[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6256894B2 - - Google Patents

Info

Publication number
JPS6256894B2
JPS6256894B2 JP55058650A JP5865080A JPS6256894B2 JP S6256894 B2 JPS6256894 B2 JP S6256894B2 JP 55058650 A JP55058650 A JP 55058650A JP 5865080 A JP5865080 A JP 5865080A JP S6256894 B2 JPS6256894 B2 JP S6256894B2
Authority
JP
Japan
Prior art keywords
film
particles
polyester
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55058650A
Other languages
Japanese (ja)
Other versions
JPS56127626A (en
Inventor
Tsuyoshi Oota
Iwao Tanaka
Tomoyuki Minami
Masahiko Mogi
Saburo Fujita
Yoen Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5865080A priority Critical patent/JPS56127626A/en
Publication of JPS56127626A publication Critical patent/JPS56127626A/en
Publication of JPS6256894B2 publication Critical patent/JPS6256894B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はすぐれた易滑性および表面状態を有す
るビデオテープ等の高級磁気テープ用2軸延伸ポ
リエチレンテレフタレートフイルムに適したポリ
エチレンテレフタレートの製造方法に関する。 一般に、飽和線状ポリエステル、特にポリエチ
レンテレフタレートは、そのすぐれた物理的、化
学的性質のために磁気テープ、電気部品、写真
用、包装用途などの各分野において2軸延伸フイ
ルム形態で広く使用されている。ポリエステル
が、これらの形態で使用される場合には溶融押出
延伸熱処理という成型工程での工程通過性、ある
いは巻き取り裁断、磁性層などの表面塗布、電気
部品への組込の作業性、およびフイルム製品の滑
り、表面特性等の最終製品としての価値から微粒
子含有ポリエステル組成物を作成しそれによつて
製膜時のフイルム流れを容易にし、またフイルム
の表面に適度の凹凸を与えて表面易滑性を付与す
ることが通常行なわれている。 しかして、かかる微粒子を含有しているポリエ
ステル組成物としては、 酸化ケイ素、二酸化チタン、炭酸カルシウ
ム、タルク、クレイ等の不溶性、不活性粒子
(外部粒子)を含有するポリエステル ポリエステル合成時に使用する金属化合物触
媒たとえばアルカリ金属化合物、アルカリ土類
金属化合物などによつて、ポリエステル製造時
にポリマ内部に形成される粒子(内部粒子)を
含有するポリエステル などが知られている。 しかしながら、このような公知の微粒子含有ポ
リエステル組成物には次のような問題があり、特
に磁気テープ用2軸延伸フイルムに成型した場
合、その静摩擦係数、最大表面粗さ、粗さ密度お
よび製膜性などは満足なものではなかつた。 すなわち、前記の外部粒子含有ポリエステル
組成物では添加粒子の微細化の困難さや粒子同志
の凝集に起因する粗大粒子が混在し、粒子径が不
均一である以外に粒子とポリエステルとの親和性
不足による粒子の脱落などの欠点があり、該ポリ
エステル組成物の成型にあたつて製膜時の破れが
発生し、また磁気テープ用フイルムにした場合フ
イツシユアイ(魚の目状の微小欠点)、ドロツプ
アウト(磁気記憶の抜け)などの問題が発生する
などの欠点が多い。 一方の内部粒子法によるポリエステルでは前
記の難点は多少は改善されるがそれでも多くの
問題がある。 例えば特公昭34−5144号公報ではアルカリ土類
金属化合物をエステル交換反応触媒として使用
し、ポリマ中に不溶性のテレフタル酸のアルカリ
土類金属塩を生成させることが記載されている。
この場合用いたアルカリ土類金属化合物はポリエ
ステル反応系ないしはグリコールなどのポリエス
テル合成原料に一且は溶解し、ポリエステル原料
と反応系において反応し、該反応系中で微細な粒
子(いわゆる内部粒子)を形成し、析出してく
る。このため得られる粒子の径は比較的均一、微
小でありポリエステル基質への親和力も大きい。
しかしテレフタル酸のアルカリ土類金属塩による
内部粒子生成方式の場合には、生成粒子を比較的
多量にしようとした場合、粒子間の凝集力が強い
ためか粗大粒子が発生し特に磁気テープ用フイル
ムにおいてフイツシユアイ、ドロツプアウトなど
好ましくない欠点が発生する。 さらに粒子量を増加させるため、触媒金属化合
物添加量を多くすると、粒子同志の凝集による粗
大粒子の混在量の増加や副反応速度の増大による
ポリエステルの着色、融点の低下、カルボキシル
末端基の増加などの問題が発生する。かかる従来
の内部粒子方式ではフイルムの表面凹凸の微細性
を高度に要求される磁気テープ用途において磁性
層の厚さ5μ以下に極薄化した場合表面凹凸の最
高部と最低部の差として0.5μ以上の粗大粒子を
減少させることが困難であつた。 本発明者は前記した磁気テープ用2軸延伸ポリ
エステルフイルム、特にビデオ等の高級磁気テー
プ用途においては、さらに良好な滑り性および微
細表面凹凸が望まれ、均一微細な粒子を多量に析
出させることが必要であつた。そこで本発明者ら
は、従来の微粒子含有ポリエステル組成物の欠
点、なかんずく内部粒子含有ポリエステル組成物
で必要十分な含有粒子量が得られなかつた点、凝
集粗大粒子の混在が避けられず、かつ粒子径が不
均一であつた点を改善するため鋭意検討を行なつ
た結果、本発明に到達したものである。 すなわち本発明の目的は、滑り特性にすぐれた
磁気テープ用としてすぐれた表面特性を有するフ
イルムを得るために有用なポリエチレンテレフタ
レートの製造方法を提供するにある。 このような本発明の目的は、テレフタル酸また
はそのポリエステル形成性の誘導体と、エチレン
グリコールとからポリエステルを製造するに際し
エステル交換反応あるいは、エステル化反応が実
質的に終了した時点から固有粘度が0.2を越えな
い重縮合過程で、生成するポリエチレンテレフタ
レートに対して (1) 0.005〜0.3重量%該反応系に可溶性のリチウ
ム化合物 (2) 0.01〜0.5重量%の該反応系に可溶性のカル
シウム化合物 および (3) 0.01〜0.5重量%のリン化合物 を添加溶解し、次いで重縮合反応を完結させるこ
とを特徴とするポリエチレンテレフタレートの製
造方法である。かかる方法により粒子径が均一で
凝集粗大粒子の存在量がなく、かつ必要十分量の
粒子を含むポリマを得ることができることを見い
出し、本発明に到達した。 ここで、本発明者は特開昭48−61556号公報に
おいてリチウム元素含有内部粒子0.2〜3.0重量%
を有するポリエステル組成物を提案した。該組成
物はすぐれた易滑性、不透明性、表面状態を有す
るポリエステルフイルムや繊維を得るうえで有用
であり、かつ製糸製膜性が良好であつて、生産性
に優れたものである。 また、かかるポリエステル組成物からなるポリ
エステルフイルムを磁気テープ用途に適用した場
合は、前記諸特性のバランスが良好であるが表面
粗さをさらに小さく、粗さ密度を増加させること
が要望されている。本発明の方法によればフイル
ムにした時、表面粗さ、粗さ密度が改善され表面
状態も一層良好であり、ビデオ等の高級な磁気テ
ープ用に好適なポリエチレンテレフタレートを得
ることができるものである。 本発明で使用するリチウム化合物は、グリコー
ル可溶性のリチウム化合物であり、具体的には塩
化リチウム、ヨウ化リチウム、酢酸リチウムなど
を挙げることができる。またリチウム化合物の添
加量は、生成するポリエチレンテレフタレートに
対して0.005〜0.3重量%、好ましくは0.01〜0.25
重量%である。リチウム化合物の添加量が0.005
重量%より少ない時は、粒子量が不足し、また
0.3重量%より多い時には粒子が凝集粗大化する
ので好ましくない。 本発明で使用するカルシウム化合物は、グリコ
ール可溶性のカルシウム化合物であり、具体的に
は酢酸カルシウム、シユウ酸カルシウムなどのカ
ルシウムの有機酸塩化合物を挙げることができ
る。カルシウム化合物の添加量は、生成するポリ
エチレンテレフタレートに対し、0.01〜0.5重量
%、好ましくは0.01〜0.3重量%である。カルシ
ウム化合物の添加量が0.01重量%より少ない時は
粒子量が不足し、また0.5重量%より多い時は、
粒子が凝集し粗大化する。 さらに、本発明で添加するリチウム化合物、カ
ルシウム化合物は生成する粒子を微細、均一にで
きる点でその添加モル比を、リチウム化合物/カ
ルシウム化合物のモル比を1/10〜10/1とする
ことが好ましく、さらに好ましくは1/1〜10/
1である。 また本発明で使用するリチウム化合物およびカ
ルシウム化合物は内部粒子を形成するためにポリ
エステル反応系に添加した場合、反応系に一旦は
溶解することが必要である。一旦溶解せず添加析
出する場合には析出した結晶が粗大粒子となり、
その後2軸延伸してフイルムとした場合表面に粗
大突起を形成し好ましくない。 さらに、本発明で使用するリン化合物として
は、3価および/または5価のリン化合物が使用
できる。具体的にはたとえば、リン酸、亜リン
酸、リン酸トリメチル、リン酸トリエチル、メチ
ルホスホン酸、フエニルホスホン酸、ベンジルホ
スホン酸、ジメチルメチルホスホネート、ジメチ
ルフエニルホスホネート、ジメチルベンジルホス
ホネートなどが挙げられ、さらにまたリン酸ホウ
素、リン酸二水素アンモニウム、リン酸水素二ア
ンモニウム、ピロリン酸などを挙げることができ
る。これらのリン化合物は単独に使用しても、ま
た2種以上を併用することもできるが特にリンの
酸とリンの酸のエステルを併用することが粗大粒
子の発生を抑制できることおよび生成粒子を均一
微細化できる観点から一層好ましい。 かかるリンの酸とリンの酸のエステルの具体的
な好ましい組合せとしてはリン酸とジメチルフエ
ニルホスホネート、リン酸とジメチルベンジルホ
スホネート、亜リン酸とリン酸トリメチル、亜リ
ン酸とリン酸トリエチル、亜リン酸とジメチルフ
エニルホスホネート、亜リン酸とジメチルベンジ
ルホスホネート、メチルホスホン酸とリン酸トリ
メチル、フエニルホスホン酸とリン酸トリメチ
ル、ベンジルホスホン酸とリン酸トリエチルなど
を挙げることができる。 ここで、リン化合物は生成するポリエステルに
対して0.01〜0.5重量%、より好ましくは0.05〜
0.3重量%が添加される。リン化合物の添加量が
0.01重量%より小さい時は生成する粒子が粗大化
し、また0.5重量%より多い場合には、粒子量が
少なくなり、フイルム化した場合に粗さ密度が小
さくなるばかりか重合反応の遅延、副反応による
ジエチレングリコールの副生量が多くなるなどの
欠点を有し好ましくない。リンの酸およびリンの
酸のエステルを併用添加する際には、リンの酸と
リンの酸のエステルのモル比を10/1〜1/10と
することが好ましい。 リチウム化合物、カルシウム化合物およびリン
化合物は、テレフタル酸またはそのエステル形成
性誘導体とエチレングリコールを反応させて、エ
ステル交換反応または、エステル化反応が実質的
に終了した時点から固有粘度が0.2を越えない重
縮合過程に好ましくはエチレングリコール溶液と
して、別々にあるいは互いに反応系添加前に反応
しない状態で反応系に添加される。 また、固有粘度が0.2以上に達した段階で添加
すると本発明の目的であるポリマ内部に微小粒子
を数多く存在させることができなくなる。 本発明のポリエチレンテレフタレートはジカル
ボン酸成分であるテレフタル酸を20モル%以下の
量であればフタル酸、イソフタル酸、ナフタリン
ジカルボン酸、その他の芳香族ジカルボン酸のほ
か脂肪族ジカルボン酸およびこれらの誘導体と置
