JPS6256606B2 - - Google Patents
Info
- Publication number
- JPS6256606B2 JPS6256606B2 JP23923383A JP23923383A JPS6256606B2 JP S6256606 B2 JPS6256606 B2 JP S6256606B2 JP 23923383 A JP23923383 A JP 23923383A JP 23923383 A JP23923383 A JP 23923383A JP S6256606 B2 JPS6256606 B2 JP S6256606B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- composition
- present
- dielectric constant
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 claims description 15
- 239000000919 ceramic Substances 0.000 claims description 12
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 claims 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 description 11
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 229910052573 porcelain Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Inorganic Insulating Materials (AREA)
Description
産業上の利用分野
本発明は誘電体磁器組成物、とくに酸化バリウ
ム(BaO)、酸化ニツケル(NiO)、酸化タンタル
(Ta2O5)および酸化チタン(TiO2)の成分で構成
され、比誘電率(εr)が大きく、マイクロ波周
波数帯において誘電体共振器としたときの無負荷
Q(Qu)が大きく、さらに共振周波数の温度係
数(τf)が安定した値をもち、用途に応じてそ
の温度係数を広範囲に変化させることができる誘
電体磁器に関することにある。
従来例の構成とその問題点
近年、波長が数センチメートル以下のマイクロ
波やミリ波(以下これらをマイクロ波と総称す
る)を取扱う高周波回路の技術の進展にともな
い、この回路を小形化することが積極的に進めら
れている。これまではこの高周波回路には空胴共
振器、アンテナなどが使用されてきたが、これら
の大きさがマイクロ波の波長と同程度になるた
め、小形化に対する障害となつていた。これを解
決するために、誘電率の大きい誘電体磁器を使用
することによつて、波長そのものを短縮する方法
がとられてきた。このような用途に適する材料と
してはTiO2系のものがよく使用され、たとえば
TiO2−ZrO2−SnO2系、CaTiO3−MgTiO3−
La2O3−2TiO2系、最近ではBa(Zn1/3Ta2/3)
O3−Ba(Zn1/3Nb2/3)O3系などの誘電体磁器
が知られている。しかしながら、これらの材料で
誘電体共振器を作つた場合には、比誘電率が30程
度と低いため、たとえば共振周波数が約11GHzの
X帯の誘電体共振器では、εr=30の材料を使用
した場合には直径5.6mm、厚さ2.2mm程度の小さな
ユニツトになるが、周波数が下つて2GHz程度の
UHF帯での使用となると、同じεr=30の材料の
ときには直径30.7mm、厚さ12.3mm程度と形状がい
ちじるしく大きくなる。ここで使用する材料の比
誘電率が80程度に大きくできれば、その大きさは
直径18.8mm、厚さ7.5程度と小形化することがで
きるが、従来の材料ではこのような要求を満足さ
せることはできなかつた。
発明の目的
本発明は上記の欠点を改善するためになされた
ものであり、比誘電率と無負荷Qの向上と共振周
波数の温度係数が安定した値をもち、用途に応じ
てこの温度係数を広範囲に変化させうる誘電体磁
器を提供することを目的とするものである。
発明の構成
発明者らは前記の要望をみたす材料について
種々検討した結果、Ba(Ni1/3Ta2/3)1-xTixO3
で表わされる組成において、0<x≦0.5(モル
分率)の範囲にある組成物がすぐれた高周波用誘
電体磁器になることを見出した。
実施例の説明
出発原料には化学的に高純度のBaCO3、NiO、
Ta2O5、およびTiO2を所定の組成になるよう秤量
し、めのうボールを備えたポリエチレン製のボー
ルミルで水とともに湿式混合した。この混合物を
ボールミルからとり出して乾燥したのち、空気中
において、1100℃の温度で2時間仮焼した。得ら
れた仮焼物を水とともに前記のボールミル中で湿
式物砕した。粉砕泥しようを濾過乾燥したのち、
粉末にバインダーとして濃度b%のポリビニール
アルコール溶液を8重量%添加して均質としたの
ち、32メツシユのふるいを通して整粒した。整粒
粉体は金型と油圧プレスを用いて成形圧力800
Kg/cm2で直径20mm、厚さ約8mmの円板に成形し
た。成形体を高純度のアルミナさや鉢の中に入
れ、組成に応じて空気中において1200〜1550℃の
範囲内の温度で2時間保持して焼成し、表に示す
配合組成の誘電体磁器を得た。この磁器素子を使
用して誘電体共振器法による測定から、共振周波
数と無負荷Qと比誘電率を求めた。共振周波数の
温度依存性は−30℃から70℃の範囲で測定し、温
度係数τfを求めた。共振周波数は2〜4GHzであ
つた。それらの実験結果を表に示す。なお、表に
おいて*印をした試料は本発明の範囲外の比較例
であり、これ以外の試料が本発明の範囲内の実施
例である。
Industrial Application Field The present invention is a dielectric ceramic composition, in particular composed of barium oxide (BaO), nickel oxide (NiO), tantalum oxide (Ta 2 O 5 ) and titanium oxide (TiO 2 ), which has a dielectric It has a large coefficient (ε r ), a large unloaded Q (Q u ) when used as a dielectric resonator in the microwave frequency band, and a stable temperature coefficient (τ f ) of the resonant frequency, making it suitable for various applications. This invention relates to dielectric ceramics whose temperature coefficients can be varied over a wide range depending on the situation. Conventional configuration and its problems In recent years, with the advancement of high-frequency circuit technology that handles microwaves and millimeter waves (hereinafter collectively referred to as microwaves) with wavelengths of several centimeters or less, it has become necessary to miniaturize this circuit. is being actively promoted. Until now, cavity resonators, antennas, etc. have been used in these high-frequency circuits, but their size is comparable to the wavelength of microwaves, which has been an obstacle to miniaturization. In order to solve this problem, a method has been taken to shorten the wavelength itself by using dielectric ceramics with a high dielectric constant. TiO2 -based materials are often used as materials suitable for such applications, such as
