[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6254648B2 - - Google Patents

Info

Publication number
JPS6254648B2
JPS6254648B2 JP58003300A JP330083A JPS6254648B2 JP S6254648 B2 JPS6254648 B2 JP S6254648B2 JP 58003300 A JP58003300 A JP 58003300A JP 330083 A JP330083 A JP 330083A JP S6254648 B2 JPS6254648 B2 JP S6254648B2
Authority
JP
Japan
Prior art keywords
extruder
gear pump
group
hydrocarbon group
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58003300A
Other languages
Japanese (ja)
Other versions
JPS59129130A (en
Inventor
Hidemi Nishama
Kenichi Ootani
Hiroshi Hirukawa
Kazuhide Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58003300A priority Critical patent/JPS59129130A/en
Publication of JPS59129130A publication Critical patent/JPS59129130A/en
Publication of JPS6254648B2 publication Critical patent/JPS6254648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はシラン架橋線状エチレン共重合体か
らなる例えばパイプ、チユーブ、電線被覆層など
の成形物の改良された製造方法に関するものであ
る。 一般に押出機によつてパイプやチユーブあるい
は電線被覆層などの押出成形物を得る場合に、該
パイプ等の仕上り状態が満足しがたいとか、これ
ら成形物を架橋物で得ようとする場合にその架橋
度が長さ方向に不均一化してその特性が均一に得
られない問題がある。 そしてかかる成形物用樹脂としてはポリエチレ
ンが最も汎用されているものであるが、このポリ
エチレンには一般に高圧法による低密度ポリエチ
レン及び中低圧法による高密度ポリエチレンがあ
る。 しかし近年この製造法による製品ポリエチレン
の相対関係は必らずしも一致せず、例えば中低圧
法により得られた低密度ポリエチレンも良く知ら
れている。 この低密度ポリエチレンは、例えばフイリツプ
ス法、チーグラー法等、或るいはクロム化合物を
触媒とする方法により製造されるエチレンとブテ
ン―1、ペンテン―1等の高級α―オレフインと
の共重合体であり、上述した従来の高圧法による
低密度ポリエチレンに比べ分子構造的に長鎖分岐
を含まずコモノマーに基づく短鎖分岐のみを含む
直鎖状構造(かかる構造から一般に線状エチレン
共重合体と称せられて居り、以下これをL―
LDPEとも略称する)のものである。 そしてその数平均分子量(n)は高圧法によ
るものに比し約30%程大きくしかも分子量分布
(M/M)は約≧2.7〜≦4.0の狭い値である
特長も有している。 かかる分子構造等の相違により上述のL―
LDPEは、従来の高圧法による低密度ポリエチレ
ンよりもその引張強度、耐衝撃性、耐熱性及び耐
ESCR(耐環境亀裂特性)等に優れた物性を示
し、電線被覆材料等に優れた特性を具備させ得る
ことから近年多用されて居り、更に一般にかかる
ポリオレフインはこれを架橋させることによつて
その機械的特性及び耐熱性等を更に増し得ること
から概ね架橋成形物として成形されるのが普通で
ある。 しかし他方、このL―LDPEは上述分子構造等
の違い、例えば押出溶融時に長鎖分岐を含まない
ことによる分子のからみ合いが少いこと、更に分
子量分布が狭くシヤープであること等により、該
押出溶融時の高い剪断速度(10-2〜10-3/sec)
において約2倍の粘度(見掛け粘度2×
10-4Poise)をも示し、その結果発熱し易く又押
出機内樹脂圧力を増し、成形体外観等即ち上述の
仕上り状態を低下させ易い。 そして又この種の樹脂の架橋に広く適用される
シラン架橋に際し、シラン化合物等の押出機中で
の反応条件の不均一化を招き易く、結果的に上述
したゲル分率の不安定化を招き、更に押出品の表
面凹凸、さめ肌、及び発泡現象等成形物仕上り低
下を助長する重大な欠点が免がれない。 そこで上述の緒問題を回避するような押出機の
押出条件及びシラン化合物等の添加量等に関する
多数の配慮も多岐にわたり検討されている。 しかし現状では、L―LDPEによる架橋成形物
の成形に関し、シラン化合物等の添加量調節及び
押出条件を制御する事によつても成形物の表面が
平滑性を保ち、かつ所望の架橋度を有した成形体
を得る事は著しく困難であり、しかも該成形物の
種類、押出条件及び押出材料等が変るごとに、上
記シラン化合物等の添加量及び成形物の諸特性等
の相互関係を求めてこれを実施せざるを得ない
等、徒らに作業コストを増すばかりでなく生産性
向上の障害の重大な原因になる憂いがあつた。 ここに発明者等はかかる事情に鑑み鋭意検討を
重ねた結果、シラン架橋に必要なシラン化合物等
の諸添加剤を配合すると共に、線状エチレン共重
合体による押出成形物を成形するにあたつて押出
機の先端には高粘度溶融体輸送用ギヤポンプを配
置し、該ポンプの作用により押出溶融体の背圧
流、漏洩流を僅少化することにより前述の剪断量
を減少させかつ発熱量を低減化させ、これによつ
て上記の諸問題が著しく解決されることを見出し
この発明を完成したのである。 即ち本発明は、線状エチレン共重合体に、一般
式RR′SiY2(式中Rは一価のオレフイン性不飽和
炭化水素基またはヒドロカルボキシル基、Yは加
水分解し得る有機基、R′は脂肪酸不飽和炭化水
素基以外の一価の炭化水素基まは基Yである)で
表わされるシラン化合物、遊離ラジカル生成化合
物及びシラノール縮合触媒を混和してなる組成物
によりパイプ、チユーブ、電線被覆層等の成形物
を押出成形するにあたり、押出機先端とクロスヘ
ツド間に高粘度溶融体輸送用ギヤポンプを設置
し、前記押出機からの押出溶融材料を該ギヤポン
プを介してクロスヘツドに導き、クロスヘツドか
ら吐出する溶融樹脂の温度を軟化点以上213℃以
下で押出成形することを特徴とするシラン架橋線
状エチレン共重合体成形物の製造方法である。 以下図面を参照しつつこの発明の一実施態様を
説明する。 第1図中10はスクリユー11を備えた押出機
で該押出機10の先端部と成形ダイ部即ちクロス
ヘツド12間には高粘度溶融体輸送用ギヤポンプ
13が設置されている。 このギヤポンプ13は図示されている如く、ポ
ンプ本体内に相互に外回りに回転するギヤー14
が対設されその周辺部に圧縮部(空間)が設けら
れ、この部分での材料加圧作用で溶融体を引き寄
せ抜き取る動作を強めた、特に溶融粘度の高い溶
融体輸送に適合させたものである。 尚図中15はパイプ、チユーブ等の押出成形物
である。ここで通常の押出機内部における溶融樹
脂の流れについて第2図によりこれを説明する。 スクリユー11上の押出方向に連続する溝11
a内において、、溶融体はシリンダー内壁に接す
る部分で大きな剪断力を受け、他方溝底部附近に
て背圧流を生じ負の速度となり実線aで示すよう
な流速分布をとりながら該溝と共にその方向にサ
ーキユレートしている。 しかしかかる溶融樹脂の動きも例えば漏洩流な
どの発生と共に複雑に変化することになる。 上述の背圧流及び漏洩流が増大することは押出
機中における樹脂温度を高めるばかりでなく、所
謂樹脂剪断量(剪断速度×滞留時間)をも過大化
し、その結果例えば架橋用添加物であるシラン化
合物等の反応速度を局部的に高くするなど架橋の
均一化を損じかつ無用の副反応等による特性低下
の原因になる。 これに対して本発明方法では、該押出機先端に
