[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6258892A - Brushless motor and control method thereof - Google Patents

Brushless motor and control method thereof

Info

Publication number
JPS6258892A
JPS6258892A JP60197192A JP19719285A JPS6258892A JP S6258892 A JPS6258892 A JP S6258892A JP 60197192 A JP60197192 A JP 60197192A JP 19719285 A JP19719285 A JP 19719285A JP S6258892 A JPS6258892 A JP S6258892A
Authority
JP
Japan
Prior art keywords
rotor
stator
torque
motor
hall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60197192A
Other languages
Japanese (ja)
Inventor
Satoru Nawata
縄田 悟
Seiji Okinaga
沖永 清治
Satoshi Yoshino
智 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP60197192A priority Critical patent/JPS6258892A/en
Publication of JPS6258892A publication Critical patent/JPS6258892A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To improve the efficiency of a motor by obstructing the conduction of field currents to a stator coil at the time of low torque conversion efficiency. CONSTITUTION:Two stator coils 16 are connected in series, circuits through transistors as armature current control elements 25 are fitted in parallel, and output terminals for a Hall IC 22 as a magnetoelectric device 21 are connected to bases in each control transistor. When base bias resistors 26 for the control transistors are determined properly and an output from the Hall IC 22 takes voltage such as 3V and the control transistors are conducted, the control transistors are conducted with the exception of predetermined angles before and behind the dead center of torque, and armature currents can be changed into pulsating currents, thus reducing the power consumption of a motor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ホールICによるスイッチング回路等により
電子的に整流されるブラシレス直流モータに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a brushless DC motor that is electronically rectified by a switching circuit using a Hall IC or the like.

[従来の技術] 今日、パソコン等のOAi器には電気的ノイズを発生し
ないブラシレスモータが多く用いられ、小型のブラシレ
ス扁平モータが薄型ファンの駆動部等として使用されて
いる。
[Prior Art] Today, brushless motors that do not generate electrical noise are often used in OAi devices such as personal computers, and small brushless flat motors are used as drive units for thin fans and the like.

この様な、小型ブラシレスモータの一例としては、第1
3図及び第14図に示す様なモータが挙げられる。第1
3図、第14図においてモータ10は平板状のロータヨ
ーク12を有し、該ロータヨーク12の下面には円周方
向に異なる磁極が順次隣接配雁された磁石15が取付け
られており、これらロータヨーク12と磁石15はモー
タ軸19により回転自在とされている。尚、これら磁石
15とロータヨーク12とはロータ11を構成するもの
である。更に該ロータ11の磁石15に対向して固定子
コイル16が設けられ、■一つ、ホール素子23を配し
てロータ11の磁石15磁極を検出し、固定子コイル1
6への電流制御を行なっている。
As an example of such a small brushless motor, the first
Examples include motors as shown in FIGS. 3 and 14. 1st
3 and 14, the motor 10 has a flat rotor yoke 12, and magnets 15 in which different magnetic poles are sequentially arranged adjacent to each other in the circumferential direction are attached to the lower surface of the rotor yoke 12. The magnet 15 is rotatable by a motor shaft 19. Note that these magnets 15 and rotor yoke 12 constitute the rotor 11. Furthermore, a stator coil 16 is provided facing the magnet 15 of the rotor 11, and one Hall element 23 is arranged to detect the magnetic pole of the magnet 15 of the rotor 11.
Current control is performed to 6.

ところで、固定子コイル16を 120°間隔で3個設
けた3相機のトルク特性では、第15図に示す様に常に
回転トルクを生じさせることができるも、固定子コイル
16の数が増し、更にホール素子23等の磁電変換素子
を複数個用いる等電機子電流の制御が比較的複雑となる
By the way, in the torque characteristics of a three-phase machine in which three stator coils 16 are provided at 120° intervals, rotational torque can always be generated as shown in FIG. 15, but as the number of stator coils 16 increases, Control of the armature current using a plurality of magnetoelectric conversion elements such as the Hall element 23 becomes relatively complicated.

