JPS6255529A - Radiation thermometer - Google Patents
Radiation thermometerInfo
- Publication number
- JPS6255529A JPS6255529A JP19539485A JP19539485A JPS6255529A JP S6255529 A JPS6255529 A JP S6255529A JP 19539485 A JP19539485 A JP 19539485A JP 19539485 A JP19539485 A JP 19539485A JP S6255529 A JPS6255529 A JP S6255529A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- measured
- infrared rays
- detection element
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims description 21
- 238000001514 detection method Methods 0.000 claims abstract description 48
- 238000005259 measurement Methods 0.000 abstract description 6
- 239000011810 insulating material Substances 0.000 abstract description 3
- 238000009529 body temperature measurement Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、物体から放射される赤外線のエネルギー量
を計測して物体の温度を非接触的に測定する放射温度計
に係り、特に赤外線検出素子に熱望赤外線検出素子を用
い、かつ常温付近の温度測定が可能である低温測定用の
放射温度計に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a radiation thermometer that non-contactly measures the temperature of an object by measuring the amount of energy of infrared rays emitted from the object. The present invention relates to a radiation thermometer for low temperature measurement that uses an aspiration infrared detection element as an element and is capable of measuring temperatures near room temperature.
物体から放射される赤外線のエネルギー量を計測する赤
外線検出素子には、量子型赤外線検出素子と熱望赤外線
検出素子の2種類がある。常温付近の温度測定が可能な
量子型赤外線検出素子はそれ自体が高価であり、また、
液体窒素等を用いて常時冷却する必要がある。そのため
、装置が大型化し費用が嵩むという欠点がある。したが
って、一般に常温付近の温度測定には熱望赤外線検出素
子が用いられている。There are two types of infrared detection elements that measure the amount of energy of infrared rays emitted from an object: quantum infrared detection elements and aspirational infrared detection elements. Quantum infrared detection elements that can measure temperatures near room temperature are themselves expensive;
It is necessary to constantly cool it using liquid nitrogen or the like. Therefore, the disadvantage is that the device becomes larger and the cost increases. Therefore, an aspirational infrared detection element is generally used to measure temperatures near room temperature.
ところで、周知のように、ステファン・ポルツマンの法
則(下記参照)により物体から放射される赤外線のエネ
ルギー量は、絶対温度の4乗に比例する。By the way, as is well known, the amount of energy of infrared rays emitted from an object is proportional to the fourth power of the absolute temperature according to the Stefan-Poltzmann law (see below).
W=εσT4
この弐において、
W;物体の単位面積から単位時間に放射される赤外線の
エネルギー量(WCm−2)σ:ステファン・ボルツマ
ン定数(5,67xlo−12Wcm−”K−’ )
ε:放射率
T:絶対温度
したがって、温度が低ければ低いほど放射される赤外線
のエネルギー量は微量なものになる。それゆえ、測定対
象物以外の物体からの影響も受けやすく、低温測定用の
放射温度計において正確な温度測定を行うのは至難の技
であった。また、温度が低ければ低いほど放射される赤
外線の波長は長波長(遠赤外線)の方へ移行する。よっ
て、この遠赤外線を透過させるためには特殊な物質から
なる光学部品を用いる必要があった。W=εσT4 In this second, W: Amount of infrared energy emitted per unit time from unit area of the object (WCm-2) σ: Stefan-Boltzmann constant (5,67xlo-12Wcm-"K-') ε: Radiation Rate T: Absolute temperature Therefore, the lower the temperature, the smaller the amount of infrared energy emitted.Therefore, it is more susceptible to influences from objects other than the measurement target, and radiation thermometers for low temperature measurement Accurate temperature measurements in the In order to do this, it was necessary to use optical components made of special materials.
一般に、常温付近の温度測定のための低温用の放射温度
計の光学系として、反射鏡方式とレンズ方式が従来から
よく使用されている。In general, a reflecting mirror system and a lens system have been commonly used as optical systems for low-temperature radiation thermometers for measuring temperatures near room temperature.