前述のギヤポンプが配置されていることにより、
前記樹脂の流れをギヤの回転する方向に押戻し上
述した背圧流、漏洩流による第2図の流速分布a
を破線の如き分布bに変えることになり、これが
結果的に上記樹脂剪断量及び発熱を著しく低下さ
せることになりシラングラフトするに適切な反応
条件を指定出来るのである。 特にかかる作用効果は、前述の如く高粘度溶融
体であるL―LDPEを押出樹脂として用いる場合
に顕著に現われるのである。 このギヤポンプの作用は、樹脂押出量との相互
関係から該ギヤポンプ入口部での樹脂圧が約40
Kg/cm2程度になるように回転数等を設定して行う
のが望ましい。この樹脂圧を必要以上に下回ると
押出量が安定化せず、この発明の目的が達成され
ず好ましくない。 具体的には後記実施例で示されるように、上記
クロスヘツドから吐出する溶融樹脂の温度の上限
を213℃、又下限は勿論その軟化点以上とする。 この発明に用いられる高粘度溶融体輸送用ギヤ
ポンプとしては、例えば粘度10000ポイズ以上の
溶融体の輸送用に適した川崎重工社KHP・BaS
型、あるいはゼニスポンプ社HLB型などが適当
である。 次にこの発明におけるL―LDPEとは、例えば
フイリツプス法、チーグラー法などにより得られ
るエチレンとブテン―1、ペンテン―1等の高級
α―オレフインとの共重合体であつて、長鎖分岐
を含まず短鎖分岐のみの直鎖状のもので、数平均
分子量(n)が約30%大きく分子量分布(M
)/M)が約≧2.7〜≦4.0のものを云う。そ
して具体的には、ネオゼツクス(三井石油化学
社)、ウルトゼツクス(同社)、リニレツクス(日
石化学)、スクレア(デユポン社、カナダ)など
である。 そして更に前記シラン架橋方法としては、特に
特公昭48―1711号公報に示された方法などが最も
適切である。 即ち上述のL―LDPE100重量部に対して、一
般式RR′SiY2(式中Rは一価のオレフイン性不飽
和炭化水素基またはヒドロカルボキシル基、Yは
加水分解し得る有機基、R′は脂肪酸不飽和炭化
水素基以外の一価の炭化水素基または基Yであ
る)で表わされるシラン化合物1〜10重量部、ジ
クミルパーオキサイドの如き遊離ラジカル生成化
合物0.054〜0.54重量部、ジブチル錫ジラウリレ
ートの如きシラノール縮合触媒0.05〜0.5重量
部、その他所望の老化防止剤等を添加して押出成
形するのである。 本発明は押出機先端に前述のギヤポンプを配設
すると云う簡単な構成により、上記説明の如く特
にL―LDPEの如き高粘度を示す樹脂の押出流分
布を適切化し、これにより後記実施例で明らかな
ように該樹脂で発生し易い押出成形時の諸問題を
著しく改善し得るものであり、得られる成形物の
諸特性を向上させ得る効果は工業的にまことに大
である。 以下実施例によりこの発明を具体的に説明す
る。 比較例 1〜9 L/D=30、D=40φの押出機を用い、下表1
の組成による材料を投入しスクリユー回転数
50rpmにて2sqの導体上に押出被覆した。尚ニツ
プル径は1.83mm、ダイス径は3.4mmとした。押出
中のメタノール発生量、外観、被覆層のゲル分
率、更に80℃×48hr後のゲル分率、引張特性、熱
老化性を評価し結果を表2に示した。 実施例 1〜9 比較例1に用いた押出機先端にゼニスポンプ社
製のHLB5548―10型の高粘度溶融体輸送用ギヤ
ポンプを組込み、押出機スクリユー回転数を
50rpmとして該ギヤポンプ入口部の樹脂圧を40
Kg/cm2に設定するようにギヤポンプ回転数を調整
しながら下表1の組成材料を押出す外は比較例1
〜9に夫々対応させ同様に行い結果を同様に表示
した。
This invention relates to an improved method for producing molded products such as pipes, tubes, and wire coating layers made of silane-crosslinked linear ethylene copolymers. Generally, when obtaining extruded products such as pipes, tubes, or wire coating layers using an extruder, there may be cases where the finished state of the pipes, etc. is unsatisfactory, or when trying to obtain these products with crosslinked products. There is a problem in that the degree of crosslinking becomes non-uniform in the length direction, making it impossible to obtain uniform properties. Polyethylene is the most widely used resin for such molded articles, and this polyethylene generally includes low-density polyethylene produced by a high-pressure method and high-density polyethylene produced by a medium-low pressure method. However, in recent years, the relative relationships of polyethylene products produced by this production method do not necessarily match, and for example, low-density polyethylene obtained by a medium-low pressure method is also well known. This low-density polyethylene is a copolymer of ethylene and higher α-olefins such as butene-1 and pentene-1, which are produced by, for example, the Phillips method, the Ziegler method, or a method using a chromium compound as a catalyst. Compared to the low-density polyethylene produced by the conventional high-pressure method mentioned above, it has a linear structure in its molecular structure that does not contain long chain branches but only short chain branches based on comonomers (because of this structure, it is generally called a linear ethylene copolymer). Hereafter, I will refer to this as L-
(also abbreviated as LDPE). The number average molecular weight (n) is about 30% larger than that obtained by the high-pressure method, and the molecular weight distribution (M/M) is also characterized by a narrow value of about ≧2.7 to ≦4.0. Due to such differences in molecular structure, etc., the above-mentioned L-