又、固定子コイル16を2個又は4個設けた2相機では
モータ10の機械的構造、及び磁電変換素子の使用数ひ
いては電機子電流の制御を容易とするも、第16図のト
ルク特性に示す様に回転トルクが発生しないトルク死点
が生じ、ロータヨーク12の停止位置によっては起動で
きない場合もあった。
Furthermore, in a two-phase machine with two or four stator coils 16, the mechanical structure of the motor 10, the number of magnetoelectric transducers used, and the armature current can be easily controlled, but the torque characteristics shown in FIG. As shown, a torque dead center occurs where no rotational torque is generated, and depending on the stopping position of the rotor yoke 12, it may not be possible to start the rotor yoke.

しかし、この様なブラシレスモータIOにおける2相機
においても種々の改良がなされ、ロータヨーク12に設
けた永久磁石15により生ずる磁界にひずみを持たせた
り、又、補助磁石29によりロータ11の磁石15の停
止位置をトルク死点から外したり、更には他の付属部品
によりロータ11の磁石15停止位置をトルク死点から
常に外れた位置に停止させる構造とする改良がなされ、
2相器の使用範囲が広がりつつある。
However, various improvements have been made in the two-phase machine of the brushless motor IO, such as adding distortion to the magnetic field generated by the permanent magnet 15 provided on the rotor yoke 12, and stopping the magnet 15 of the rotor 11 using the auxiliary magnet 29. Improvements have been made in which the magnet 15 of the rotor 11 is always stopped at a position away from the torque dead center using other attached parts.
The range of use of two-phase converters is expanding.

[発明が解決しようとする間m点] 上述の如くホール素子等を用いたブラシレスモータの2
相機は構造が比較的単純であり、起動トルクの改良がな
されて多用されつつあるも、稼動時における消費電力に
対するモータの効率が低い欠点があった。
[M points to be solved by the invention] 2 of the brushless motor using Hall elements etc. as mentioned above.
The phase machine has a relatively simple structure, and although its starting torque has been improved and it is becoming more widely used, it has the disadvantage that the efficiency of the motor with respect to power consumption during operation is low.

本発明はこの様なブラシレスモータのモータ効率を高め
る方法であり、又、該方法を容易に実施し得るモータで
ある。
The present invention is a method of increasing the motor efficiency of such a brushless motor, and a motor that allows the method to be easily implemented.

[問題を解決するための手段] 本発明は円周方向に互いに異なる磁極の磁石を隣接させ
て順次配置してなる回転自在なロータと、このロータに
対向させて円周方向に配置した複数個の固定子コイルか
ら成るステータとにより構成されるブラシレスモータに
おいて、トルク変換効率の悪い時期にはその固定子コイ
ルにM、機子電流を通電しないことを特徴とするブラシ
レスモータの制御方法であり、この方法を容易に実施し
得るブラシレスモータの構成としては、円周方向に互い
に異なる磁極の磁石を隣接させて順次配置してなる回転
自在なロータと、このロータに対向させて円周方向に配
置した複数個の固定子コイルから成るステータとにより
構成されるブラシレスモータにおいて、ロータの位置を
検出する為にステータ側に設けられた磁電変換素子によ
り検出されるロータの磁石の着磁部分の一部を除去する
等により無着磁部分とし、以て無着磁部分が検出されて
いるときは電機子電流制御素子を導通させない構造とし
たことを特徴とするブラシレスモータである。
[Means for Solving the Problem] The present invention includes a rotatable rotor in which magnets with different magnetic poles are sequentially arranged adjacent to each other in the circumferential direction, and a plurality of magnets arranged in the circumferential direction to face the rotor. A method for controlling a brushless motor, characterized in that, in a brushless motor consisting of a stator and a stator comprising a stator coil, the stator coil is not energized with M and a machine current during periods of poor torque conversion efficiency, The configuration of a brushless motor that can easily implement this method includes a rotatable rotor in which magnets with different magnetic poles are sequentially arranged adjacent to each other in the circumferential direction, and magnets arranged in the circumferential direction opposite to this rotor. In a brushless motor consisting of a stator made up of multiple stator coils, a part of the magnetized part of the rotor magnet is detected by a magnetoelectric conversion element provided on the stator side to detect the position of the rotor. This brushless motor is characterized in that it has a structure in which the armature current control element is not made conductive when the non-magnetized portion is detected by removing the magnetized portion.

