属基体とくにニツケルをベー
スとする基体から選択的に除去するための新規な
組成物およびそれに伴なう方法を発見することに
より完成された。剥離用組成物はH2SO4、好まし
くは約90−450g/の濃縮H2SO4、たとえば66
゜Be′δ比重1.84(66゜Be′@1.84Spec.grav.)、
もつとも好ましくは約250−300g/;約20g/
ないし飽和状態の水溶性ニトロ置換芳香族化
物、そしてもつとも好ましくは約100−120g/
のメタニトロベンゼンスルホン酸ナトリウム;約
0−70g/の水溶性フツ素含有種、もつとも好
ましくは約10−20g/のフルオロホウ酸;約0
−1.0g/の界面活性剤、もつとも好ましくは
約0−0.5g/のジフエニルエーテルスルホン
酸塩の属の一種;残部は溶液のの約2−90重量%
の量の水から成る。
These and other objects of the present invention are to provide a new and novel method for selectively removing hard surface coatings, particularly high temperature ceramic, Celmet and nickel based coatings from high strength high temperature resistant metal substrates, particularly nickel based substrates. was completed by discovering a unique composition and associated method. The stripping composition comprises H 2 SO 4 , preferably about 90-450 g/concentrated H 2 SO 4 , e.g.
゜Be′δ specific gravity 1.84 (66゜Be′@1.84Spec.grav.),
However, preferably about 250-300g/; about 20g/
or saturated water-soluble nitro-substituted aromatic compound, and preferably about 100-120 g/
about 0-70 g of a water-soluble fluorine-containing species, and most preferably about 10-20 g of fluoroboric acid; about 0
- 1.0 g/g of surfactant, and preferably about 0-0.5 g/diphenyl ether sulfonate; the remainder being about 2-90% by weight of the solution.
consists of an amount of water.

本発明の剥離方法は金属基体上の硬質表面コー
テイング、通常、耐熱性セラミツク、セルメツト
またはニツケルをベースとするコーテイングを上
記酸性剥離溶液、好ましくは硫酸、可溶性フツ素
含有種、可溶性ニトロ置換芳香族化合物、界面活
性剤および水から成る溶液と接触させ、硬質表面
コーテイングが金属表面から選択的に除去される
までこの接触を継続する。接触はコーテイングの
付着した基体を約48〜83℃(120−180〓)、もつ
とも好ましくは約54〜66℃(130−150〓)に保つ
た溶液浴に、該浴が超音波撹拌手段、もつとも好
ましくは十分に電力を供給した超音波発生変換器
で少なくとも約0.62ワツト/cm2(約4ワツト/
in2)、好ましくは約1.08〜1.25ワツト/cm2(約7
−8ワツト/in2)の電力密度で積極的に撹拌され
ている間に浸漬することによつて行なわれる。コ
ーテイングが完全に除去されたのち基体を溶液か
ら取り出し、リンスして次の加工に適した状態と
なる。
The stripping method of the present invention involves removing hard surface coatings on metal substrates, typically heat-resistant ceramic, Celmet or nickel-based coatings, using an acidic stripping solution as described above, preferably sulfuric acid, soluble fluorine-containing species, soluble nitro-substituted aromatic compounds. , a solution consisting of a surfactant and water, and this contact is continued until the hard surface coating is selectively removed from the metal surface. The contacting is carried out by placing the coated substrate in a solution bath maintained at a temperature of about 48-83°C (120-180°), preferably about 54-66°C (130-150°), while the bath is heated by ultrasonic agitation means. Preferably, a fully powered ultrasound generating transducer produces at least about 0.62 watts/cm 2 (about 4 watts/cm 2 ).
in 2 ), preferably about 1.08 to 1.25 watts/cm 2 (about 7
This is done by immersion while being actively stirred at a power density of -8 watts/in 2 ). After the coating has been completely removed, the substrate is removed from the solution and rinsed to make it suitable for further processing.