反射鏡方式としてはカセグレン弐が一般的テする。この
方式の利点は、遠赤外線を透過させるために特殊な物質
からなる光学部品を用いずに温度測定が可能な点である
。しかし、その反面、赤外線検出素子に熱望赤外線検出
素子を用いた場合に問題がある。それは、装置を大型化
せずに熱望赤外線検出素子と放射温度計内の構成部品と
を同一温度に保つことは甚だ困難なため、放射温度計を
小型化した場合に、前記構成部品から放射される赤外線
のエネルギーの影響を受は易いという問題点である。Cassegrain II is the most common reflecting mirror method. The advantage of this method is that temperature can be measured without using optical parts made of special materials to transmit far infrared rays. However, on the other hand, there is a problem when an aspirational infrared detection element is used as the infrared detection element. It is extremely difficult to keep the infrared detection element and the components inside the radiation thermometer at the same temperature without increasing the size of the device. The problem is that they are easily affected by infrared energy.
すると、前述したように、低温測定用の放射温度計にお
いては測定対象物から放射される赤外線のエネルギーが
afflであるため、測定対象物以外からの僅かな赤外
線のエネルギーを受けても、大きな影響を被り誤差が生
じ正確な温度測定は不可能になる。そこで、この欠点を
除去するために、赤外線検出素子の前方にモータに連動
されたチョッパを設ける提案が種々なされている。とこ
ろが、この方法ではやはり放射温度計自体が大型化し、
また、機構的にも複雑さを増し測定値の信頼性および機
械的寿命の点で問題があった。Then, as mentioned above, in radiation thermometers for low temperature measurement, the energy of infrared rays emitted from the object to be measured is affl, so even a small amount of infrared energy from sources other than the object to be measured will not have a large effect. This causes errors and makes accurate temperature measurement impossible. In order to eliminate this drawback, various proposals have been made to provide a chopper linked to a motor in front of the infrared detection element. However, with this method, the radiation thermometer itself becomes larger,
In addition, the mechanical complexity increased, and there were problems in terms of reliability of measured values and mechanical life.
それに比べてレンズ方式は、小型化する場合に反射鏡方
式のような問題点がない。しかし、レンズには透過しな
い波長範囲の赤外線を放射するという性質があるので、
レンズ自身から放射される赤外線の工ふルギーが赤外線
検出素子に到達してしまい、誤った温度信号が発生する
。そのため、正確な温度測定が不可能となる欠点がある
。この欠点を除去するためには、ゲルマニウムレンズを
用いれば良いのだが、ゲルマニウム自体が高価なうえ、
表面に反射を押さえるために無反射コーティングを施さ
なければならず、非常に高価なものとなってしまう。In comparison, the lens method does not have the problems that the reflective mirror method has when downsizing. However, lenses have the property of emitting infrared rays in a wavelength range that cannot be transmitted.
The infrared radiation emitted from the lens itself reaches the infrared detection element, generating an erroneous temperature signal. Therefore, there is a drawback that accurate temperature measurement is impossible. In order to eliminate this drawback, germanium lenses could be used, but germanium itself is expensive and
An anti-reflective coating must be applied to the surface to suppress reflections, making it extremely expensive.
この問題点を解決するために、本出願人は特願昭60−
34734号を出願済である。以下この出願に係る発明
を而単に説明する。In order to solve this problem, the present applicant filed a patent application filed in 1986-
No. 34734 has been filed. The invention related to this application will be simply explained below.
第2図に示すように、放射温度計の検知ヘッド1の先端
開口部に、所望の波長範囲の赤外線を透過させる第1の
フィルタ2が嵌入されている。この第1のフィルタ2の
内側には、レンズ3が嵌入されている。このレンズ3は
第1のフィルタ2と同等か、若しくは広い波長透過特性
を有している。As shown in FIG. 2, a first filter 2 that transmits infrared rays in a desired wavelength range is fitted into the opening at the tip of the detection head 1 of the radiation thermometer. A lens 3 is fitted inside the first filter 2. This lens 3 has wavelength transmission characteristics that are equal to or wide than those of the first filter 2.
したがって、第1のフィルタ2によって所望の波長範囲
の赤外線を透過させた後、レンズ3によりこれらの赤外
線を余すところな(集光している。Therefore, after the first filter 2 transmits infrared rays in a desired wavelength range, the remaining infrared rays are concentrated by the lens 3.
なぜなら、常温付近の物体から放射される赤外線のエネ
ルギー■は極めて微fflであるので、正確な温度測定
のためには僅かな赤外線の遺漏も許されないからである
。This is because the energy of infrared rays radiated from an object near normal temperature is extremely small ffl, so even the slightest omission of infrared rays is unacceptable for accurate temperature measurement.