[作用] 本発明は前述の如く、トルク変換効率の悪い時期([囲
)、即ち、固定子コイルに電機子電流を通電しても回転
トルクが発生しない範囲、或は小さな回転トルクしか生
じない範囲においては電機子電流を導通させないことに
よりモータの消費電力を減じ、モータの効率を高め得る
ブラシレスモータの制御方法であり、又、ロータの磁石
の一部を無着磁部分とすることによりホール素子等の磁
電変換素子がロータの磁石のN極又はS極を検出する時
期をずらし、トルク変換効率が悪いときは容易に′1シ
機子電流を導通させないようにしたブラシレスモータで
ある。
[Function] As described above, the present invention is applicable to periods when torque conversion efficiency is poor ([circle]), i.e., when armature current is applied to the stator coil, no rotational torque is generated, or only a small rotational torque is generated. This is a control method for brushless motors that can reduce motor power consumption and increase motor efficiency by not allowing armature current to pass through the motor. This is a brushless motor in which the timing at which a magnetoelectric conversion element such as an element detects the N pole or S pole of the rotor magnet is shifted, so that when the torque conversion efficiency is poor, the 1st armature current is not easily conducted.

[実施例] 本発明の実施例としてリニア形ホールICを用いた4極
2相ホールモータを先ず説明する。
[Example] As an example of the present invention, a four-pole two-phase Hall motor using a linear Hall IC will first be described.

該実施例においては第1図に示す様にロータ11に取付
けられた磁石15は90’の範囲に4分割され、順次N
極とS極とをもって4極着磁され、該ロータ11の磁石
15と対向してステータヨーク17−Lには固定子コイ
ル1Bが90°間隔で4個配置されている。これら固定
子コイル16及びステータヨーク17はステータ18を
構成する。そして、固定子コイル16の機械的中間位置
に磁電変換素子21としてホールIC22を設け、且つ
、該磁電変換素子21により検出されるロータ11の磁
石15の一部において、N極とS極との境界線30を中
心として前後に所要角αを有する適宜幅の切欠き13を
設ける様に着磁部分を除去する。
In this embodiment, as shown in FIG.
Four stator coils 1B are arranged at 90° intervals on the stator yoke 17-L, which is magnetized into four poles with a pole and an S pole, and are opposed to the magnets 15 of the rotor 11. These stator coil 16 and stator yoke 17 constitute a stator 18. Then, a Hall IC 22 is provided as a magnetoelectric transducer 21 at a mechanically intermediate position of the stator coil 16, and in a part of the magnet 15 of the rotor 11 detected by the magnetoelectric transducer 21, an N pole and an S pole are connected. The magnetized portion is removed so as to provide a notch 13 of an appropriate width having a required angle α in front and behind the boundary line 30.

この切欠き13の角度αは次の様にして決めるのが望ま
しい。
The angle α of this notch 13 is preferably determined as follows.