周知技術とくにジエツトエンジンや航空学的応
用などに有用な超合金を使用するガスタービンエ
ンジンの建造に関係する「先端技術」工業におけ
る周知技術には厳しい高温で酸化的環境にさらさ
れる金属表面を薄い(数mil)金属製保護層また
は非金属製保護層のコーテイングで被覆すること
が必要である。これらのコーテイングはふつう
「硬質表面」コーテイングと呼ばれ、多数の高強
度耐熱耐蝕性物質のいずれであつてもよく、通常
は以下に「保護セラミツク層に対する接着コート
としてあるいは保護層自体としてのいずれにも働
くことのできるニツケルに富む金属混合物」とし
て定義される「ニツケルをベースとするもの」、
「セラミツク物質」または「セルメツト」、ならび
に若干のこれらの物質の混合物が使用できる。航
空機の燃焼室に保護層として頻繁に使用されると
くに硬質のコーテイングは3層系であり、次の組
成をもつている。
Well-known technology in the "advanced technology" industry, particularly related to the construction of gas turbine engines using superalloys useful in jet engines and aeronautical applications, involves the use of metal surfaces that are exposed to harsh, high-temperature, oxidizing environments. Coating with a thin (several mil) metallic or non-metallic protective layer is necessary. These coatings are commonly referred to as "hard surface" coatings and may be any of a number of high strength, heat and corrosion resistant materials and are typically described below as either an adhesive coat to the protective ceramic layer or as the protective layer itself. ``Nickel-based'', defined as ``a nickel-rich metal mixture that can also work'';
"Ceramic materials" or "Celmets" as well as some mixtures of these materials can be used. A particularly hard coating frequently used as a protective layer in aircraft combustion chambers is a three-layer system and has the following composition:

接着コート:約0.07〜0.13m/m(3−5mil),
Ni80%,Cr15% 中間コート:約0.10〜0.16m/m(4−6mil),
Ni80%−Cr20%とMgO−ZrO2との
35−65%混合物 外側コート:約0.15−0.26m/m(6−10mil)、
MgO−ZrO2 ジエツトエンジンの燃焼室に適用されはじめた
硬質表面コーテイングで特記すべきものは次の通
りである。
Adhesive coat: approx. 0.07-0.13m/m (3-5mil),
Ni80%, Cr15% Intermediate coat: approx. 0.10-0.16m/m (4-6mil),
Ni80%-Cr20% and MgO- ZrO2
35-65% mixture outer coat: approx. 0.15-0.26m/m (6-10mil),
The hard surface coatings that have begun to be applied to the combustion chambers of MgO-ZrO 2 jet engines are notable as follows.

A:Co23、Cr18、Al12、Yo5、Ni残部 B:Y安定化ジルコニア C:Co Cr Al Y D:Ni+Cr94、Al6、Y1 これらの硬質表面コーテイングは種々の金属基
体(本発明のもつとも広い実施態様においては酸
腐蝕またはアルカリ腐蝕に抵抗性のある任意の金
属でよく、さらに詳しくは耐高温性と高温での高
強度の両方をもつ金属超合金)から剥離できる。
とくに、周規律表の第族に位置する金属すなわ
ち鉄、ニツケルおよびコバルトの合金、とくに周
知の「Hastelloy X」のようなニツケルをベース
とする合金ではその上のコーテイングが本発明の
組成物を使用すると剥離される。コーテイングは
種々の周知技術たとえばデドネーシヨン・ガン、
プラズマ噴霧および火炎吹付粒子塗布により基体
に適用される。これらの周知の適用技術はすべて
本質的には組成物を微粉末に磨砕し、溶融状態に
なるまでこの粉末を加熱し、ガスプラズマ中で高
速に加速された溶融材料を微細な非常に希薄な金
属ミストの形で被覆されるべき基体上に噴霧し、
該金属ミストが硬化して極度に強靭な保護コーテ
イングを形成することから成る。
A: Co23, Cr18, Al12, Yo5, Ni balance B: Y stabilized zirconia C: Co Cr Al Y D: Ni + Cr94, Al6, Y1 These hard surface coatings can be applied to a variety of metal substrates (in the broadest embodiment of the invention). can be any metal that is resistant to acid or alkali corrosion, and more particularly can be exfoliated from metal superalloys that have both high temperature resistance and high strength at high temperatures.
In particular, alloys of metals in the group of the periodic table, namely iron, nickel and cobalt, especially nickel-based alloys such as the well-known "Hastelloy Then it will peel off. The coating can be applied using various well-known techniques such as detonation gun,
It is applied to the substrate by plasma atomization and flame-blown particle application. All of these well-known application techniques essentially involve grinding a composition into a fine powder, heating this powder until it is in a molten state, and then turning the molten material, accelerated in a gas plasma, into a fine, very dilute spraying on the substrate to be coated in the form of a metallic mist;
It consists of the metal mist curing to form an extremely tough protective coating.