き換えてもよく、またエチレングリコール成分の
20モル%以下をプロピレングリコール、トリメチ
レングリコール、ネオペンチルグリコール、その
他のジオールに置き換えてもよい。 また、公知の他の共重合成分、各種添加剤を本
発明の目的をそこなわない範囲内で添加すること
もできる。 本発明によつて得られるポリエステルは粒径1
μ以下の均一微細粒子を多量に含有し、製膜時に
2軸延伸される段階でフイルム表面に微細な凹凸
を多量に生じ易滑性の良好なフイルムに成形され
る。このフイルムは粗大粒子が含まれないため表
面に粗大突起がなく、特に表面状態の微細性均一
性が要求されるビデオ等の高級な磁気テープ用に
好適なものとなる。 以下に実施例を挙げて本発明を詳述する。 なお実施例中で述べている各測定値は、以下の
方法によつて測定したものである。 (溶液ヘイズ) ポリエステル組成物5.4gを四塩化エタン/フ
エノールの4/6混合溶媒40c.c.に加え、102℃で
2時間撹拌溶解後冷却し、該溶液を石英ガラス製
厚み20mmのセルに採取し、積分球式HTRメータ
ーSEP−H−2型(日本精密光学製)によりヘイ
ズ値を測定し、%で表わす。 (フイルムの摩擦係数) スリツプテスターを用いASTM−D−1894B法
に従つて測定する。なおフイルムの易滑性の目安
として静摩擦係数を用いた。 (フイルムの表面凹凸の粗さ) フイルム表面を顕微光波干渉計により観測し得
られた表面凹凸の最高部と最低部の差をμ単位で
表わす。 (フイルム表面凹凸の密度(粗さ密度)) 触針法で、長さ1mm中の山の個数を数え個/mm
単位で表わす。 実施例 1 テレフタル酸ジメチル100部、エチレングリコ
ール70部とから酢酸マンガン0.035部を触媒とし
て常法によりエステル交換反応を行ない、その生
成物に三酸化アンチモン0.04部、エチレングリコ
ールに溶解した酢酸リチウム0.15部および酢酸カ
ルシウム0.09部とを添加し、続いてリン酸トリメ
チルエステル0.10部および亜リン酸0.02部とを添
加した後重縮合反応を行ない、固有粘度0.615、
軟化点260.8℃、溶液ヘイズ41%のポリマを得
た。 該ポリマを290℃の熱板上でカバーグラスの間
でプレスし、薄片状のサンプルとしてこれを偏光
顕微鏡を用い暗視野で観察したところ平均粒径
0.5μの均一な粒子が多数観察された。 次に前記ポリエステル組成物を用い、延伸倍率
タテ3.3倍、ヨコ3.4倍、熱処理温度215℃、熱処
理時間5秒の条件にて製膜スピード200m/分で
製膜を行なつた。その結果フイルム破れはまつた
く無く、得られた厚さ12μの2軸延伸フイルムの
静摩擦係数は0.53、該フイルム表面凹凸の粗さは
0.18μ、フイルムの表面凹凸の密度は38個/mmで
あり、磁気テープ用途において満足できる易滑性
と均一微細な凹凸表面を有しており、0.5μ以上
の粗大突起部分の欠陥がなく、0.3μ以上の粗大
突起もないことがわかつた。 比較例 1 エステル交換反応終了後、三酸化アンチモン
0.04部と酢酸リチウム0.15部のみを添加する以外
は実施例1と全く同様の方法で重縮合反応を行な
い固有粘度0.610、軟化点261.2℃、溶液ヘイズ52
%のポリマを得た。 前記ポリマを用い延伸倍率タテ3.3倍、ヨコ3.4
倍、熱処理温度215℃、熱処理時間12秒の条件に
て製造した厚さ12μの2軸延伸フイルムの静摩擦
係数は0.48、フイルムの表面凹凸の粗さは0.35μ
で、フイルム表面に粗大突起が存在していること
がわかる。 比較例 2〜5 エステル交換反応終了後に三酸化アンチモンと
表1に示した化合物とを添加する以外は実施例1
と全く同じ方法により各々のポリマを作製した。
また得られたポリマの軟化点および溶液ヘイズの
測定値、比較例1に示した製膜方法で得られたフ
イルムの特性値を表1に示した。 比較例2で得られたカルシウム化合物を添加し
ていないポリマから成形された2軸延伸フイルム
は諸特性のバランスはすぐれていたが、粗さ密度
に関しては、本発明の方が一層すぐれたものであ
つた。 また酢酸カルシウムのみを添加した比較例3で
は、厚さ12μのフイルムにした時のフイルムの静
摩擦係数は0.72と高く、表面凹凸の粗さは0.60μ
であり、いずれも該内部粒子が粗大化されており
好ましいものではなかつた。 比較例4で得られたリチウム化合物を含まない
ポリマは比較例3において見られた粗大粒子は比
較的少なく得られたフイルムの静摩擦数は0.64、
表面凹凸の粗さは、0.2μであり、比較例3より
は好ましいものであつた。しかし延伸倍率タテ
3.3倍、ヨコ3.4倍、熱処理温度215℃、熱処理時
間5秒の条件にて製膜を行ない、製膜スピードを
上げていつたところ120m/分の速度で膜破れが
多発し良好な2軸延伸フイルムが得られないこと
がわかつた。これは重合反応中に何らかの副反応
が生じジエチレングリコールの発生量が多くなり
ポリマの軟化点が256.4℃に低下したためであ
る。 また酢酸リチウムと酢酸カルシウムを添加しリ
ン化合物を添加していない比較例5で得られたポ
リマでは、粗大粒子の発生を防ぐことはできず、
本発明の効果は発揮できないことは明らかであ
る。
The present invention relates to a method for producing polyethylene terephthalate suitable for use in biaxially oriented polyethylene terephthalate films for high-grade magnetic tapes such as video tapes, which have excellent slipperiness and surface condition. In general, saturated linear polyester, especially polyethylene terephthalate, is widely used in the form of biaxially oriented films in various fields such as magnetic tape, electrical components, photography, and packaging applications due to its excellent physical and chemical properties. There is. When polyester is used in these forms, it is difficult to pass through the molding process of melt extrusion, stretching, heat treatment, winding and cutting, surface coating of magnetic layers, workability of incorporating into electrical parts, and film. We create a polyester composition containing fine particles based on the value of the final product, such as product slippage and surface properties, thereby making it easier for the film to flow during film formation, and by giving the film surface appropriate roughness to improve the surface slipperiness. It is common practice to give Polyester compositions containing such fine particles include polyesters containing insoluble and inert particles (external particles) such as silicon oxide, titanium dioxide, calcium carbonate, talc, and clay; metal compounds used in polyester synthesis; Polyesters containing particles (internal particles) formed inside the polymer during polyester production by catalysts such as alkali metal compounds, alkaline earth metal compounds, etc. are known. However, such known fine particle-containing polyester compositions have the following problems. In particular, when molded into a biaxially stretched film for magnetic tape, the static friction coefficient, maximum surface roughness, roughness density, and film formation Sex and other things were not satisfying. In other words, in the above-mentioned external particle-containing polyester composition, coarse particles are present due to difficulty in making the additive particles finer and particles aggregate together, and in addition to non-uniform particle diameters, there are also problems due to the lack of affinity between the particles and the polyester. There are drawbacks such as particles falling off, and tearing occurs during film formation when molding the polyester composition.Furthermore, when used as a film for magnetic tape, fisheyes (microscopic defects in the shape of corns) and dropouts (magnetic memory There are many drawbacks, such as problems such as omissions. On the other hand, polyester obtained by the internal particle method has some improvement in the above-mentioned drawbacks, but still has many problems. For example, Japanese Patent Publication No. 34-5144 describes the use of an alkaline earth metal compound as a transesterification catalyst to produce an alkaline earth metal salt of terephthalic acid which is insoluble in a polymer.