LDPE has better tensile strength, impact resistance, heat resistance and resistance than traditional high pressure low density polyethylene.
Polyolefins have been widely used in recent years because they exhibit excellent physical properties such as ESCR (environmental cracking resistance) and can provide excellent properties to wire coating materials. Furthermore, polyolefins are generally used to improve the mechanical properties of electrical wires by crosslinking them. Generally, it is molded as a crosslinked molded product because it can further increase the physical properties and heat resistance. However, on the other hand, this L-LDPE has a different molecular structure as mentioned above, for example, it does not contain long chain branches during extrusion melting, so there is less molecular entanglement, and the molecular weight distribution is narrow and sharp. High shear rate during melting (10 -2 ~10 -3 /sec)
Approximately twice the viscosity (apparent viscosity 2×
10 -4 Poise), and as a result, it is easy to generate heat and increase the resin pressure in the extruder, which tends to deteriorate the appearance of the molded product, ie, the finished state described above. Furthermore, during silane crosslinking, which is widely applied to crosslinking this type of resin, the reaction conditions of the silane compound etc. in the extruder tend to become non-uniform, resulting in the above-mentioned instability of the gel fraction. Moreover, the extruded product suffers from serious defects such as surface irregularities, rough skin, and foaming, which contribute to deterioration in the finish of the molded product. Therefore, various considerations have been made regarding the extrusion conditions of the extruder and the amount of silane compounds added, etc., in order to avoid the above-mentioned problems. However, at present, regarding the molding of crosslinked molded products using L-LDPE, the surface of the molded product can be maintained smooth and the desired degree of crosslinking can be achieved even by adjusting the amount of silane compounds added and controlling the extrusion conditions. It is extremely difficult to obtain a molded product with a high temperature, and each time the type of molded product, extrusion conditions, extrusion material, etc. change, it is necessary to find the interrelationships between the amount of the silane compound added and the various properties of the molded product. I was worried that having to do this would not only unnecessarily increase work costs but also become a serious obstacle to improving productivity. In view of the above circumstances, the inventors have conducted extensive studies, and as a result, they have formulated various additives such as a silane compound necessary for silane crosslinking, and have decided to form an extrusion molded product using a linear ethylene copolymer. A gear pump for transporting high-viscosity melt is placed at the tip of the extruder, and the action of this pump minimizes the back pressure flow and leakage flow of the extruded melt, thereby reducing the amount of shear mentioned above and the amount of heat generated. They discovered that the above-mentioned problems could be significantly solved by this method, and completed this invention. That is, the present invention provides linear ethylene copolymers with the general formula RR'SiY 2 (wherein R is a monovalent olefinic unsaturated hydrocarbon group or hydrocarboxyl group, Y is a hydrolyzable organic group, R' is a monovalent hydrocarbon group other