本発明はさらに、上記のように適用されたこれ
らのコーテイングを除去するための改良された組
成物およびそれに伴なう方法に向けられている。
強力な化学的剥離剤を有効に機能させるためには
いくつかの問題点を最初に克服しておかなければ
ならない。剥離用組成物は満足な速度、たとえば
約0.012〜0.051mm/時(1/2−2mil/時)程度の
速度で剥離できなければならず、またこの方法を
実施することにより生じる有毒な気体を除去する
ために念入りに換気しなければならない。この換
気は実験室および工場の双方の環境と適用におい
てつねに主要な考慮点である。このような溶液は
次の組成をもつ水成酸性浴を創出することによつ
て見出された。すなわち、硫酸H2SO4(任意の市
販銘柄で十分であるが、好ましくは濃縮したも
の、たとえば66Be′.)は溶液の必須成分である。
H2SO4の濃度は約90−450g/、好ましくは約
250−300g/の範囲である。酸が少な過ぎると
適当な速度でコーテイングを除去するのに必要な
酸強度が浴に生じないが、一方、450g/を超
える量を使用すると追加の優れた剥離結果が得ら
れず、経済的にも正当化できない。しかしなが
ら、理論上はH2SO4は溶液の90%までを占めても
よい。
The present invention is further directed to improved compositions and associated methods for removing these coatings applied as described above.
In order for powerful chemical strippers to work effectively, several problems must first be overcome. The stripping composition must be capable of stripping at a satisfactory rate, e.g., on the order of about 0.012-0.051 mm/hour (1/2-2 mil/hour), and must be free of toxic gases produced by practicing the process. Must be carefully ventilated to remove. This ventilation is always a major consideration in both laboratory and factory environments and applications. Such a solution was found by creating an aqueous acidic bath with the following composition: Thus, sulfuric acid H 2 SO 4 (any commercial grade is sufficient, but preferably concentrated, eg 66Be'.) is an essential component of the solution.
The concentration of H 2 SO 4 is about 90-450 g/, preferably about
It is in the range of 250-300g/. Too little acid will not provide the bath with the acid strength necessary to remove the coating at a reasonable rate, while using more than 450 g/l will not provide additional good stripping results and will not be economical. can't be justified either. However, in theory H 2 SO 4 may make up up to 90% of the solution.

剥離溶液中の酸化剤として機能する第2の必須
成分は本発明のもつとも広い実施態様においては
水溶性ニトロ置換芳香族化合物、さらに詳しくは
米国特許第2698781号に開示された化合物の綱の
ような水溶性ニトロ置換ベンゼン化合物である。
もつとも好ましくは、メタニトロベンゼンスルホ
ン酸ナトリウムまたは−スルホン酸等、たとえば
ニトロベンゼンスルホン酸の適当なアルカリ金属
塩またはアルカリ土類金属塩(機能的均等物とし
てアンモニウム基を含む)が有効である。この綱
の薬品は溶液中で反応促進剤として機能すると考
えられるが、この説に拘束されるものではない。
The second essential component that functions as an oxidizing agent in the stripping solution is, in the broadest embodiment of the invention, a water-soluble nitro-substituted aromatic compound, more particularly such as the class of compounds disclosed in U.S. Pat. No. 2,698,781. It is a water-soluble nitro-substituted benzene compound.
Most preferably, sodium metanitrobenzenesulfonic acid or -sulfonic acid, for example, a suitable alkali metal or alkaline earth metal salt of nitrobenzenesulfonic acid (containing an ammonium group as a functional equivalent) are useful. It is believed that this class of drugs functions as reaction accelerators in solution, but is not bound by this theory.

ニトロ置換芳香族化合物の濃度は約20g/な
いし飽和の範囲でよく、約20−120g/であ
り、高濃度たとえば60−120g/がもつとも好
ましい。
The concentration of nitro-substituted aromatic compound may range from about 20 g/ to saturation, with about 20-120 g/, with higher concentrations such as 60-120 g/ being preferred.

第3の必須の浴成分として可溶性フツ素含有
種、もつとも好ましくはフルオロホウ酸HBF4
添加するが、水溶液中で解離して低濃度のフツ素
イオンを発生することができる他のフツ素含有
種、たとえばHF、NH4HF2、Na3AlF6などが特に
好適である。フツ素含有種の濃度は溶液中に所望
の濃度のフツ素イオンを生じるのに必要な量によ
つて決まるが、水溶液中で解離度の高い物質に対
しては一般に約70g/以下、好ましくは約10−
20g/の範囲でよい。フツ素イオン濃度が上昇
するにつれて基体に対する有害な腐蝕が起きる機
会も増し、剥離溶液に添加できるフツ素イオン量
には上限がある。
Add as a third essential bath component a soluble fluorine-containing species, most preferably fluoroboric acid HBF4 , but other fluorine-containing species that can dissociate in aqueous solution to generate low concentrations of fluorine ions. , for example HF, NH 4 HF 2 , Na 3 AlF 6 and the like are particularly suitable. The concentration of the fluorine-containing species is determined by the amount required to produce the desired concentration of fluoride ions in solution, but is generally less than about 70 g/g, preferably for substances that are highly dissociated in aqueous solution. Approximately 10−
It may be in the range of 20g/. As the fluorine ion concentration increases, the chance of harmful corrosion to the substrate increases, and there is an upper limit to the amount of fluorine ion that can be added to the stripping solution.