The alkaline earth metal compound used in this case is dissolved in the polyester reaction system or polyester synthesis raw materials such as glycol, reacts with the polyester raw materials in the reaction system, and forms fine particles (so-called internal particles) in the reaction system. It forms and precipitates out. Therefore, the diameter of the particles obtained is relatively uniform and small, and the particles have a high affinity for the polyester substrate.
However, in the case of the internal particle generation method using the alkaline earth metal salt of terephthalic acid, when attempting to generate a relatively large amount of particles, coarse particles are generated, perhaps due to the strong cohesive force between the particles, which is particularly difficult for magnetic tape films. In this case, undesirable defects such as fish eyes and dropouts occur. Furthermore, if the amount of catalytic metal compound added is increased to increase the amount of particles, the amount of coarse particles will increase due to agglomeration of particles, the rate of side reactions will increase, resulting in coloring of the polyester, a decrease in melting point, and an increase in carboxyl end groups. problem occurs. In the conventional internal particle method, when the thickness of the magnetic layer is reduced to 5μ or less in magnetic tape applications that require highly fine surface irregularities, the difference between the highest and lowest surface irregularities is 0.5μ. It was difficult to reduce the amount of coarse particles. The present inventor has discovered that even better slipperiness and fine surface irregularities are desired for the aforementioned biaxially stretched polyester film for magnetic tapes, especially for use in high-grade magnetic tapes such as videos, and that it is possible to precipitate a large amount of uniform fine particles. It was necessary. Therefore, the present inventors have investigated the drawbacks of conventional polyester compositions containing fine particles, particularly the fact that polyester compositions containing internal particles could not contain a necessary and sufficient amount of particles, the unavoidable presence of agglomerated coarse particles, and The present invention was arrived at as a result of intensive studies to improve the non-uniformity of the diameter. That is, an object of the present invention is to provide a method for producing polyethylene terephthalate useful for obtaining a film with excellent surface properties for use in magnetic tapes with excellent sliding properties. The object of the present invention is to produce a polyester from terephthalic acid or its polyester-forming derivative and ethylene glycol, so that the intrinsic viscosity decreases to 0.2 from the point at which the transesterification reaction or esterification reaction is substantially completed. In the polycondensation process, based on the polyethylene terephthalate produced, (1) 0.005 to 0.3% by weight of a lithium compound soluble in the reaction system, (2) 0.01 to 0.5% by weight of a calcium compound soluble in the reaction system, and (3) ) A method for producing polyethylene terephthalate, which comprises adding and dissolving 0.01 to 0.5% by weight of a phosphorus compound, and then completing a polycondensation reaction. The inventors have discovered that, by such a method, it is possible to obtain a polymer having a uniform particle size, no aggregated coarse particles, and containing a necessary and sufficient amount of particles, and has thus arrived at the present invention. Here, in Japanese Patent Application Laid-Open No. 48-61556, the present inventor has disclosed that internal particles containing lithium element have a content of 0.2 to 3.0% by weight.
proposed a polyester composition with The composition is useful for obtaining polyester films and fibers having excellent slipperiness, opacity, and surface condition, and has good yarn-spinning properties and excellent productivity. Furthermore, when a polyester film made of such a polyester composition is applied to magnetic tape applications, although the balance of the above-mentioned properties is good, it is desired to further reduce the surface roughness and increase the roughness density. According to the method of the present invention, when made into a film, the surface roughness and roughness density are improved and the surface condition is even better, making it possible to obtain polyethylene terephthalate suitable for use in high-grade magnetic tapes such as videos. be. The lithium compound used in the present invention is a glycol-soluble lithium compound, and specific examples include lithium chloride, lithium iodide, and lithium acetate. The amount of the lithium compound added is 0.005 to 0.3% by weight, preferably 0.01 to 0.25% by weight based on the polyethylene terephthalate to be produced.
Weight%. Addition amount of lithium compound is 0.005
When it is less than % by weight, the amount of particles is insufficient and
If the amount is more than 0.3% by weight, the particles will aggregate and become coarse, which is not preferable. The calcium compound used in the present invention is a glycol-soluble calcium compound, and specifically includes organic acid salt compounds of calcium such as calcium acetate and calcium oxalate. The amount of the calcium compound added is 0.01 to 0.5% by weight, preferably 0.01 to 0.3% by weight, based on the polyethylene terephthalate to be produced. When the amount of calcium compound added is less than 0.01% by weight, the amount of particles is insufficient, and when it is more than 0.5% by weight,