即ち、第1図に示す様に、ステータ18の中心を通り、
相隣るコイル16とコイル16との中間位置を通る半径
方向の直&a31 (第1図は磁石15の異極が接する
境界線30位置とこの直線31の位置は一致している状
態を示している。)と、ステータ18の中心を通り、前
記直線31の両側に位置するコイル16の最外側と接す
る半径方向の直線32とのなす角度をβとした時に、角
度αは角度βと等しくするか、又は、図示の直線33の
位置の様に角度βよりも所要量大きくなる様にすると良
い、この角度αの上限値は切欠き13を設けない時のモ
ータ10のトルク特性に応じて決定するようにし、トル
クが最大トルクよりも小さくなる範囲の適宜な位置とす
ると良い。
That is, as shown in FIG. 1, passing through the center of the stator 18,
A straight line 31 in the radial direction passing through an intermediate position between two adjacent coils 16 (Fig. 1 shows a state in which the position of the boundary line 30 where different poles of the magnets 15 touch coincides with the position of this straight line 31. ) and a straight line 32 in the radial direction that passes through the center of the stator 18 and touches the outermost side of the coil 16 located on both sides of the straight line 31 is defined as β, then the angle α is equal to the angle β. Alternatively, it is preferable to make the angle α a required amount larger than the angle β, as in the position of the straight line 33 shown in the figure.The upper limit value of this angle α is determined according to the torque characteristics of the motor 10 when the notch 13 is not provided. It is preferable to set the torque at an appropriate position within a range where the torque is smaller than the maximum torque.

この様に決めるのは、先ず、磁石15の境界線3゜が角
度βの範囲内に位置した時にはコイルIBには磁石15
のN極とS極の双方がまたがらないのでトルクが発生せ
ず、この範囲内は固定子コイル16に通電してもモータ
10は仕事をしないので無駄な為である。即ち、角度β
で示される範囲はトルク死点である。尚、この角度βは
通常際めて小さくなる様に設計されている。
The reason for determining this is that when the boundary line 3° of the magnet 15 is located within the range of the angle β, the magnet 15 is attached to the coil IB.
Since both the N and S poles do not straddle, no torque is generated, and even if the stator coil 16 is energized within this range, the motor 10 does not perform any work, so it is useless. That is, the angle β
The range indicated by is the torque dead center. Note that this angle β is normally designed to be extremely small.

そして、第1図においてステータ18の中心を通り、コ
イル16の内周縁と接する2木の半径方向の直線34及
び直線35がなす角度をγとした時、トルクは、磁石1
5の境界線30がこの角度γの範囲内に位置している時
が最大となる。そして、磁石15が回転するにつれ、磁
石15の境界線3oが回転方向に対して遅れる側の前記
直線35を過ぎていくと徐々に小さくなっていき、前記
直線32に至った時点でトルクはO(零)となる、勿論
、これとは反対に、磁石15の境界線30が回転方向に
対して先行する側の前記直線34に近づいて回転してい
る時には、発生トルクは徐々に大きくなり、直線34に
至った時、最大となる。従って、このトルクの減少過程
、或は、増加過程にある範囲においても、発生角度が零
に近づく範囲をも切欠くことが望ましい。
In FIG. 1, when the angle formed by the two radial straight lines 34 and 35 passing through the center of the stator 18 and touching the inner peripheral edge of the coil 16 is γ, the torque is
When the boundary line 30 of No. 5 is located within the range of this angle γ, the angle becomes maximum. Then, as the magnet 15 rotates, the boundary line 3o of the magnet 15 gradually becomes smaller as it passes the straight line 35 on the side that lags behind the rotation direction, and when it reaches the straight line 32, the torque becomes O. (zero).Of course, on the contrary, when the boundary line 30 of the magnet 15 is rotating close to the straight line 34 on the preceding side with respect to the rotation direction, the generated torque gradually increases, When it reaches straight line 34, it becomes maximum. Therefore, even in the range where the torque is decreasing or increasing, it is desirable to cut out the range where the angle of occurrence approaches zero.