必須ではないが、少量たとえば0−3.0g/
好ましくは約0−1.0g/の界面活性剤を含有
させて溶解すべき表面への濡れ剤として働かせる
のが好ましい。この目的にとくに好ましい化合物
はジフエニルエーテルスルホン酸塩類、たとえば
一般式、 (式中、Rはアルキル基または水素原子を示
し、Xはナトリウムのようなアルカリ金属を示
す。)の化合物である。このような製品はミシガ
ン州ミツドランド市在ダウ・ケミカル社により
「Dowfax 3B2」という商品名で市販されてい
る。ほとんどのジフエニルエーテルスルホン酸ア
ルカリ金属塩は好適な均等物であり、本発明のも
つとも広い実施態様においては、剥離溶液に対し
て加水分解安定性および酸化安定性をもつ任意の
界面活性剤は代替物として使用できる。剥離用組
成物は2−90重量%の水を添加して溶液を所望の
強度にして完成される。水は剥離溶液の粘度を下
げ、溶液中のイオン種の易動度を上げる。
Although not essential, a small amount, e.g. 0-3.0g/
Preferably, about 0-1.0 g/g of surfactant is included to act as a wetting agent to the surface to be dissolved. Particularly preferred compounds for this purpose are diphenyl ether sulfonates, such as the general formula (In the formula, R represents an alkyl group or a hydrogen atom, and X represents an alkali metal such as sodium.) Such a product is sold under the trade name "Dowfax 3B2" by the Dow Chemical Company of Midland, Michigan. Most diphenyl ether sulfonic acid alkali metal salts are suitable equivalents, and in the broadest embodiment of this invention, any surfactant that is hydrolytically and oxidatively stable to the stripping solution may be substituted. It can be used as an object. The stripping composition is completed by adding 2-90% water by weight to bring the solution to the desired strength. Water reduces the viscosity of the stripping solution and increases the mobility of ionic species in the solution.

硫酸に水を添加すると溶液のキヤビテーシヨン
閾値、すなわち溶液に働く局所圧力を溶液の蒸気
圧より小さい値にするのに要する最小の力、を低
下させる望ましい効果をもつ。この閾値は蒸気圧
の上昇および粘度と希釈密度の低下により起き
る。室温の水に対して20KHzにおいてキヤビテイ
ーシヨン閾値は約0.38W/cm2(2.45W/in2)であ
る。
Adding water to sulfuric acid has the desirable effect of lowering the cavitation threshold of the solution, ie, the minimum force required to bring the local pressure acting on the solution to a value less than the vapor pressure of the solution. This threshold occurs due to an increase in vapor pressure and a decrease in viscosity and dilution density. The cavitation threshold at 20 KHz for room temperature water is approximately 0.38 W/cm 2 (2.45 W/in 2 ).

本発明の方法は硬質表面コーテイングを酸性剥
離溶液と接触させ、硬質表面コーテイングがその
下の表面の寸法変化を起こさずに金属基体から実
質的に除去されるまでその接触を継続することか
ら成る。剥離が許容し得る速度で起きるためには
溶液浴を適当な撹拌手段、好ましくは磁気歪(こ
ちらが好ましい)または圧電変換器のいずれかの
超音波発生変換器により連続的に撹拌することが
必須である。変換器は約0.62W/cm2(約4W/
in2)、好ましくは約1.08〜1.25W/cm2(約7−
8W/in2の最小電力密度を生じるように繰作しな
ければならない。単に従来技術により撹拌するだ
けでは有効な速度を生じるのに必要な溶液撹拌が
剥離浴中に生じない。溶液に本来的にエネルギー
を供給する超音波撹拌器と組み合わせて、許容し
得る剥離速度を得るために、操作中、溶液を約43
〜83℃(約110−180〓)、もつとも好ましくは約
54−66℃(約130−150〓)の温度に保つことが必
要である。
The method of the present invention comprises contacting the hard surface coating with an acidic stripping solution and continuing the contact until the hard surface coating is substantially removed from the metal substrate without dimensional change of the underlying surface. In order for exfoliation to occur at an acceptable rate, it is essential that the solution bath be continuously stirred by suitable stirring means, preferably an ultrasound-generating transducer, either magnetostrictive (preferred) or a piezoelectric transducer. It is. The converter is approximately 0.62W/cm 2 (approximately 4W/
in 2 ), preferably about 1.08 to 1.25 W/cm 2 (about 7-
Must be engineered to yield a minimum power density of 8W/in 2 . Merely conventional agitation does not provide the necessary solution agitation in the stripping bath to produce effective velocities. In combination with an ultrasonic stirrer that inherently supplies energy to the solution, the solution was heated at approximately
~83℃ (about 110-180〓), but preferably about
It is necessary to maintain the temperature at 54-66°C (approximately 130-150°C).