レンズ3の内側の検知ヘッド1の終端部に熱伝導率の良
いケース4が突設されている。このケース4の先端開口
部に、第1のフィルタ2と同等か若しくは狭い波長透過
特性を有する第2のフィル゛り5が嵌入されている。第
2のフィルタ5の内側には熱望赤外線検出素子6が設け
られている。熱望赤外線検出素子6は自身の温度信号を
処理する外部機器(開示省略)に、接続コード7により
繋がれている。前記第2のフィルタ5によって、レンズ
3により集光された赤外線のうち、所望の波長範囲の赤
外線のみが選択され透過される。したがって、熱望赤外
線検出素子6に到達された赤外線は、測定対象物および
第2のフィルタ5からのものである。A case 4 with good thermal conductivity is provided protruding from the terminal end of the detection head 1 inside the lens 3. A second film 5 having wavelength transmission characteristics equal to or narrower than that of the first filter 2 is fitted into the opening at the tip of the case 4 . An aspirational infrared detection element 6 is provided inside the second filter 5 . The aspiration infrared detection element 6 is connected by a connection cord 7 to an external device (not disclosed) that processes its own temperature signal. Of the infrared rays condensed by the lens 3, only infrared rays in a desired wavelength range are selected and transmitted by the second filter 5. Therefore, the infrared rays that have reached the eager infrared detection element 6 are from the object to be measured and the second filter 5.
ところが、第2のフィルタ5は熱望赤外線検出素子6と
同一のケース4内に収容され、このケース4は熱伝導率
が良いので第2のフィルタ5と熱望赤外線検出素子6間
に温度差は生じない。熱望赤外線検出素子6は、自身の
温度と異なった温度の物体を測定する場合のみ温度信号
を出力する。However, the second filter 5 is housed in the same case 4 as the Aspiration infrared detection element 6, and since this case 4 has good thermal conductivity, a temperature difference occurs between the second filter 5 and the Aspiration infrared detection element 6. do not have. The eager infrared detection element 6 outputs a temperature signal only when measuring an object whose temperature is different from its own temperature.
それゆえ、熱望赤外線検出素子6の出力する温度信号は
、測定対象物からの赤外線のみを受けて出力されたもの
となるのである。Therefore, the temperature signal output by the aspirational infrared detection element 6 is the one that is output after receiving only the infrared rays from the object to be measured.
この出願により、本出願人は、安価なレンズを使用した
レンズ方式の低温測定用の放射温度計の精度を飛躍的に
向上させた。ところが、次のような問題点が残存してい
た。まず、測定対象物が微小なものでかつ低温である場
合に周囲または背後に高温物体が存在すると、この高温
物体による赤外線も一緒に集光してしまい、検知へラド
1 (第2図参照)の内周部分が温度上昇を惹起し、誤
測定を行うという問題点があった。もう1つの問題点は
、高温の測定対象物の温度測定を行っていた場合に、前
述と同様に、検知ヘッド1の内周部分が前記測定対象物
の赤外線のエネルギーを受は温度上昇を惹起し、この直
後に低温の測定対象物の温度測定を行うと、前記検知ヘ
ッド1の内周部分から放射される赤外線が熱望赤外線検
出素子6に到達し誤測定を行うことである。With this application, the applicant has dramatically improved the accuracy of a lens-type radiation thermometer for low temperature measurement using an inexpensive lens. However, the following problems remained. First, if the object to be measured is small and low temperature, and there is a high temperature object around or behind it, the infrared rays from this high temperature object will also be focused, and the detection head 1 (see Figure 2) There was a problem in that the inner circumference of the sensor caused a temperature rise, resulting in erroneous measurements. Another problem is that when measuring the temperature of a high-temperature object, the inner circumference of the detection head 1 receives infrared energy from the object, causing a rise in temperature, as described above. However, if the temperature of the low-temperature object to be measured is measured immediately after this, the infrared rays emitted from the inner peripheral portion of the detection head 1 will reach the eager infrared detection element 6, resulting in an erroneous measurement.