Particles aggregate and become coarse. Furthermore, the lithium compound and calcium compound added in the present invention can be added in a molar ratio of lithium compound/calcium compound of 1/10 to 10/1 in order to make the generated particles fine and uniform. Preferably, more preferably 1/1 to 10/
It is 1. Further, when the lithium compound and calcium compound used in the present invention are added to the polyester reaction system to form internal particles, it is necessary to dissolve them in the reaction system once. If the crystals are added and precipitated without being dissolved, the precipitated crystals become coarse particles.
If the film is then biaxially stretched, coarse projections will be formed on the surface, which is not preferable. Further, as the phosphorus compound used in the present invention, trivalent and/or pentavalent phosphorus compounds can be used. Specific examples include phosphoric acid, phosphorous acid, trimethyl phosphate, triethyl phosphate, methylphosphonic acid, phenylphosphonic acid, benzylphosphonic acid, dimethylmethylphosphonate, dimethylphenylphosphonate, dimethylbenzylphosphonate, and the like. Examples include boron phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and pyrophosphoric acid. These phosphorus compounds can be used alone or in combination of two or more types, but in particular, the combination of phosphorus acid and phosphorus acid ester can suppress the generation of coarse particles and make the generated particles uniform. This is more preferable from the viewpoint of miniaturization. Specific preferred combinations of such phosphoric acids and esters of phosphorous acids include phosphoric acid and dimethyl phenyl phosphonate, phosphoric acid and dimethyl benzyl phosphonate, phosphorous acid and trimethyl phosphate, phosphorous acid and triethyl phosphate, and phosphorous acid and triethyl phosphate. Examples include phosphoric acid and dimethylphenylphosphonate, phosphorous acid and dimethylbenzylphosphonate, methylphosphonic acid and trimethyl phosphate, phenylphosphonic acid and trimethyl phosphate, benzylphosphonic acid and triethyl phosphate, and the like. Here, the phosphorus compound is 0.01 to 0.5% by weight, more preferably 0.05 to 0.5% by weight based on the polyester to be produced.
0.3% by weight is added. The amount of phosphorus compound added is
If it is less than 0.01% by weight, the particles produced will become coarse, and if it is more than 0.5% by weight, the amount of particles will decrease, and when formed into a film, the roughness density will not only decrease, but also delay the polymerization reaction and cause side reactions. This is not preferable because it has drawbacks such as an increase in the amount of diethylene glycol by-produced. When adding phosphoric acid and ester of phosphoric acid in combination, the molar ratio of phosphoric acid and ester of phosphoric acid is preferably 10/1 to 1/10. Lithium compounds, calcium compounds, and phosphorus compounds are produced by reacting terephthalic acid or its ester-forming derivatives with ethylene glycol to produce a heavy compound with an intrinsic viscosity of no more than 0.2 from the point at which the transesterification reaction or esterification reaction is substantially completed. In the condensation process, they are preferably added to the reaction system as an ethylene glycol solution, either separately or without reacting with each other before addition to the reaction system. Furthermore, if it is added when the intrinsic viscosity reaches 0.2 or more, it will not be possible to have a large number of microparticles exist inside the polymer, which is the object of the present invention. The polyethylene terephthalate of the present invention contains terephthalic acid, which is a dicarboxylic acid component, in an amount of 20 mol% or less, including phthalic acid, isophthalic acid, naphthalene dicarboxylic acid, other aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and derivatives thereof. It may be substituted, and the ethylene glycol component may also be replaced.
Up to 20 mol% may be replaced with propylene glycol, trimethylene glycol, neopentyl glycol, or other diols. Further, other known copolymerization components and various additives may be added within the range that does not impair the purpose of the present invention. The polyester obtained by the present invention has a particle size of 1
It contains a large amount of uniform fine particles of μ or less in size, and produces a large amount of fine irregularities on the film surface during biaxial stretching during film formation, forming a film with good slipperiness. Since this film does not contain coarse particles, there are no coarse protrusions on the surface, making it particularly suitable for use in high-grade magnetic tapes such as videos, which require fine and uniform surface conditions. The present invention will be explained in detail with reference to Examples below. Note that each measurement value described in the examples was measured by the following method. (Solution Haze) 5.4 g of the polyester composition was added to 40 c.c. of a 4/6 mixed solvent of tetrachloroethane/phenol, stirred and dissolved at 102°C for 2 hours, then cooled, and the solution was placed in a 20 mm thick quartz glass cell. The haze value was measured using an integrating sphere HTR meter model SEP-H-2 (manufactured by Nippon Seimitsu Kogaku Co., Ltd.) and expressed in %. (Friction coefficient of film) Measured using a slip tester according to ASTM-D-1894B method. The coefficient of static friction was used as a measure of the slipperiness of the film. (Roughness of surface irregularities of film) The difference between the highest and lowest parts of the surface irregularities obtained by observing the film surface with a microscopic light wave interferometer is expressed in μ. (Density of film surface irregularities (roughness density)) Using the stylus method, count the number of ridges in 1 mm of length/mm