以下の実施例により本発明をさらに詳細に説明
する。
The invention will be explained in further detail by the following examples.

実施例 1 ジエツトエンジンに使用された航空機用燃焼器
をHastelloy X(22 Cr、18.5 Fe、9.0Mo、
1.5 Co、0.6 W、残部 Ni)で作り、接着コート
(約0.07〜0.13mm(3−5mil)厚、Ni/Cr 95%)
と、中間コート(約0.10〜0.16mm(4−6mil)
厚、Ni80%−Cr20%とMgO−ZrO2の35−36%混
合物)と、外側コート(約0.15−0.26mm(6−
10mil)厚、MgO−ZrO2)とから成る三重層を約
0.34m2(520in2)にわたつて火炎吹付けした。こ
れらの筒形燃焼室のうち2個は約48〜77℃(120
−170〓)の範囲の温度に保つた浴中で超音波撹
拌を使用して10−16時間コーテイングを剥離し
た。2基の1200ワツト側面載置式の浸漬可能な超
音波変換器を有する約114(30ガロン)のステ
ンレス鋼製熱水タンクを剥離操作時に使用し、四
角いポリプロピレン製容器に収容された剥離溶液
(275g/のH2SO466゜Be′、14g/のHBF4
(48%)、120g/のm−ニトロベンゼンスルホ
ン酸ナトリウム、0.1g/のDowfax 3B2)を約
22.7(6ガロン)使用した。金属組織学的検査
をしたところ筒形燃焼室の基体に破壊は少しもみ
られなかつた。
Example 1 The aircraft combustor used in the jet engine was Hastelloy X (22 Cr, 18.5 Fe, 9.0Mo,
1.5 Co, 0.6 W, balance Ni) and adhesive coat (approximately 0.07-0.13 mm (3-5 mil) thick, Ni/Cr 95%)
and intermediate coat (approximately 0.10-0.16mm (4-6mil)
thickness, 35-36% mixture of Ni80%-Cr20% and MgO- ZrO2 ) and outer coat (approximately 0.15-0.26 mm (6-
10mil) thick, with a triple layer of MgO−ZrO 2 ) approximately
Flame spray was applied over an area of 0.34 m 2 (520 in 2 ). Two of these cylindrical combustion chambers have a temperature of approximately 48-77°C (120°C).
The coating was stripped for 10-16 hours using ultrasonic stirring in a bath maintained at a temperature in the range -170〓). Approximately 114 (30 gallon) stainless steel hot water tanks with two 1200 watt side-mounted submersible ultrasonic transducers are used during the stripping operation, and the stripping solution (275 g. / H 2 SO 4 66゜Be′, 14g / HBF 4
(48%), 120g/sodium m-nitrobenzenesulfonate, 0.1g/dowfax 3B2)
22.7 (6 gallons) was used. A metallographic examination revealed no damage to the base of the cylindrical combustion chamber.

実施例 2 軍用ジエツトのエンジンの筒形燃焼室を275
g/の濃硫酸H2SO4(66゜Be′)、145g/の
フルオロホウ酸HBF4(48%)、および116g/
のメタニトロベンゼンスルホン酸ナトリウムを含
有する剥離溶液に浸漬した。約54〜77℃(130−
170〓)で20時間経過後、バーナー筒から3層の
コーテイングを除去した。1000ワツトの底部載置
式超音波変換器を取付け剥離溶液約7.6(2ガ
ロン)を四角いポリプロピレン製容器に収容した
約18.9(5ガロン)のステンレス鋼製タンクを
使用した。基体の破壊は見られなかつた。
Example 2 The cylindrical combustion chamber of a military jet engine is 275
g/concentrated sulfuric acid H 2 SO 4 (66°Be′), 145 g/fluoroboric acid HBF 4 (48%), and 116 g/
of sodium metanitrobenzene sulfonate. Approximately 54~77℃ (130−
170〓) for 20 hours, the three layers of coating were removed from the burner barrel. A 5 gallon stainless steel tank fitted with a 1000 watt bottom mounted ultrasonic transducer and containing 2 gallons of stripping solution in a square polypropylene container was used. No destruction of the substrate was observed.