尚、磁電変換素子21及び固定子コイル16の電気回路
は第2図に示す様に2個の固定子コイル16を直列とし
く尚、この場合、2個の固定子コイル16とは、第1図
において180°間隔をおいて相対する画定子コイル1
6である。)、更に電機子電流制御素子25であるトラ
ンジスタを介した回路を並列に設け、磁電変換素子21
であるホールIC22の出力端子を各制御トランジスタ
のベースに接続する。
The electric circuit of the magnetoelectric conversion element 21 and the stator coil 16 consists of two stator coils 16 connected in series as shown in FIG. Delimiter coils 1 facing each other at 180° intervals in the figure
It is 6. ), furthermore, a circuit is provided in parallel via a transistor which is the armature current control element 25, and the magnetoelectric conversion element 21
The output terminal of the Hall IC 22 is connected to the base of each control transistor.

このホールIC22はホール素子23と適宜の増幅部2
4等で構成される素子であって、第3図に示す様に、磁
気検出部への磁束密度が零のとき2つの出力電圧が交叉
する対称出力特性を有するリニア形ホールIC22であ
る。
This Hall IC 22 includes a Hall element 23 and an appropriate amplifying section 2.
As shown in FIG. 3, the linear Hall IC 22 has a symmetrical output characteristic in which two output voltages intersect when the magnetic flux density to the magnetic detection section is zero.

この様な特性のホールIC22を用い前述の如く磁極境
界に切欠き13を有するロータ11の磁石15の磁極を
検出すると、ホールIC22位置に該切欠き13が位こ
したときホールIC22と交叉する磁束が零となり、ホ
ールIC22の出力は第4図に示す様にロータの切欠き
13の長さに応じて再出力電圧の一致点が長くなる。従
って、この様な状態で制御トランジスタのベースバイア
ス抵抗26を適宜に定めることにより、例えばホールI
C22の出力が3vで制御トランジスタが導通する如く
設定すれば、トルク死点の前後所定角αを除いて制御ト
ランジスタが導通し、電機子電流を第5図に示す様な脈
流とすることができる。そして、この電機子電流の非導
通部分は第16図に示したトルク特性におけるトルク死
点の近傍であり、電機子電流の非導通時はトルク死点と
同期し、本発明に係るブラシレスモータ10の出力特性
は第6図に示す様にトルク死点の幅が多少広くなり、出
力が若干低くなるもモータ10の消費電力が大幅に減少
し、モータ10の効率を高めることができる。
When the magnetic pole of the magnet 15 of the rotor 11 having the notch 13 at the magnetic pole boundary as described above is detected using the Hall IC 22 having such characteristics, the magnetic flux that crosses the Hall IC 22 when the notch 13 is located at the Hall IC 22 position is generated. becomes zero, and the point at which the re-output voltages match becomes longer in the output of the Hall IC 22, as shown in FIG. 4, depending on the length of the notch 13 of the rotor. Therefore, by appropriately setting the base bias resistance 26 of the control transistor in such a state, for example, the hole I
If the control transistor is set to conduct when the output of C22 is 3V, the control transistor will be conductive except for a predetermined angle α before and after the torque dead center, and the armature current can be made into a pulsating flow as shown in Fig. 5. can. The non-conducting portion of the armature current is near the torque dead center in the torque characteristics shown in FIG. 16, and when the armature current is non-conducting, it is synchronized with the torque dead center. As shown in FIG. 6, the output characteristics of the motor 10 are such that, although the width of the torque dead center is slightly wider and the output is slightly lower, the power consumption of the motor 10 is significantly reduced, and the efficiency of the motor 10 can be increased.

尚、磁電変換素子21と例えば 180°の位置のモー
タケースの位置に補助磁石29を設ける等により、ロー
タ11の磁石15の停止位置をトルク死点から外し、以
て常に起動トルクが生じ得る様にされていることはいう
迄もない。
In addition, by providing an auxiliary magnet 29 at a position of the motor case at 180 degrees from the magnetoelectric conversion element 21, for example, the stopping position of the magnet 15 of the rotor 11 is removed from the torque dead center, so that starting torque can always be generated. Needless to say, this has been the case.