than a fatty acid unsaturated hydrocarbon group or a group Y), a free radical-generating compound, and a silanol condensation catalyst. When extruding a molded product such as a layer, a gear pump for transporting a high-viscosity melt is installed between the tip of the extruder and the crosshead, and the extruded molten material from the extruder is guided to the crosshead via the gear pump and discharged from the crosshead. This is a method for producing a silane-crosslinked linear ethylene copolymer molded product, characterized in that extrusion molding is carried out at a temperature of the molten resin above the softening point and below 213°C. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 10 denotes an extruder equipped with a screw 11, and a gear pump 13 for transporting a high-viscosity melt is installed between the tip of the extruder 10 and a forming die, or crosshead 12. This gear pump 13 has gears 14 that rotate outwardly relative to each other within the pump body, as shown in the figure.
are placed opposite each other, and a compression section (space) is provided around the periphery, and the material pressurization in this section strengthens the action of drawing and extracting the molten material, making it especially suitable for transporting molten material with high melt viscosity. be. In the figure, numeral 15 is an extrusion molded product such as a pipe or tube. Here, the flow of molten resin inside a normal extruder will be explained with reference to FIG. Groove 11 continuous in the extrusion direction on screw 11
In a, the molten material receives a large shearing force at the part in contact with the inner wall of the cylinder, and on the other hand, a back pressure flow is generated near the bottom of the groove, resulting in a negative velocity and flowing along with the groove in that direction while taking a flow velocity distribution as shown by the solid line a. It circulates to. However, the movement of the molten resin also changes in a complicated manner as, for example, leakage flow occurs. The above-mentioned increase in back pressure flow and leakage flow not only increases the resin temperature in the extruder, but also increases the so-called resin shear amount (shear rate x residence time), and as a result, for example, silane, which is a crosslinking additive, This locally increases the reaction rate of the compound, etc., impairing uniformity of crosslinking, and causes deterioration of properties due to unnecessary side reactions and the like. On the other hand, in the method of the present invention, the above-mentioned gear pump is placed at the tip of the extruder, so that
The flow velocity distribution a in Fig. 2 due to the back pressure flow and leakage flow described above pushes back the flow of the resin in the direction of rotation of the gear.
is changed to distribution b as shown by the broken line, which results in a significant reduction in the amount of shearing of the resin and heat generation, making it possible to specify reaction conditions suitable for silane grafting. In particular, such effects are noticeable when L-LDPE, which is a high viscosity melt, is used as the extrusion resin as described above. The action of this gear pump is such that the resin pressure at the inlet of the gear pump is approximately 40% due to the interaction with the amount of resin extruded.