本発明によれば、セラミツク、セルメツトおよ
びニツケルをベースとする物質を金属、とくに、
ニツケルをベースとする超合金から金属基体に許
容し得ない寸法上または構造上の変化をひき起こ
さずに除去することができるだけでなく、広範囲
の硬質表面コーテイングをこれらの基体からその
下にある材料に損傷を与えずに除去することがで
きる。
According to the invention, materials based on ceramics, celmets and nickel can be combined with metals, in particular
Not only can a wide range of hard surface coatings be removed from nickel-based superalloys without causing unacceptable dimensional or structural changes to metal substrates, but also a wide range of hard surface coatings can be removed from these substrates to the underlying materials. can be removed without causing damage.

明らかに、上記説明に照らして本発明に種々の
変更を加えることが可能である。従つて、本願特
許請求の範囲内で本発明を上記の説明とは異なつ
た態様で実施することができる。
Obviously, various modifications may be made to the invention in light of the above description. Therefore, within the scope of the appended claims, the invention may be practiced otherwise than as described above.

Claims (1)

【特許請求の範囲】 1 高強度耐高温性金属基体からセラミツク、セ
ルメツトおよびニツケルをベースとする硬質表面
コーテイングを選択的に除去するための組成物で
あつて、該組成物は次の成分により構成される。 約90〜450g/の量のH2SO4と、 約60〜240g/の量の水溶性ニトロ置換芳香
族化合物と、 有効量のフルオロホウ酸(HBF4)と、 残部の水。 2 フルオロホウ酸は70g/以下の量で加えら
れることを特徴とする特許請求の範囲第1項記載
の組成物。 3 溶液は約3g/以下の量のジフエニルエー
テル・スルホン酸塩の綱から選ばれた界面活性剤
を更に含有することを特徴とする特許請求の範囲
第1項記載の組成物。 4 組成物は次の成分により構成されることを特
徴とする特許請求の範囲第2項記載の組成物。 約250〜300g/の量のH2SO4と、約60〜120
g/の量の水溶性ニトロ置換ベンゼン化合物
と、 約10〜20g/の量のフルオロホウ酸と、約1
g/以下の量のジフエニルエーテル・スルホン
酸塩の綱から選ばれた界面活性剤。 5 水溶性ニトロ置換ベンゼン化合物はメタ―ニ
トロベンゼン・スルホン酸ナトリウムであること
を特徴とする特許請求の範囲第1項記載の組成
物。 6 高強度耐高温性金属基体からセラミツク、セ
ルメツトおよびニツケルをベースとする硬質表面
コーテイングを選択的に除去するための方法であ
つて、該方法は次の工程により構成される。 液温を約43〜83℃(110〜180〓)に保たれかつ
超音波撹拌手段により常に撹拌される特許請求の
範囲第1項記載の酸性剥離溶液に硬質表面コーテ
イングを接触し、基礎をなす基体を損傷すること
なく金属基体から硬質表面コーテイングを除去
し、 その後に、金属基体をその溶液の浴から取り出
す。 7 溶液の温度は、作業中、約54〜66℃(130〜
150〓)に保たれることを特徴とする特許請求の
範囲第6項記載の方法。 8 超音波撹拌手段は、作業中、少なくとも
0.6W/cm2(4W/in2)の出力密度で溶液に継続し
て供給する超音波発生変換器であることを特徴と
する特許請求の範囲第6項記載の方法。 9 変換器は約1.08〜1.25W/cm2(7〜8W/
in2)の出力密度に維持されることを特徴とする特
許請求の範囲第8項記載の方法。 10 フルオロホウ酸は酸性剥離溶液に約70g/
以下の量で加えられることを特徴とする特許請
求の範囲第6項記載の方法。
[Scope of Claims] 1. A composition for selectively removing ceramic, celmet, and nickel-based hard surface coatings from high-strength, high-temperature-resistant metal substrates, the composition comprising: be done. H2SO4 in an amount of about 90-450 g/, a water-soluble nitro-substituted aromatic compound in an amount of about 60-240 g/, an effective amount of fluoroboric acid ( HBF4 ), and the balance water. 2. The composition according to claim 1, characterized in that fluoroboric acid is added in an amount of 70 g/or less. 3. The composition of claim 1, wherein the solution further contains a surfactant selected from the class of diphenyl ether sulfonates in an amount of up to about 3 g/l. 4. The composition according to claim 2, characterized in that the composition is composed of the following components: H 2 SO 4 in an amount of about 250-300 g/ and about 60-120
a water-soluble nitro-substituted benzene compound in an amount of about 10 to 20 g/a, fluoroboric acid in an amount of about 10 to 20 g/a;
A surfactant selected from the class of diphenyl ether sulfonates in an amount of up to 5. The composition according to claim 1, wherein the water-soluble nitro-substituted benzene compound is sodium meta-nitrobenzene sulfonate. 6. A method for selectively removing ceramic, celmet, and nickel-based hard surface coatings from high-strength, high-temperature-resistant metal substrates, the method comprising the following steps. Contacting the hard surface coating with the acidic stripping solution of claim 1, the solution temperature of which is maintained at about 43-83°C (110-180°) and constantly agitated by ultrasonic stirring means, forms the base. The hard surface coating is removed from the metal substrate without damaging the substrate, and the metal substrate is then removed from the bath of the solution. 7 The temperature of the solution is approximately 54-66℃ (130-66℃) during the work.
150〓). 8 The ultrasonic stirring means shall be used at least during operation.
7. A method according to claim 6, characterized in that it is an ultrasonic generating transducer that continuously supplies the solution with a power density of 0.6 W/cm 2 (4 W/in 2 ). 9 Converter is approximately 1.08~1.25W/cm 2 (7~8W/
9. A method according to claim 8, characterized in that the power density is maintained at a power density of in 2 ). 10 Approximately 70g/fluoroboric acid is added to the acidic stripping solution.
7. A method according to claim 6, characterized in that the following amounts are added:
JP58007476A 1982-01-22 1983-01-21 Selective chemical removal of hard surface coating from superalloy substrate Granted JPS58130280A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34196582A 1982-01-22 1982-01-22
US341965 1982-01-22