又、前記実施例はロータ!lの磁石15の周辺に切欠き
13を設けたが、該切欠き13はホールIC22が磁気
を検出しないロータの回転位置を作り出す為のものであ
る故、切欠き13に換えて第7図の様にロータ11の磁
石15に着磁を行なわないことにより着磁を除去する如
くして無着磁部分14とする場合もある。
Also, the above embodiment is a rotor! A notch 13 is provided around the magnet 15 of 1, but since the notch 13 is used to create a rotational position of the rotor where the Hall IC 22 does not detect magnetism, the notch 13 is replaced with the one shown in FIG. Similarly, there are cases where the magnets 15 of the rotor 11 are not magnetized to remove the magnetization, thereby forming the non-magnetized portion 14.

又、磁電変換素子21として前記実施例はホールIC2
2を使用し、制御トランジスタのベースバイアスを設定
したが、磁電変換素子21としてホール抵抗や、第8図
に示す様な磁界の向き及び磁束密度に応じて順次出力電
圧を増加させる比較的単純なホール素子23を用いた場
合には第9図に示す様に制御抵抗27を挿入するのみで
足りる場合もある。
Further, as the magnetoelectric conversion element 21, the Hall IC 2 in the above embodiment is used.
2 was used to set the base bias of the control transistor, but a relatively simple method that sequentially increases the output voltage according to the Hall resistance or the direction of the magnetic field and magnetic flux density as shown in FIG. When the Hall element 23 is used, it may be sufficient to insert a control resistor 27 as shown in FIG. 9 in some cases.

更に、ロータ11の磁石15の着磁は第1O図に示す様
にBO3毎の6極着磁としたり、又、6極以上の多極機
として回転トルクによる振動を少なくすることも有り、
この6極着磁のロータ11の磁石15に対する固定子コ
イル!6は600間隔で6個設ける場合、又は、2ケ所
をイメージコイルとして固定子コイルIBを4個用いる
場合、更には4ケ所をイメージコイルとして固定子コイ
ル1Bを2個用いる場合もある。
Furthermore, the magnets 15 of the rotor 11 may be magnetized with six poles for each BO3 as shown in Fig. 1O, or may be a multi-pole machine with six or more poles to reduce vibrations caused by rotational torque.
The stator coil for the magnet 15 of this six-pole magnetized rotor 11! 6 may be provided at 600 intervals, or two stator coils IB may be used as image coils at two locations, or two stator coils 1B may be used with four locations as image coils.

そして、上記実施例におけるロータ11の形状は円板状
であったが、第11図に示す様なインナーロータ形又は
第12図に示す様なアウターロータ形の円筒形ロータで
あっても実施し得ることは云う迄もない。
Although the shape of the rotor 11 in the above embodiment was a disk shape, it may also be a cylindrical rotor with an inner rotor shape as shown in FIG. 11 or an outer rotor shape as shown in FIG. 12. Needless to say, there is nothing to gain.

又、電・種子′f1を流制御素子25であるトランジス
タは通常のトランジスタに限ることなく、FET等の素
子を用いることもできる。
Furthermore, the transistor that serves as the current control element 25 for the current seed 'f1 is not limited to a normal transistor, and an element such as an FET may also be used.