この発明の目的は、測定対象物が微小であっても正確な
温度測定が行え、かつ高温の測定対象物の温度測定を行
っていてその直後に低温の測定対象物の温度測定を行う
際にも、誤測定を行うことがないレンズ方式の低温測定
用の放射温度計を提供することである。An object of the present invention is to be able to accurately measure the temperature of an object to be measured even if it is minute, and to be able to measure the temperature of a low-temperature object immediately after measuring the temperature of a high-temperature object. Another object of the present invention is to provide a lens-type radiation thermometer for low temperature measurement that does not cause erroneous measurements.
この発明は上記問題点に鑑みてなされたものであり、こ
の問題点を解決するための具体的手段は、物体から放射
される赤外線のエネルギー量を赤外線検出素子によって
計測することにより、この物体の温度を測定する放射温
度計において、前記赤外線検出素子の前記物体側前方に
中央部分に開口部を有し、かつ前記物体側の面が鏡面で
ある絞りを配設するようにしたことである。This invention was made in view of the above problem, and a specific means for solving this problem is to measure the amount of energy of infrared rays emitted from an object using an infrared detection element. In a radiation thermometer for measuring temperature, a diaphragm having an opening in the center and having a mirror surface on the object side is disposed in front of the infrared detecting element on the object side.
この発明は前述のような手段を採ったので、測定対象物
が微小であっても背景の外乱による赤外線を絞りによっ
て除去できるとともに、高温の測定対象物の温度測定を
行った直後に低温の測定対象物の温度測定を行っても、
その影響による赤外線を除去でき、かつ、この絞りの測
定対象物側の面を鏡面にしたので前記赤外線を反射し、
絞り自身の温度が上昇することがない。したがって、絞
りから放射される赤外線の影響を全く受けない。Since this invention employs the above-mentioned means, even if the object to be measured is minute, infrared rays caused by background disturbances can be removed by the aperture. Even if you measure the temperature of the object,
Infrared rays caused by this effect can be removed, and since the surface of this diaphragm on the side of the object to be measured is mirror-finished, the infrared rays can be reflected.
The temperature of the aperture itself does not rise. Therefore, it is completely unaffected by infrared rays emitted from the aperture.
この発明を、以下1実施例に基づいて詳細に説明する。 This invention will be explained in detail below based on one embodiment.
なお、従来技術と同一部分は同一番号を付しその説明を
簡略化している。Note that the same parts as those in the prior art are given the same numbers to simplify the explanation.
第1図に示すように、検知ヘッド1の先端開口部に第1
のフィルタ2が嵌入され、この第1のフィルタ2の内側
にレンズ3が嵌入されている。検知ヘッド1の終端部に
、前面開口部に絞り80が嵌入された筺体8が突設され
、この筐体8には断熱材9を介在して熱伝導率の良いケ
ース4が内設されている。このケース4は前面が開口さ
れ、この開口部に前方から順に、絞り41.42および
第2のフィルタ5が配設されている。絞り41および4
2はその前面が鏡面になっている。開口部の終端部に熱
望赤外線検出素子6が固設され、この熱望赤外線検出素
子6からの温度信号を処理する温度信号処理部10が、
ケース4の後方で前記筐体8の内部に断熱材9を介在し
て連設されている。温度信号処理部10には、処理され
た信号を外部機器(図示省略)に伝達するための接続コ
ード7が、筺体8および検知ヘッド1を貫通して繋がれ
ている。As shown in FIG. 1, a first
A filter 2 is fitted therein, and a lens 3 is fitted inside this first filter 2. A housing 8 having a front opening fitted with a diaphragm 80 is protruded from the terminal end of the detection head 1, and a case 4 with good thermal conductivity is installed inside the housing 8 with a heat insulating material 9 interposed therebetween. There is. This case 4 has an opening at the front, and a diaphragm 41, 42 and a second filter 5 are arranged in this opening in order from the front. Apertures 41 and 4
2 has a mirror surface on the front. An aspiration infrared detection element 6 is fixedly installed at the end of the opening, and a temperature signal processing section 10 that processes the temperature signal from the aspiration infrared detection element 6,
It is connected to the inside of the housing 8 at the rear of the case 4 with a heat insulating material 9 interposed therebetween. A connection cord 7 for transmitting the processed signal to an external device (not shown) is connected to the temperature signal processing unit 10 by penetrating the housing 8 and the detection head 1 .
以上のような構成からなるこの発明の動作を次に説明す
る。まず、微小な測定対象物の場合について述べる。The operation of the present invention constructed as described above will now be described. First, the case of a minute object to be measured will be described.