Publications (2)

Publication Number Publication Date
JPS58130280A JPS58130280A (en) 1983-08-03
JPS6261670B2 true JPS6261670B2 (en) 1987-12-22

Family

ID=23339766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007476A Granted JPS58130280A (en) 1982-01-22 1983-01-21 Selective chemical removal of hard surface coating from superalloy substrate

Country Status (11)

Country Link
JP (1) JPS58130280A (en)
AU (1) AU546054B2 (en)
BE (1) BE895241A (en)
CA (1) CA1185152A (en)
CH (1) CH651849A5 (en)
DE (1) DE3248006A1 (en)
ES (1) ES8402624A1 (en)
FR (1) FR2520374B1 (en)
GB (1) GB2115013B (en)
IT (1) IT1164864B (en)
SE (1) SE8207490L (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288552A (en) * 2000-01-20 2001-10-19 General Electric Co <Ge> Method for removing thermal barrier coating
JP2004525254A (en) * 2000-12-05 2004-08-19 ゼネラル・エレクトリック・カンパニイ How to remove ceramic film

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113283C2 (en) * 1991-04-24 1994-05-05 Kernforschungsz Karlsruhe Use of an etching solution for the selective etching of a metallic sacrificial layer in the production of microstructures
DE4219667C2 (en) * 1992-06-16 1994-12-01 Kernforschungsz Karlsruhe Tool and method for producing a microstructured plastic layer
US6494960B1 (en) * 1998-04-27 2002-12-17 General Electric Company Method for removing an aluminide coating from a substrate
US5976265A (en) * 1998-04-27 1999-11-02 General Electric Company Method for removing an aluminide-containing material from a metal substrate
GB9814075D0 (en) * 1998-06-29 1998-08-26 Ge Aircraft Engine Services Li Method of stripping a coating from an aircraft engine part
DE19833990A1 (en) 1998-07-29 2000-02-10 Metallgesellschaft Ag Mordant for stainless steels
US6833328B1 (en) 2000-06-09 2004-12-21 General Electric Company Method for removing a coating from a substrate, and related compositions
US6863738B2 (en) 2001-01-29 2005-03-08 General Electric Company Method for removing oxides and coatings from a substrate
US6953533B2 (en) 2003-06-16 2005-10-11 General Electric Company Process for removing chromide coatings from metal substrates, and related compositions
US20070116875A1 (en) * 2005-11-22 2007-05-24 United Technologies Corporation Strip process for superalloys
CN102978631B (en) * 2011-09-06 2014-12-10 沈阳黎明航空发动机(集团)有限责任公司 Precise titanium alloy part re-melted layer removing method
IT202100025232A1 (en) * 2021-10-01 2023-04-01 T A G Srl METHOD OF REMOVING A CERAMIC THERMAL BARRIER COATING