[発明の効果] 本発明は前述の如く、トルク変換効率の悪い間、電機子
電流を導通させないブラシレスモータの制御方法である
故、トルク変換効率の悪い時期において消費される電機
子電流を無くし、モータの消費電力を少なくし効率を容
易に高め得る方法であり、又、ロータの一部に無着磁部
分を形成し、以て磁電変換素子に磁束を与えない時期を
有するブラシレスモータである故、容易にトルク死点に
同期して″N、a子電流開電流制御素子通時を作ること
ができ、製造容易にして効率の高いブラシレスモータを
提供することができる。
[Effects of the Invention] As described above, the present invention is a brushless motor control method that does not allow armature current to conduct during periods when torque conversion efficiency is poor. This is a method that can easily increase the efficiency by reducing the power consumption of the motor, and also because it is a brushless motor that has a non-magnetized part formed in a part of the rotor and has a period when no magnetic flux is applied to the magnetoelectric conversion element. Therefore, it is possible to easily make the "N" and "A" current open current control elements pass in synchronization with the torque dead center, and it is possible to provide a brushless motor that is easy to manufacture and has high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るブラシレスモータのロータ、周定
子コイル及び磁電変換素子等を示す要部平面図、第2図
は本発明に係るブラシレスモータの電気回路の一例を示
す図、第3図はホー−ルICの出力特性を示す図にして
第4図は本発明に使用した場合のホールIC出力を示す
図、第5図、第6図は夫々電機子電流及び回転トルクを
示す図にして、第7図及び第10図乃至第12図は他の
実施例のロータを示す図、第8図はホール素子の出力特
性を示す図にして第9図は他の実施例の電気回路を示す
図であり、第13図は従来一般のプテシレスMモモータ
の断面図で−あって、第14図はそのロータの平面図、
第15図及び第16図は一般の3相機及び?枢機の各ト
ルク特性を示す図である。 10=ブラシレスモータ、   11=ロータ、12=
ロータヨーク、   13=切欠き、   14=無着
磁部分、   15=磁石、  16==固定子コイル
、   17=ステータヨーク、   18=  ステ
ータ、  !9=モータ軸、  21=磁電変換素子、
 25=電機子電流制御素子、  26=バイアス抵抗
、  27=制御抵抗、  29=補助磁石。 才 3  図 才4図 才5図 すvM酎耐f 才U図 才12図 2〒−l−2 0トーーυ オ L5  図 オ 【G 図 手続補正書 昭和80年10月16日
FIG. 1 is a plan view of essential parts showing the rotor, circumferential stator coil, magnetoelectric conversion element, etc. of the brushless motor according to the present invention, FIG. 2 is a diagram showing an example of the electric circuit of the brushless motor according to the present invention, and FIG. is a diagram showing the output characteristics of the Hall IC, Figure 4 is a diagram showing the Hall IC output when used in the present invention, and Figures 5 and 6 are diagrams showing the armature current and rotational torque, respectively. 7 and 10 to 12 are diagrams showing the rotor of other embodiments, FIG. 8 is a diagram showing the output characteristics of the Hall element, and FIG. 9 is a diagram showing the electric circuit of another embodiment. FIG. 13 is a sectional view of a conventional general Ptesires M motor, and FIG. 14 is a plan view of its rotor.
Figures 15 and 16 show general three-phase machines and ? It is a figure which shows each torque characteristic of a cardinal. 10=brushless motor, 11=rotor, 12=
Rotor yoke, 13=notch, 14=non-magnetized portion, 15=magnet, 16=stator coil, 17=stator yoke, 18=stator, ! 9=motor shaft, 21=magnetoelectric conversion element,
25=armature current control element, 26=bias resistance, 27=control resistance, 29=auxiliary magnet. Sai 3 Illustration 4 Illustration 5 Illustration Su vM Chutai f Sai U Illustration 12 Illustration 2 〒-l-2 0To υ O L5 Illustration O [G Figure Procedure Amendment Book October 16, 1980

Claims (2)