TiO 2 −ZrO 2 −SnO 2 system, CaTiO 3 −MgTiO 3 −
La 2 O 3 −2TiO 2 series, recently Ba (Zn 1/3 Ta 2/3 )
Dielectric ceramics such as O 3 −Ba (Zn 1/3 Nb 2/3 ) O 3 series are known. However, when making a dielectric resonator using these materials, the dielectric constant is as low as about 30, so for example, for an X-band dielectric resonator with a resonance frequency of about 11 GHz, a material with ε r = 30 is used. When used, it becomes a small unit with a diameter of 5.6 mm and a thickness of 2.2 mm, but the frequency is lowered to about 2 GHz.
When used in the UHF band, the same material with ε r = 30 becomes significantly larger, with a diameter of 30.7 mm and a thickness of about 12.3 mm. If the dielectric constant of the material used here could be increased to about 80, the size could be reduced to 18.8 mm in diameter and 7.5 mm in thickness, but conventional materials cannot satisfy these requirements. I couldn't do it. Purpose of the Invention The present invention has been made to improve the above-mentioned drawbacks, and has improved relative dielectric constant and no-load Q, and has a stable temperature coefficient of resonance frequency. The purpose is to provide dielectric ceramics that can be varied over a wide range. Structure of the Invention As a result of various studies on materials that meet the above requirements, the inventors found that Ba(Ni 1/3 Ta 2/3 ) 1-x Ti x O 3
It has been found that, in the composition represented by the following, a composition in the range of 0<x≦0.5 (mole fraction) becomes an excellent dielectric ceramic for high frequency use. Description of Examples The starting materials are chemically highly purified BaCO 3 , NiO,
Ta 2 O 5 and TiO 2 were weighed to give a predetermined composition, and wet mixed with water in a polyethylene ball mill equipped with an agate ball. This mixture was taken out from the ball mill, dried, and then calcined in air at a temperature of 1100°C for 2 hours. The obtained calcined product was wet milled together with water in the ball mill described above. After filtering and drying the crushed slurry,
The powder was made homogeneous by adding 8% by weight of a polyvinyl alcohol solution with a concentration of b% as a binder, and then passed through a 32-mesh sieve to size the powder. The sized powder is molded at a pressure of 800 using a mold and hydraulic press.
The material was molded into a disc with a diameter of 20 mm and a thickness of approximately 8 mm using Kg/cm 2 . The molded body was placed in a high-purity alumina pot and kept in the air at a temperature within the range of 1200 to 1550°C for 2 hours depending on the composition and fired to obtain dielectric porcelain with the composition shown in the table. Ta. Using this ceramic element, the resonant frequency, no-load Q, and relative dielectric constant were determined from measurements using the dielectric resonator method. The temperature dependence of the resonance frequency was measured in the range of -30°C to 70°C, and the temperature coefficient τ f was determined. The resonant frequency was between 2 and 4 GHz. The experimental results are shown in the table. Note that the samples marked with * in the table are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention.