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114536A (en) * 1976-03-22 1977-09-26 Oxy Metal Industries Corp Method of foliating electroplated layer of nickel alloy and composition and solution used therefor
JPS52133830A (en) * 1976-05-04 1977-11-09 Nihon Kagaku Kizai Kk Metal coat exfoliating solution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2698781A (en) * 1953-04-27 1955-01-04 Enthone Accelerating action of acids on metals
DE1926228C3 (en) * 1969-05-22 1974-02-21 Bergische Metallwarenfabrik Dillenberg & Co Kg, 5601 Gruiten Bath for the electrolytic removal of metal coatings made of nickel or chrome from base bodies made of non-ferrous metal
DE2824975A1 (en) * 1978-06-07 1979-12-20 Basf Ag Additive for etching, polishing and demetallisation bath - comprises a reaction prod. of ethylene! oxide-propylene! oxide copolymer and poly:amine
GB2066386B (en) * 1979-12-26 1983-10-12 Gen Electric Filler removal method
US4302246A (en) * 1980-01-03 1981-11-24 Enthone, Incorporated Solution and method for selectively stripping alloys containing nickel with gold, phosphorous or chromium from stainless steel and related nickel base alloys
JPS579874A (en) * 1980-06-17 1982-01-19 Toshiba Corp Etching solution for nickel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114536A (en) * 1976-03-22 1977-09-26 Oxy Metal Industries Corp Method of foliating electroplated layer of nickel alloy and composition and solution used therefor
JPS52133830A (en) * 1976-05-04 1977-11-09 Nihon Kagaku Kizai Kk Metal coat exfoliating solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288552A (en) * 2000-01-20 2001-10-19 General Electric Co <Ge> Method for removing thermal barrier coating
JP4729178B2 (en) * 2000-01-20 2011-07-20 ゼネラル・エレクトリック・カンパニイ How to remove thermal barrier coating
JP2004525254A (en) * 2000-12-05 2004-08-19 ゼネラル・エレクトリック・カンパニイ How to remove ceramic film
JP4667714B2 (en) * 2000-12-05 2011-04-13 ゼネラル・エレクトリック・カンパニイ Removal method of ceramic film

Also Published As

Publication number Publication date
IT8347598A0 (en) 1983-01-21
BE895241A (en) 1983-03-31
ES519129A0 (en) 1984-02-01
SE8207490L (en) 1983-07-23
AU9041682A (en) 1983-07-28
ES8402624A1 (en) 1984-02-01
GB8301268D0 (en) 1983-02-16
GB2115013B (en) 1985-12-18
DE3248006A1 (en) 1983-07-28
CA1185152A (en) 1985-04-09
SE8207490D0 (en) 1982-12-29
GB2115013A (en) 1983-09-01
AU546054B2 (en) 1985-08-15
FR2520374A1 (en) 1983-07-29
IT1164864B (en) 1987-04-15
FR2520374B1 (en) 1988-06-24
JPS58130280A (en) 1983-08-03
CH651849A5 (en) 1985-10-15

Similar Documents

Publication Publication Date Title
JPS6261670B2 (en)
EP1050604B1 (en) Method for removing an aluminide coating from a substrate
JP4874512B2 (en) Method for removing aluminosilicate material from a substrate and composition used therefor
EP1010776B1 (en) Caustic process for replacing thermal barrier coatings
JP4523139B2 (en) Electrochemical system and method for stripping metal coatings
CA2430511C (en) Method of removing ceramic coatings
RU2107749C1 (en) Method of reconditioning corroded part from superalloy or high-temperature steel, corroded part and reconditioned part from superalloy or high-temperature steel, method of making reconditioned part from superalloy or high-temperature steel
US4707191A (en) Pickling process for heat-resistant alloy articles
US3607398A (en) Chemical stripping process
EP0183775B1 (en) Selective nickel stripping compositions and method of stripping
US5248381A (en) Etch solution and associated process for removal of protective metal layers and reaction deposits on turbine blades
JPH0328400A (en) Electrolysis for peeling off coating from aluminum base and bath
CN115074742A (en) Cleaning solution and cleaning process for surface treatment of aluminum alloy product
CA1209886A (en) Peroxide selective stripping compositions and method
US5073287A (en) Coating remover and paint stripper containing N-methyl-2-pyrrolidone, methanol, and sodium methoxide
US4290819A (en) Method and composition for the removal of phenolic resin coatings from aluminum
WO2018218435A1 (en) Brightening agent, aluminum alloy workpiece, and surface ash and stain removal method therefor
Raj et al. Chemical machining process-an overview
US3308066A (en) Paint stripping composition and method
US3261710A (en) Method for removing coating of epoxyphenolic resin and polytetrafluoroethylene from metal cases
JPS59229496A (en) Pretreating agent and pretreatment for painting of steel material
Ayres EQUIPMENT DECONTAMINATION WITH SPECIAL ATTENTION TO SOLID WASTE TREATMENT: SURVEY REPORT.
JPH07243068A (en) Electrolytic treatment of metal surface
JPH05302175A (en) Contamination preventive sheet
SU1601204A1 (en) Composition for insulating metal surface in electrochemical and chemical working