【特許請求の範囲】[Claims] (1)円周方向に互いに異なる磁極の磁石を隣接させて
順次配置してなる回転自在なロータと、このロータに対
向させて円周方向に配置した複数個の固定子コイルから
成るステータとにより構成されるブラシレスモータにお
いて、トルク変換効率の悪い時期にはその固定子コイル
に界磁電流を通電しないことを特徴とするブラシレスモ
ータの制御方法。
(1) A rotatable rotor made up of magnets with different magnetic poles arranged adjacently in sequence in the circumferential direction, and a stator made up of a plurality of stator coils arranged circumferentially facing the rotor. A control method for a brushless motor, characterized in that a field current is not applied to a stator coil during periods when torque conversion efficiency is poor.
(2)円周方向に互いに異なる磁極の磁石を隣接させて
順次配置してなる回転自在なロータと、このロータに対
向させて円周方向に配置した複数個の固定子コイルから
成るステータとにより構成されるブラシレスモータにお
いて、ロータの位置を検出する為にステータ側に設けら
れた磁電変換素子により検出されるロータの磁石の着磁
部分の一部を除去する等により無着磁部分とし、以て無
着磁部分が検出されているときは界磁電流制御素子を導
通させない構造としたことを特徴とするブラシレスモー
タ。
(2) A rotatable rotor made up of magnets with different magnetic poles arranged adjacently in sequence in the circumferential direction, and a stator made up of a plurality of stator coils arranged circumferentially facing the rotor. In the brushless motor configured, a part of the magnetized part of the rotor magnet, which is detected by the magnetoelectric conversion element provided on the stator side in order to detect the rotor position, is removed to make it a non-magnetized part, and A brushless motor characterized by having a structure in which a field current control element does not conduct when a non-magnetized portion is detected.
JP60197192A 1985-09-05 1985-09-05 Brushless motor and control method thereof Pending JPS6258892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197192A JPS6258892A (en) 1985-09-05 1985-09-05 Brushless motor and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197192A JPS6258892A (en) 1985-09-05 1985-09-05 Brushless motor and control method thereof

Publications (1)

Publication Number Publication Date
JPS6258892A true JPS6258892A (en) 1987-03-14

Family

ID=16370338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197192A Pending JPS6258892A (en) 1985-09-05 1985-09-05 Brushless motor and control method thereof

Country Status (1)

Country Link
JP (1) JPS6258892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316690A (en) * 1987-06-19 1988-12-23 Fujitsu General Ltd Brushless dc motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206263A (en) * 1981-06-10 1982-12-17 Sony Corp Two phase switching type brushless motor
JPS5944992A (en) * 1982-09-03 1984-03-13 Citizen Watch Co Ltd Drive circuit for motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206263A (en) * 1981-06-10 1982-12-17 Sony Corp Two phase switching type brushless motor
JPS5944992A (en) * 1982-09-03 1984-03-13 Citizen Watch Co Ltd Drive circuit for motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316690A (en) * 1987-06-19 1988-12-23 Fujitsu General Ltd Brushless dc motor

Similar Documents

Publication Publication Date Title
JP2001037186A (en) Permanent magnet motor
US4968913A (en) Two-phase brushless motor
EP2568577A2 (en) Brushless DC electric motor
US7304446B2 (en) Sensorless and brushless DC motor
KR840001387B1 (en) Motor
JPS6258892A (en) Brushless motor and control method thereof
JPS5855747B2 (en) Brushless rotary motor
JPS62126888A (en) Controlling method for brushless motor
JPH048154A (en) Single-phase cored brushless motor
JP4141117B2 (en) Built-in magnetizing method for permanent magnet motor
JPS6139842A (en) Motor
JPH05146134A (en) Contactless dc motor
JPH1189199A (en) Axial air gap type synchronous motor
JP2002369478A (en) Permanent magnet type synchronous motor
JPS6321434B2 (en)
JPH0417557A (en) Single-phase brushless motor having iron core
JP2621554B2 (en) 2-phase brushless motor
JPS62285686A (en) Brushless motor
JPH0646554A (en) Planar opposing brushless motor
JPH0723027Y2 (en) Brushless motor
KR920003958Y1 (en) Brushless motor
JPH0870562A (en) Brushless motor
JPH05276724A (en) Brushless motor
JPS6059964A (en) Brushless dc motor
JPS59216458A (en) Dc motor