It is desirable to set the rotation speed etc. so that it is about Kg/cm 2 . If the resin pressure is lower than necessary, the extrusion rate will not be stabilized and the object of the invention will not be achieved, which is not preferable. Specifically, as shown in Examples below, the upper limit of the temperature of the molten resin discharged from the crosshead is set at 213° C., and the lower limit is, of course, above its softening point. The gear pump for transporting high-viscosity molten material used in this invention is, for example, Kawasaki Heavy Industries KHP/BaS, which is suitable for transporting molten material with a viscosity of 10,000 poise or more.
or Zenith Pump HLB type are suitable. Next, L-LDPE in this invention is a copolymer of ethylene and higher α-olefins such as butene-1 and pentene-1, which are obtained by the Phillips method, Ziegler method, etc., and include long chain branches. It is a straight chain with only short chain branches, and the number average molecular weight (n) is approximately 30% larger than the molecular weight distribution (M
)/M) is approximately ≧2.7 to ≦4.0. Specifically, these include Neozex (Mitsui Petrochemicals), Urtozex (the same company), Linirex (Nisseki Chemical), and Sklare (DuPont, Canada). Further, as the silane crosslinking method, the method disclosed in Japanese Patent Publication No. 1711/1983 is most suitable. That is, with respect to 100 parts by weight of the above-mentioned L-LDPE, the general formula RR'SiY 2 (wherein R is a monovalent olefinic unsaturated hydrocarbon group or hydrocarboxyl group, Y is a hydrolyzable organic group, and R' is 1 to 10 parts by weight of a silane compound represented by a monovalent hydrocarbon group other than a fatty acid unsaturated hydrocarbon group or group Y, 0.054 to 0.54 parts by weight of a free radical-forming compound such as dicumyl peroxide, dibutyltin dilaurylate. 0.05 to 0.5 parts by weight of a silanol condensation catalyst, such as silanol condensation catalyst, and other desired antioxidants are added and extrusion molded. The present invention uses a simple configuration in which the above-mentioned gear pump is disposed at the tip of the extruder, thereby optimizing the extrusion flow distribution of resins exhibiting high viscosity, such as L-LDPE, as explained above. As described above, it is possible to significantly improve various problems during extrusion molding that are likely to occur with this resin, and the effect of improving various properties of the obtained molded product is truly significant from an industrial perspective. The present invention will be specifically explained below with reference to Examples. Comparative Examples 1 to 9 Using an extruder with L/D=30 and D=40φ, the following Table 1
Add the material according to the composition and increase the screw rotation speed.
Extrusion coating was performed on a 2 square conductor at 50 rpm. The nipple diameter was 1.83 mm and the die diameter was 3.4 mm. The amount of methanol generated during extrusion, appearance, gel fraction of the coating layer, gel fraction after 48 hours at 80°C, tensile properties, and heat aging properties were evaluated and the results are shown in Table 2. Examples 1 to 9 A gear pump for transporting high-viscosity melts, HLB5548-10 manufactured by Zenith Pump Co., Ltd., was installed at the tip of the extruder used in Comparative Example 1, and the extruder screw rotation speed was adjusted.
Set the resin pressure at the inlet of the gear pump to 40 rpm at 50 rpm.
Comparative example 1 except extruding the composition material in Table 1 below while adjusting the gear pump rotation speed to set it to Kg/cm 2
9 to 9, respectively, and the results were similarly displayed.