Expressed in units. Example 1 A transesterification reaction was carried out using 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol using a conventional method using 0.035 parts of manganese acetate as a catalyst, and the resulting product contained 0.04 parts of antimony trioxide and 0.15 parts of lithium acetate dissolved in ethylene glycol. and 0.09 parts of calcium acetate, followed by 0.10 parts of trimethyl phosphate and 0.02 parts of phosphorous acid, followed by a polycondensation reaction, resulting in an intrinsic viscosity of 0.615,
A polymer with a softening point of 260.8°C and a solution haze of 41% was obtained. The polymer was pressed between cover glasses on a hot plate at 290°C, and the average particle size was observed in the dark field using a polarizing microscope.
Many uniform particles of 0.5μ were observed. Next, using the polyester composition, a film was formed at a film forming speed of 200 m/min under conditions of a stretching ratio of 3.3 times in the vertical direction and 3.4 times in the horizontal direction, a heat treatment temperature of 215° C., and a heat treatment time of 5 seconds. As a result, there was no tearing of the film, and the coefficient of static friction of the obtained biaxially stretched film with a thickness of 12μ was 0.53, and the roughness of the unevenness of the film surface was
0.18μ, the density of the surface irregularities of the film is 38 pieces/mm, and it has smoothness and uniform fine irregularities that are satisfactory for magnetic tape applications, and there are no defects in coarse protrusions of 0.5μ or more. It was found that there were no coarse protrusions larger than 0.3μ. Comparative Example 1 After the transesterification reaction, antimony trioxide
A polycondensation reaction was carried out in exactly the same manner as in Example 1, except that only 0.04 parts and 0.15 parts of lithium acetate were added, and the intrinsic viscosity was 0.610, the softening point was 261.2°C, and the solution haze was 52.
% of polymer was obtained. Using the above polymer, the stretching ratio was 3.3 times vertically and 3.4 times horizontally.
The coefficient of static friction of a biaxially stretched film with a thickness of 12μ manufactured under the conditions of heat treatment temperature of 215℃ and heat treatment time of 12 seconds is 0.48, and the roughness of the surface unevenness of the film is 0.35μ.
It can be seen that there are coarse protrusions on the film surface. Comparative Examples 2 to 5 Example 1 except that antimony trioxide and the compounds shown in Table 1 were added after the transesterification reaction was completed.
Each polymer was produced in exactly the same manner as described above.
Table 1 also shows the measured values of the softening point and solution haze of the obtained polymer, and the characteristic values of the film obtained by the film forming method shown in Comparative Example 1. The biaxially stretched film obtained in Comparative Example 2, which was molded from a polymer to which no calcium compound was added, had an excellent balance of various properties, but the film of the present invention was even better in terms of roughness density. It was hot. In addition, in Comparative Example 3 in which only calcium acetate was added, the coefficient of static friction of the film when made into a 12μ thick film was as high as 0.72, and the roughness of the surface irregularities was 0.60μ.
In both cases, the internal particles were coarsened, which was not preferable. The lithium compound-free polymer obtained in Comparative Example 4 had relatively fewer coarse particles than those observed in Comparative Example 3, and the resulting film had a static friction number of 0.64.
The roughness of the surface irregularities was 0.2μ, which was more preferable than Comparative Example 3. However, the stretching ratio is vertical
The film was formed under the conditions of 3.3 times the horizontal direction, 3.4 times the horizontal direction, a heat treatment temperature of 215℃, and a heat treatment time of 5 seconds.As the film forming speed was increased, the film broke frequently at a speed of 120 m/min, resulting in a good biaxially stretched film. I found out that I couldn't get it. This is because some side reaction occurred during the polymerization reaction, increasing the amount of diethylene glycol generated and lowering the softening point of the polymer to 256.4°C. Furthermore, in the polymer obtained in Comparative Example 5 to which lithium acetate and calcium acetate were added but no phosphorus compound was added, the generation of coarse particles could not be prevented.
It is clear that the effects of the present invention cannot be achieved.