第1のフィルタ2を透過し、レンズ3により集光された
測定対象物および測定対象物の背後の外乱による赤外線
のうち、まず絞り80によって外乱による赤外線がある
程度除去される。次に絞り41によりさらに除去され、
最後に絞り42によりほぼ完全に除去される。したがっ
て、絞り42を透過して熱量赤外線検出素子6に到達し
た赤外線は、測定対象物からのみのものとなる。Of the infrared rays caused by the object to be measured and disturbances behind the object that are transmitted through the first filter 2 and focused by the lens 3, some infrared rays caused by the disturbance are first removed by the diaphragm 80. Next, it is further removed by the aperture 41,
Finally, it is almost completely removed by the aperture 42. Therefore, the infrared rays that have passed through the aperture 42 and reached the calorific infrared detection element 6 are only from the object to be measured.
この時に、絞り41および42の前面が鏡面で形成され
ているため、除去された外乱による赤外線は絞り41お
よび42によって反射され、ケース4に吸収される。そ
れゆえ、絞り41および42自身の温度は上昇せず、ケ
ース4と同一の温度を保持する。At this time, since the front surfaces of the apertures 41 and 42 are formed of mirror surfaces, the infrared rays caused by the removed disturbance are reflected by the apertures 41 and 42 and absorbed by the case 4. Therefore, the temperature of the apertures 41 and 42 itself does not increase, and maintains the same temperature as the case 4.
ケース4の開口部の絞り4L42の嵌入されている部分
は、前記赤外線を吸収し温度上昇が起こるが、熱伝導率
が良いため直ちに拡散し、熱量赤外線検出素子6および
第2のフィルタ5の間に温度差は生じない。したがって
、熱量赤外線検出素子6には測定対象物と第2のフィル
タ5からの赤外線が到達されるが、第2のフィルタ5と
熱量赤外線検出素子6の温度差がないため、発生する温
度信号は測定対象物からのみの赤外線を受けて出力した
温度信号となる。The part of the opening of the case 4 into which the aperture 4L42 is inserted absorbs the infrared rays and the temperature rises, but because of its good thermal conductivity, it immediately diffuses and the temperature rises between the infrared ray detection element 6 and the second filter 5. There is no temperature difference. Therefore, the infrared rays from the object to be measured and the second filter 5 reach the calorific infrared detecting element 6, but since there is no temperature difference between the second filter 5 and the calorific infrared detecting element 6, the generated temperature signal is The temperature signal is output by receiving infrared rays from only the object to be measured.
次に、高温の測定対象物の温度測定を行っていて、その
直後に低温の測定対象物の温度測定を行う場合の動作に
ついて説明する。Next, a description will be given of the operation when the temperature of a high-temperature measurement object is measured and immediately after that the temperature of a low-temperature measurement object is measured.
この場合において、検知ヘッド1の内周部分。In this case, the inner peripheral portion of the detection head 1.
筺体8および絞り80等が、測定対象物からの赤外線を
受けて温度上昇を惹起している。この際に低温の測定対
象物の温度測定を行うと、前述したように、まず、この
測定対象物からの赤外線は熱量赤外線検出素子6に到達
する。次に、温度上昇を惹起していた検知へラド1の内
周部分等から放射される赤外線は、絞り41.42によ
って遮られ熱量赤外線検出素子6に到達しない。そして
、絞り41゜42の前面に形成された鏡面により反射さ
れる。The housing 8, the diaphragm 80, etc. receive infrared rays from the object to be measured, causing a temperature rise. At this time, when the temperature of the low-temperature object to be measured is measured, the infrared rays from this object to be measured first reach the calorimetric infrared detection element 6, as described above. Next, the infrared rays emitted from the inner peripheral portion of the detection radar 1, etc., which were causing the temperature rise, are blocked by the apertures 41 and 42 and do not reach the heat quantity infrared detection element 6. The light is then reflected by mirror surfaces formed on the front surfaces of the apertures 41 and 42.
すると、上記した場合と同様に、ケース4により赤外線
のエネルギーは速やかに拡散され、かつ絞り41.42
自身の温度上昇も起こらないので、第2のフィルタ5と
熱型赤外線検出素子6間に温度差は生ぜず、熱量赤外線
検出素子6は前記低温の測定対象物から放射される赤外
線のみを受けて温度信号を発生する。Then, as in the above case, the infrared energy is quickly diffused by case 4, and the aperture 41.42
Since its own temperature does not rise, there is no temperature difference between the second filter 5 and the thermal infrared detection element 6, and the calorific infrared detection element 6 receives only the infrared rays emitted from the low-temperature measurement object. Generates a temperature signal.