【表】【table】

【表】 但し上表2中 樹脂圧力:押出機先端樹脂圧をギヤポンプ入口
部と同一に設定した。 押出外観:〇…良、△…可、×…不可、××…全
く不可 ゲル分率:キシレン120℃×24hr抽出後で測定 樹脂温度:クロスヘツドから吐出する溶融樹脂
温度 上表の結果によれば次のことが明らかである。 (i) 本来シラングラフトによる架橋は添加物の量
の調節にて制御安定化できるのであるが比較例
1〜3の如く結局L―LDPEではこれが適切に
行われていない。実施例ではこれが適切に安定
化されている。 (ii) 一般にシラン架橋ではビニルトリメトキシシ
ランの押出中での縮合反応によりCH3OHが発
生しこれが発泡の原因になる。比較例では3〜
10ppmと高く発泡を見たが実施例ではこれが
殆んど認められなかつた。 (iii) 押出直後のゲル分率によつて副反応(エチレ
ン縮合反応)の発生が求められるが実施例では
これが全く認められなかつた。 (iv) 上記諸項による実施例の好結果により、引張
特性、熱老化特性が向上していた。
[Table] However, in Table 2 above: Resin pressure: The resin pressure at the tip of the extruder was set to be the same as the inlet of the gear pump. Extrusion appearance: 〇...Good, △...Good, ×...Not good, ××...Not good at all Gel fraction: Measured after xylene extraction at 120℃ x 24 hours Resin temperature: Temperature of molten resin discharged from the crosshead According to the results in the table above It is clear that: (i) Crosslinking by silane grafting can originally be controlled and stabilized by adjusting the amount of additives, but as shown in Comparative Examples 1 to 3, this has not been done appropriately with L-LDPE. In the embodiment this is suitably stabilized. (ii) In general, in silane crosslinking, CH 3 OH is generated due to a condensation reaction during extrusion of vinyltrimethoxysilane, which causes foaming. In the comparative example, 3~
Foaming was observed as high as 10 ppm, but this was hardly observed in the Examples. (iii) Occurrence of a side reaction (ethylene condensation reaction) is required depending on the gel fraction immediately after extrusion, but this was not observed at all in the examples. (iv) Due to the good results of the Examples according to the above items, the tensile properties and heat aging properties were improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に使用される押出機の概略
断面図、第2図は同要部の拡大図である。 10…押出機、12…クロスヘツド、13…ギ
ヤポンプ、14…ギヤー、15…成形体、16…
定量吐出ポンプ。
FIG. 1 is a schematic sectional view of an extruder used in the method of the present invention, and FIG. 2 is an enlarged view of the main parts thereof. DESCRIPTION OF SYMBOLS 10... Extruder, 12... Crosshead, 13... Gear pump, 14... Gear, 15... Molded object, 16...
Metering pump.

Claims (1)

【特許請求の範囲】[Claims] 1 線状エチレン共重合体に、一般式RR′SiY2
(式中Rは一価のオレフイン性不飽和炭化水素基
またはヒドロカルボキシル基、Yは加水分解し得
る有機基、R′は脂肪族不飽和炭化水素基以外の
一価の炭化水素基または基Yである)で表わされ
るシラン化合物、遊離ラジカル生成化合物及びシ
ラノール縮合触媒を混和してなる組成物によりパ
イプ、チユーブ、電線被覆層等の成形物を押出成
形するにあたり、押出機先端とクロスヘツド間に
高粘度溶融体輸送用ギヤポンプを設置し、前記押
出機からの押出溶融材料を該ギヤポンプを介して
クロスヘツドに導き、クロスヘツドから吐出する
溶融樹脂の温度を軟化点以上213℃以下で押出成
形することを特徴とするシラン架橋状エチレン共
重合体成形物の製造方法。
1 The linear ethylene copolymer has the general formula RR′SiY 2
(In the formula, R is a monovalent olefinic unsaturated hydrocarbon group or a hydrocarboxyl group, Y is a hydrolyzable organic group, and R' is a monovalent hydrocarbon group or group Y other than an aliphatic unsaturated hydrocarbon group. When extruding molded products such as pipes, tubes, and wire coating layers using a composition prepared by mixing a silane compound represented by A gear pump for transporting a viscous melt is installed, the extruded molten material from the extruder is guided to a crosshead via the gear pump, and extrusion molding is carried out at a temperature of the molten resin discharged from the crosshead above the softening point and below 213°C. A method for producing a silane crosslinked ethylene copolymer molded article.
JP58003300A 1983-01-14 1983-01-14 Manufacture of silane-bridged linear ethylene copolymer molding Granted JPS59129130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58003300A JPS59129130A (en) 1983-01-14 1983-01-14 Manufacture of silane-bridged linear ethylene copolymer molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003300A JPS59129130A (en) 1983-01-14 1983-01-14 Manufacture of silane-bridged linear ethylene copolymer molding