【表】 実施例 2 エステル交換反応触媒を酢酸カルシウム0.08部
に変更し、エステル交換反応終了後に添加する酢
酸リチウムを0.17部、酢酸カルシウムを0.09部に
変更する以外は実施例1と同様な方法でポリマを
作製した。該ポリマの固有粘度は0.620、軟化点
260.0℃、溶液ヘイズ41.5%、であつた。 また200m/分のスピードで破れもなく製膜が
でき、厚さ12μのフイルムの静摩擦係数は0.55、
フイルムの表面凹凸の粗さは0.20μ、表面凹凸の
密度は52個/mmで、良好な均一、微細性を有して
いることがわかつた。 実施例 3 使用するリン化合物をジメチルフエニルホスホ
ネート0.15部およびリン酸0.02部とする以外は実
施例1と同様な方法でエステル交換反応および重
縮合反応を行ない、固有粘度0.611、軟化点261.0
℃、溶液ヘイズ45.2%のポリマを得た。 実施例 4 テレフタル酸100部、エチレングリコール50部
から常法によりエステル化を行いビス−(β−ヒ
ドロキシエチル)テレフタレートを得た。 これに三酸化アンチモン0.04部、エチレングリ
コールに溶解した酢酸リチウム0.20部および酢酸
カルシウム0.11部とを添加し、続いてリン酸トリ
メチルエステル0.18部および亜リン酸0.02部とを
添加した後、重縮合反応を行ない、固有粘度
0.618、軟化点259.2℃、溶液ヘイズ39.5%のポリ
マを得た。 該ポリマを用い、製膜速度200m/分で破れの
ない良好な二軸延伸フイルムが得られた。 該フイルムの静摩擦係数は0.57、表面凹凸の粗
さは0.17μ、フイルム表面凹凸の密度は40個/mm
であり、易滑性、表面状態に優れ、磁気テープ用
フイルムとして好ましいものであつた。 該ポリマを用い、製膜速度200m/分で破れの
ない、良好な2軸延伸フイルムが得られた。該フ
イルムの静摩擦係数は0.58、フイルムの表面凹凸
の粗さは0.20μ、表面凹凸の密度は48個/mmであ
り、易滑性にすぐれ、かつ表面状態は均一、微細
であり、磁気テープ用フイルムとしても好ましい
ものであつた。 比較実施例 6 実施例2において、エステル交換反応触媒とし
て酢酸カルシウムを0.17部および酢酸リチウムを
0.17部併用添加し、常法によりエステル交換反応
させたところ175℃から加熱状態になり突沸をお
こした。 本発明において、エステル交換反応前に、多量
のリチウム化合物、カルシウム化合物を添加する
ことは、反応制御の面で好ましくない。 比較実施例 7 エステル交換反応終了後に酢酸カルシウムを添
加しない以外は実施例2と同様な方法でポリマを
作製した。該ポリマの固有粘度は0.616、軟化点
260.7℃、溶液ヘイズ43.5%であつた。 前記ポリマを用い比較実施例1に示した製膜方
法で得られた厚さ12μの二軸延伸フイルムは静摩
擦係数が0.50であるが、表面粗さが0.32μと大き
く、また、表面凹凸の密度は15個/mmと少なく好
ましいものではなかつた。
[Table] Example 2 The same method as in Example 1 was carried out except that the transesterification reaction catalyst was changed to 0.08 part of calcium acetate, the lithium acetate added after the transesterification reaction was changed to 0.17 part, and the calcium acetate added to 0.09 part. A polymer was produced. The intrinsic viscosity of the polymer is 0.620, the softening point
The temperature was 260.0°C and the solution haze was 41.5%. In addition, the film can be formed at a speed of 200 m/min without tearing, and the coefficient of static friction for a 12μ thick film is 0.55.
The roughness of the surface irregularities of the film was 0.20μ, and the density of surface irregularities was 52 pieces/mm, indicating that the film had good uniformity and fineness. Example 3 Transesterification and polycondensation reactions were carried out in the same manner as in Example 1, except that the phosphorus compounds used were 0.15 parts of dimethylphenylphosphonate and 0.02 parts of phosphoric acid, and the intrinsic viscosity was 0.611 and the softening point was 261.0.
℃, a polymer with a solution haze of 45.2% was obtained. Example 4 Bis-(β-hydroxyethyl) terephthalate was obtained by esterifying 100 parts of terephthalic acid and 50 parts of ethylene glycol by a conventional method. To this was added 0.04 part of antimony trioxide, 0.20 part of lithium acetate dissolved in ethylene glycol, and 0.11 part of calcium acetate, and then 0.18 part of trimethyl phosphate and 0.02 part of phosphorous acid, followed by a polycondensation reaction. and the intrinsic viscosity
0.618, a softening point of 259.2°C, and a solution haze of 39.5%. Using this polymer, a good biaxially stretched film without tearing was obtained at a film forming speed of 200 m/min. The static friction coefficient of the film is 0.57, the roughness of the surface unevenness is 0.17μ, and the density of the film surface unevenness is 40 pieces/mm.
It had excellent slipperiness and surface condition, and was suitable as a film for magnetic tape. Using this polymer, a good biaxially stretched film without tearing was obtained at a film forming speed of 200 m/min. The coefficient of static friction of the film is 0.58, the roughness of the surface irregularities of the film is 0.20μ, and the density of surface irregularities is 48 pieces/mm, and it has excellent slipperiness, and the surface condition is uniform and fine, making it suitable for magnetic tape. It was also preferable as a film. Comparative Example 6 In Example 2, 0.17 parts of calcium acetate and lithium acetate were used as transesterification catalysts.
When 0.17 parts were added in combination and transesterification was carried out in a conventional manner, the mixture heated up to 175°C and caused bumping. In the present invention, it is not preferable to add a large amount of a lithium compound or a calcium compound before the transesterification reaction in terms of reaction control. Comparative Example 7 A polymer was produced in the same manner as in Example 2, except that calcium acetate was not added after the transesterification reaction was completed. The intrinsic viscosity of the polymer is 0.616, the softening point
The temperature was 260.7°C and the solution haze was 43.5%. A biaxially stretched film with a thickness of 12μ obtained using the above polymer by the film forming method shown in Comparative Example 1 has a coefficient of static friction of 0.50, but a high surface roughness of 0.32μ, and a density of surface irregularities. The number of particles was 15 pieces/mm, which was not desirable.