この実施例においては絞り41.42の両前面を鏡面で
形成したが、絞り42の前面のみを鏡面で形成するだけ
でもほぼ同様の効果が得られる。また、前面のみならず
後面も鏡面で形成しても良い。さらに、絞り80の前面
あるいは後面を鏡面で形成しても良い。In this embodiment, both front surfaces of the diaphragm 41 and 42 are formed with mirror surfaces, but substantially the same effect can be obtained by simply forming only the front surface of the diaphragm 42 with a mirror surface. Further, not only the front surface but also the rear surface may be formed with a mirror surface. Furthermore, the front or rear surface of the diaphragm 80 may be formed with a mirror surface.
また、この実施例においては絞り42を第2のフ゛ イ
ルタ5の前方に配設したが、第2のフィルタ5の後方に
配設しても同等の効果が得られる。Further, in this embodiment, the aperture 42 is arranged in front of the second filter 5, but the same effect can be obtained even if it is arranged behind the second filter 5.
さらに、この実施例においては絞り41.42の2つの
絞りを配設したが、絞り41のみでもほぼ同等の効果が
得られる。あるいは、3個以上の絞りを配設しても構わ
ない。Further, in this embodiment, two apertures 41 and 42 are provided, but substantially the same effect can be obtained with only the aperture 41. Alternatively, three or more apertures may be provided.
以上の説明から明らかなように、この発明は、物体から
放射される赤外線のエネルギー量を赤外線検出素子によ
って計測することにより、この物体の温度を測定する放
射温度計において、前記赤外線検出素子の前記物体側前
方に中央部分に開口部を有し、かつ前記物体側の面が鏡
面である絞りを配設するようにしたので、絞りによって
測定対象物以外の外乱からの赤外線の除去ができ、微小
な測定対象物であってもその温度測定が可能である。ま
た、高温の測定対象物の温度測定を行っていてその直後
に低温の測定対象物の温度測定を行っても、絞りにより
高温の測定対象物からの赤外線の影響を除去し得る。さ
らに、絞りによって前記赤外線が反射されるので、絞り
自身の温度が上昇せず、赤外線検出素子は絞りから放射
される赤外線の影響を全く受けない。したがって、常に
正確な温度測定が可能となる。As is clear from the above description, the present invention provides a radiation thermometer that measures the temperature of an object by measuring the amount of energy of infrared rays emitted from the object using an infrared detection element. A diaphragm with an opening in the center in front of the object side and a mirror surface on the object side is provided, so that the diaphragm can remove infrared rays from disturbances other than the object to be measured. It is possible to measure the temperature of even the object to be measured. Furthermore, even if the temperature of a high-temperature measurement object is measured and then the temperature of a low-temperature measurement object is measured immediately after that, the influence of infrared rays from the high-temperature measurement object can be removed by the aperture. Furthermore, since the infrared rays are reflected by the aperture, the temperature of the aperture itself does not rise, and the infrared detection element is not affected by the infrared rays emitted from the aperture. Therefore, accurate temperature measurement is always possible.
第1図はこの発明に係る放射温度計の断面図、第2図は
従来の放射温度計の断面図である。FIG. 1 is a sectional view of a radiation thermometer according to the present invention, and FIG. 2 is a sectional view of a conventional radiation thermometer.
Claims (3)
線検出素子によって計測することによりこの物体の温度
を測定する放射温度計において、前記赤外線検出素子の
前記物体側前方に中央部分に開口部を有し、かつ前記物
体側の面が鏡面である絞りが配設されていることを特徴
とする放射温度計。(1) A radiation thermometer that measures the temperature of an object by measuring the amount of energy of infrared rays emitted from the object using an infrared detection element, which has an opening in the center in front of the object side of the infrared detection element. A radiation thermometer, further comprising an aperture whose object-side surface is a mirror surface.
外線を透過するフィルタが配設されている特許請求の範
囲第1項記載の放射温度計。(2) The radiation thermometer according to claim 1, wherein a filter that transmits infrared light in a desired wavelength range is disposed between the infrared detection element and the aperture.