Publications (2)

Publication Number Publication Date
JPS59129130A JPS59129130A (en) 1984-07-25
JPS6254648B2 true JPS6254648B2 (en) 1987-11-16

Family

ID=11553515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003300A Granted JPS59129130A (en) 1983-01-14 1983-01-14 Manufacture of silane-bridged linear ethylene copolymer molding

Country Status (1)

Country Link
JP (1) JPS59129130A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169832A (en) * 1983-03-17 1984-09-25 Furukawa Electric Co Ltd:The Manufacture of molded body made of silane cross-linked polyolefin
DE3533510A1 (en) * 1985-09-20 1987-04-02 Kabelmetal Electro Gmbh Low-voltage electrical cable or electrical line
DE3533508A1 (en) * 1985-09-20 1987-04-02 Kabelmetal Electro Gmbh Cable sheath or protective tube
DE3533507A1 (en) * 1985-09-20 1987-04-02 Kabelmetal Electro Gmbh Overhead electrical line, in particular a facade cable
JPS6359512A (en) * 1986-08-29 1988-03-15 Kao Corp Manufacture of polyurethane film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950506A (en) * 1982-09-16 1984-03-23 Hitachi Metals Ltd Magnetization process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950506A (en) * 1982-09-16 1984-03-23 Hitachi Metals Ltd Magnetization process

Also Published As

Publication number Publication date
JPS59129130A (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US5575965A (en) Process for extrusion
US4614764A (en) Linear low density ethylene polymers blended with modified linear low density ethylene polymers
US4329313A (en) Apparatus and method for extruding ethylene polymers
EP0907682B2 (en) Cable jacket
EP0163865B1 (en) One-extrusion method for making a shaped crosslinked polymeric product
EP0045501B1 (en) Method for extruding granular low density narrow molecular weight distribution linear ethylene polymers
US5073598A (en) Method for improving the processing characteristics of polyethylene blends
EP0769361A2 (en) Process for producing thermoplastic elastomer compostion
EP0768156A2 (en) Process for polymer degradation
JPS58176230A (en) Blend of polyolefin plastic and elastomeric plasticizer
EP0169635B1 (en) Method for producing a tube of thermoplastic resin having poor melt flowability and apparatus therefor
US3387073A (en) Polyethylene extrusion
EP1332179B1 (en) High-speed processable cellular insulation material with enhanced foamability
KR100554936B1 (en) Method for producing foamed resin article, and foamed resin article
AU2002245757A1 (en) High-speed processable cellular insulation material with enhanced foamability
US5409646A (en) Method for compounding a polymerized alpha-olefin resin
JPS6254648B2 (en)
US4091064A (en) Process for producing electric cable insulated with cured polyolefin
US4357291A (en) Double metering extruder screw and method of extrusion
JP2000009265A (en) Cross-linked polyethylene pipe
JPH06136066A (en) Production of silane-grafted resin composition and production of molded article of silane-cross-linked resin composition
JP3456774B2 (en) Method for producing water-crosslinkable unsaturated alkoxysilane-grafted linear low-density ethylene-α-olefin copolymer and water-crosslinked molded article
JPS5950506B2 (en) Method for producing polyolefin resin molded articles
EP0139089A2 (en) Process for reducing vedge waver during formation of film from lldpe resins
JP5100660B2 (en) Manufacturing method of spacer for optical fiber cable