Claims (1)

【特許請求の範囲】 1 テレフタル酸またはそのポリエステル形成性
の誘導体とエチレングリコールとからポリエチレ
ンテレフタレートを製造するに際し、エステル交
換反応あるいはエステル化反応が実質的に終了し
た時点から固有粘度が0.2を越えない重縮合過程
で、生成するポリエチレンテレフタレートに対し
て (1) 0.005〜0.3重量%の該反応系に可溶性のリチ
ウム化合物 (2) 0.01〜0.5重量%の該反応系に可溶性のカル
シウム化合物 および (3) 0.01〜0.5重量%のリン化合物 を添加溶解し、次いで重縮合を完結させることを
特徴とするポリエチレンテレフタレートの製造方
法。
[Claims] 1. When polyethylene terephthalate is produced from terephthalic acid or its polyester-forming derivative and ethylene glycol, the intrinsic viscosity does not exceed 0.2 from the time when the transesterification reaction or esterification reaction is substantially completed. In the polycondensation process, based on the polyethylene terephthalate produced, (1) 0.005 to 0.3% by weight of a lithium compound soluble in the reaction system, (2) 0.01 to 0.5% by weight of a calcium compound soluble in the reaction system, and (3) A method for producing polyethylene terephthalate, which comprises adding and dissolving 0.01 to 0.5% by weight of a phosphorus compound, and then completing polycondensation.
JP5865080A 1980-05-06 1980-05-06 Preparation of polyethylene terephthalate Granted JPS56127626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5865080A JPS56127626A (en) 1980-05-06 1980-05-06 Preparation of polyethylene terephthalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5865080A JPS56127626A (en) 1980-05-06 1980-05-06 Preparation of polyethylene terephthalate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50037805A Division JPS5843422B2 (en) 1975-03-31 1975-03-31 polyester composition