ース内に収容されている特許請求の範囲第1項または第
2項記載の放射温度計。(3) The radiation thermometer according to claim 1 or 2, wherein the infrared detection element and the aperture are housed in the same case with good thermal conductivity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19539485A JPS6255529A (en) | 1985-09-04 | 1985-09-04 | Radiation thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19539485A JPS6255529A (en) | 1985-09-04 | 1985-09-04 | Radiation thermometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6255529A true JPS6255529A (en) | 1987-03-11 |
Family
ID=16340413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19539485A Pending JPS6255529A (en) | 1985-09-04 | 1985-09-04 | Radiation thermometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6255529A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0375530A (en) * | 1989-08-18 | 1991-03-29 | Nippon Steel Corp | Radiation thermometer |
EP0708318A1 (en) * | 1994-10-17 | 1996-04-24 | International Business Machines Corporation | Radiance measurement by angular filtering for use in temperature determination of radiant object |
CN102564603A (en) * | 2010-12-07 | 2012-07-11 | 南阳森霸光电有限公司 | Pyroelectric infrared sensor |
JP2013193373A (en) * | 2012-03-21 | 2013-09-30 | Seiko I Infotech Inc | Inkjet recording apparatus |
JP7053126B1 (en) * | 2021-03-30 | 2022-04-12 | 株式会社オリジン | Radiant thermometer, soldering equipment, temperature measurement method and manufacturing method of soldered products |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4890573A (en) * | 1972-03-03 | 1973-11-26 | ||
JPS5628527U (en) * | 1979-08-11 | 1981-03-17 |
-
1985
- 1985-09-04 JP JP19539485A patent/JPS6255529A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4890573A (en) * | 1972-03-03 | 1973-11-26 | ||
JPS5628527U (en) * | 1979-08-11 | 1981-03-17 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0375530A (en) * | 1989-08-18 | 1991-03-29 | Nippon Steel Corp | Radiation thermometer |
EP0708318A1 (en) * | 1994-10-17 | 1996-04-24 | International Business Machines Corporation | Radiance measurement by angular filtering for use in temperature determination of radiant object |
CN102564603A (en) * | 2010-12-07 | 2012-07-11 | 南阳森霸光电有限公司 | Pyroelectric infrared sensor |
JP2013193373A (en) * | 2012-03-21 | 2013-09-30 | Seiko I Infotech Inc | Inkjet recording apparatus |
JP7053126B1 (en) * | 2021-03-30 | 2022-04-12 | 株式会社オリジン | Radiant thermometer, soldering equipment, temperature measurement method and manufacturing method of soldered products |
WO2022210927A1 (en) * | 2021-03-30 | 2022-10-06 | 株式会社オリジン | Soldering device and method for manufacturing soldered product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5054523B2 (en) | Sensor | |
US20020176479A1 (en) | Infrared ray clinical thermometer | |
EP0937971A4 (en) | Radiation clinical thermometer | |
KR19980073511A (en) | Infrared sensor and its temperature compensation method | |
JPS6255529A (en) | Radiation thermometer | |
CA1323505C (en) | Optical pyrometer with at least one fibre | |
ITMI970505A1 (en) | DEVICE FOR DETECTION OF OPTICAL PARAMETERS OF A LASER BEAM | |
US4019381A (en) | Transparent optical power meter | |
US3477291A (en) | Radiation thermometers | |
JPS62195528A (en) | Radiation thermometer | |
JP3794137B2 (en) | Infrared detector and radiation thermometer using the same | |
JPH0518048B2 (en) | ||
JPH0288929A (en) | Infrared optical device | |
JPH0499925A (en) | Infrared radiation measuring apparatus | |
CN212300604U (en) | Miniaturized high-precision infrared area array temperature measurement thermal imager | |
JPS629229A (en) | Laser power meter | |
RU2196306C2 (en) | Optical pyrometer | |
JPH06147995A (en) | Infrared detecting device | |
JPH0342531A (en) | Infrared measuring instrument | |
US7518113B2 (en) | Pressure sensor | |
RU2658512C1 (en) | Reference installation of laser radiation power unit and optical fiber guide therefor | |
JPS6344134A (en) | Image guide type radiation thermometer | |
JPS5892838A (en) | Measuring device for light loss | |
JPH08275925A (en) | Radiative clinical thermometer | |
JPH04223239A (en) | Radiometer for low temperature |