【表】
表から明らかなように、本発明の範囲内の誘電
体磁器は、マイクロ波周波数帯において比誘電率
を大きくすることができるとともに、無負荷Qも
大きい値を示し、しかも安定した温度特性を示し
ている。したがつて、本発明の誘電体磁器は発振
器や共振器の温度依存性を安定化するのに有用で
あり、とくに比誘電率が大きいことからUHF帯
での使用に適し、小形で高性能の電子回路部品を
作ることができる。
本発明の組成範囲を限定した理由を説明する
と、TiO2量(x)が0.5モル分率を越える組成の
磁器では比誘電率の向上はみられるが、マイクロ
周波数帯での共振が微弱となり、無負荷Qの低下
がいちじるしくなるため、本発明の範囲から除か
れる。また、x=0の磁器は比誘電率が小さく
て、本発明の目的に合致しないために、本発明の
範囲から除かれる。
発明の効果
本発明の誘電体磁器組成物はマイクロ波周波数
帯において比誘電率が大きく、無負荷Qが大き
く、さらに共振周波数の温度係数が安定した値を
示すので、発振器や共振器などの温度依存性を安
定化するのに有用である。また、比誘電率が大き
いことからUHF帯での使用に適し、小形で高性
能の電子回路部品を作ることができる。さらに、
材料の組成を変えることによつて、所望のτfを
選択することができるので、誘電体共振器を組立
てたとき周囲の金属板による温度特性におよぼす
影響をなくすための温度補償作用をもたせること
ができる。また、本発明の誘電体磁器組成物は誘
電体共振器のみならず、マイクロ波用の基板や誘
電体調整棒などの用途にも有用な素材を提供する
ことができ、工業的に利用価値の大きいものであ
る。[Table] As is clear from the table, the dielectric ceramic within the scope of the present invention can have a large relative permittivity in the microwave frequency band, exhibit a large no-load Q value, and maintain a stable temperature. It shows the characteristics. Therefore, the dielectric ceramic of the present invention is useful for stabilizing the temperature dependence of oscillators and resonators, and is particularly suitable for use in the UHF band due to its large dielectric constant, and is a compact and high-performance device. Can make electronic circuit parts. To explain the reason why the composition range of the present invention is limited, porcelain with a composition in which the amount of TiO 2 (x) exceeds 0.5 mole fraction can be seen to improve the dielectric constant, but the resonance in the micro frequency band becomes weak. This is excluded from the scope of the present invention because the drop in no-load Q is significant. Furthermore, porcelain with x=0 has a small dielectric constant and does not meet the purpose of the present invention, and is therefore excluded from the scope of the present invention. Effects of the Invention The dielectric ceramic composition of the present invention has a large dielectric constant in the microwave frequency band, a large no-load Q, and a stable temperature coefficient of the resonant frequency. Useful for stabilizing dependencies. Additionally, due to its high dielectric constant, it is suitable for use in the UHF band, and can be used to create small, high-performance electronic circuit components. moreover,
Since the desired τ f can be selected by changing the composition of the material, a temperature compensation effect can be provided to eliminate the influence of surrounding metal plates on the temperature characteristics when the dielectric resonator is assembled. Can be done. In addition, the dielectric ceramic composition of the present invention can provide a material useful not only for dielectric resonators but also for microwave substrates, dielectric adjustment rods, etc., and has industrial utility value. It's big.
Claims (1)
と酸化チタンからなり、その組成式をBa
(Ni1/3Ta2/3)1-xTixO3と表わしたとき、その成
分組成がモル分率で0<x≦0.5の範囲内にある
ことを特徴とする誘電体磁器組成物。1 It consists of barium oxide, nickel oxide, tantalum oxide, and titanium oxide, and its composition formula is Ba.
(Ni 1/3 Ta 2/3 ) 1-x Ti x O 3 A dielectric ceramic composition characterized in that its component composition is within the range of 0<x≦0.5 in terms of molar fraction. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23923383A JPS60131706A (en) | 1983-12-19 | 1983-12-19 | Dielectric porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23923383A JPS60131706A (en) | 1983-12-19 | 1983-12-19 | Dielectric porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60131706A JPS60131706A (en) | 1985-07-13 |
JPS6256606B2 true JPS6256606B2 (en) | 1987-11-26 |
Family
ID=17041724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23923383A Granted JPS60131706A (en) | 1983-12-19 | 1983-12-19 | Dielectric porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60131706A (en) |
-
1983
- 1983-12-19 JP JP23923383A patent/JPS60131706A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60131706A (en) | 1985-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5937526B2 (en) | dielectric magnetic composition | |
JPH0126123B2 (en) | ||
JPS6056306A (en) | Dielectric porcelain composition | |
JPS6141863B2 (en) | ||
JPS6256606B2 (en) | ||
JPS6348132B2 (en) | ||
JPS5860668A (en) | Dielectric ceramic composition | |
JPS58126610A (en) | Dielectric porcelain composition | |
JPS6236325B2 (en) | ||
JPS6343338B2 (en) | ||
JPS6348133B2 (en) | ||
JPH0253884B2 (en) | ||
JPH0372165B2 (en) | ||
JPS6256607B2 (en) | ||
JPS6117083B2 (en) | ||
JPS6141860B2 (en) | ||
JPH0346923B2 (en) | ||
JPH0253883B2 (en) | ||
JPS6158424B2 (en) | ||
JPS5951088B2 (en) | dielectric porcelain material | |
JPS5951095B2 (en) | dielectric porcelain composition | |
JPS6348131B2 (en) | ||
JPS6112865B2 (en) | ||
JPS6151703A (en) | Dielectric porcelain composition | |
JPS61122153A (en) | Dielectric ceramic composition |