Publications (2)

Publication Number Publication Date
JPS56127626A JPS56127626A (en) 1981-10-06
JPS6256894B2 true JPS6256894B2 (en) 1987-11-27

Family

ID=13090454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5865080A Granted JPS56127626A (en) 1980-05-06 1980-05-06 Preparation of polyethylene terephthalate

Country Status (1)

Country Link
JP (1) JPS56127626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477196B2 (en) * 1988-06-30 1992-12-07 Rasmussen Gmbh

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930855A (en) * 1982-08-10 1984-02-18 Nippon Ester Co Ltd Polyester composition and its preparation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861556A (en) * 1971-12-04 1973-08-29
JPS50101494A (en) * 1974-01-14 1975-08-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861556A (en) * 1971-12-04 1973-08-29
JPS50101494A (en) * 1974-01-14 1975-08-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477196B2 (en) * 1988-06-30 1992-12-07 Rasmussen Gmbh

Also Published As

Publication number Publication date
JPS56127626A (en) 1981-10-06

Similar Documents

Publication Publication Date Title
JPH04270727A (en) Polyester composition
JPS5843422B2 (en) polyester composition
JPS6256894B2 (en)
US5382651A (en) Method for the preparation of polyester for a film
JPS6128522A (en) Production of polyester
JPH0141168B2 (en)
JPH0359924B2 (en)
JPS6018539A (en) Slippery polyester composition and its production
JPS5964630A (en) Production of polyester
JPS6032824A (en) Production of polyester containing internal particle
JPS6040126A (en) Preparation of inner particle-containing polyester
JPH0129810B2 (en)
JPS6366859B2 (en)
JPS58191715A (en) Preparation of polyester
JPS58191716A (en) Preparation of polyester
JPS5857430A (en) Production of polyester containing internal particle
JPS6035022A (en) Production of internal particle-containing polyester
JPS5857431A (en) Manufacture of polyester containing internal particles
JPS59210936A (en) Production of polyester
JPH03182523A (en) Production of polyester
JPS6047022A (en) Production of internal particle-containing polyester
JPS58185618A (en) Production of polyester
JPH055861B2 (en)
JPS58196230A (en) Production of polyester
JPH01153717A (en) Production of polyester