JPS6253739A - Preparation of methanol synthesizing catalyst - Google Patents
Preparation of methanol synthesizing catalystInfo
- Publication number
- JPS6253739A JPS6253739A JP60191520A JP19152085A JPS6253739A JP S6253739 A JPS6253739 A JP S6253739A JP 60191520 A JP60191520 A JP 60191520A JP 19152085 A JP19152085 A JP 19152085A JP S6253739 A JPS6253739 A JP S6253739A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- copper
- water
- catalyst
- zinc oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 239000003054 catalyst Substances 0.000 title claims abstract description 50
- 230000002194 synthesizing effect Effects 0.000 title abstract 2
- 238000002360 preparation method Methods 0.000 title description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000000243 solution Substances 0.000 claims abstract description 27
- 239000010949 copper Substances 0.000 claims abstract description 23
- 239000011787 zinc oxide Substances 0.000 claims abstract description 23
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000002002 slurry Substances 0.000 claims abstract description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052802 copper Inorganic materials 0.000 claims abstract description 19
- 239000011701 zinc Substances 0.000 claims abstract description 17
- 239000002243 precursor Substances 0.000 claims abstract description 15
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 13
- 239000007864 aqueous solution Substances 0.000 claims abstract description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 12
- 239000003513 alkali Substances 0.000 claims abstract description 11
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 11
- 150000001879 copper Chemical class 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 238000007664 blowing Methods 0.000 claims abstract description 7
- UOURRHZRLGCVDA-UHFFFAOYSA-D pentazinc;dicarbonate;hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Zn+2].[Zn+2].[Zn+2].[Zn+2].[Zn+2].[O-]C([O-])=O.[O-]C([O-])=O UOURRHZRLGCVDA-UHFFFAOYSA-D 0.000 claims abstract description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 4
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims abstract description 4
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims abstract description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 17
- 238000003786 synthesis reaction Methods 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 150000001639 boron compounds Chemical class 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 9
- 239000002244 precipitate Substances 0.000 abstract description 9
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 239000013078 crystal Substances 0.000 abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011268 mixed slurry Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 229910017752 Cu-Zn Inorganic materials 0.000 description 2
- 229910017943 Cu—Zn Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000003 Lead carbonate Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- -1 copper-zinc-aluminum Chemical compound 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- MOWNZPNSYMGTMD-UHFFFAOYSA-N oxidoboron Chemical class O=[B] MOWNZPNSYMGTMD-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- IPCXNCATNBAPKW-UHFFFAOYSA-N zinc;hydrate Chemical compound O.[Zn] IPCXNCATNBAPKW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はメタノール合成触媒の製造法に関する。さらに
詳しくは従来より通常用いられている触媒原料を転換す
ることKより、触媒製造費の大巾な低減を可能にし、種
々のプロセスに適用できる高活性なメタノール合成触媒
の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a methanol synthesis catalyst. More specifically, the present invention relates to a method for producing a highly active methanol synthesis catalyst that can be applied to various processes and that enables a significant reduction in catalyst production costs by converting conventionally used catalyst raw materials.
(従来の技術)
メタノール合成プ°ロセスは近年になって圧縮動力費節
減の省エネルギー化を目的として、50〜150気圧程
度の比較的低い圧力下でメタノールを合成する要求が高
まり、より高活性の優れた触媒が必要となってきた。こ
の要求に応えるものとして、銅−亜鉛及びアルミニウム
の酸化物より成るメタノール合成触媒(特公昭45−1
+5682及び特公昭4 B−23265)−並びに銅
−亜鉛−アルミニウム及び硼素の酸化物より成るメタノ
ール合成触媒(特公昭5l−44715)や、この触媒
をより安価な原料より製造する方法(l¥f公昭59−
1025(S)等が知られている。(Prior art) In the methanol synthesis process, in recent years, there has been an increasing demand for methanol synthesis under a relatively low pressure of about 50 to 150 atmospheres, with the aim of saving energy by reducing compression power costs. There is a need for better catalysts. In order to meet this demand, a methanol synthesis catalyst consisting of copper-zinc and aluminum oxides (Japanese Patent Publication No. 45-1
+5682 and Japanese Patent Publication No. 4 B-23265) - and a methanol synthesis catalyst consisting of copper-zinc-aluminum and boron oxides (Japanese Patent Publication No. 51-44715), and a method for producing this catalyst from cheaper raw materials (l\f Kosho 59-
1025(S) and the like are known.
(発明が解決しようとする問題点)
一方、需要面からは、メタノールの燃料化が大きく推進
化されようとしていることからメタノール合成プラント
はこれまでKも増して大盤化が要望されており、これに
対応するために高活性な触媒を使用し、低圧下で反応さ
せることにより省エネルギー化したプロセスの開発が望
まれている。(Problem to be solved by the invention) On the other hand, from the demand side, as the use of methanol as fuel is being greatly promoted, there has been a demand for methanol synthesis plants to be larger with an increase in K. In order to cope with this, it is desired to develop a process that saves energy by using a highly active catalyst and carrying out the reaction under low pressure.
本発明は以上の問題点を解消し、触媒製造費の低減化、
製造工程の簡略化を維持しつつ、より高活性な触媒の開
発を目的とするものである。The present invention solves the above problems, reduces catalyst manufacturing costs,
The aim is to develop a catalyst with higher activity while maintaining the simplification of the manufacturing process.
(問題点を解決するための手段)
即ち、本発明は(a) 水溶性硼素化合物を含んでい
でも良い水溶性銅塩の水溶液と、水溶性硼素化合物を含
んでいても良い炭酸アルカリ、重炭酸アルカリ及び水酸
化アルカリから選ばれたアルカリ水溶液を混合し銅成分
を(硼素化合物が存在する場合には硼素成分と共に)沈
澱させる工程、(b)上記1ml工程で得られる銅成分
の沈澱スラリーと、水溶性硼素化合物を含んでいても良
い酸化亜鉛の水性スラリー溶液又は酸化亜鉛粉末を混合
し、これに炭酸ガスを吹き込んで亜鉛成分を塩基性炭酸
亜鉛とする工程、上記(bl工程で得られる沈澱の混合
物をアルミナ前駆化合物の存在下に焼成して触媒を製造
するにあたり、(b)工程で使用する酸化亜鉛として結
晶子径1000に以下の酸化亜鉛を使用することを特徴
とする。銅、亜鉛およびアルミニウム酸化物を必須成分
とし、適宜硼素化合物を含有するメタノール合成触媒の
製造法である。(Means for Solving the Problems) That is, the present invention provides (a) an aqueous solution of a water-soluble copper salt which may contain a water-soluble boron compound; A step of mixing an aqueous alkali solution selected from alkali carbonate and alkali hydroxide to precipitate the copper component (along with the boron component if a boron compound is present), (b) a precipitated slurry of the copper component obtained in the 1 ml step above; , a step of mixing an aqueous slurry solution of zinc oxide or zinc oxide powder which may contain a water-soluble boron compound, and blowing carbon dioxide into this to convert the zinc component into basic zinc carbonate; In manufacturing the catalyst by calcining the precipitate mixture in the presence of an alumina precursor compound, the following zinc oxide with a crystallite diameter of 1000 is used as the zinc oxide used in step (b): copper, This is a method for producing a methanol synthesis catalyst that contains zinc and aluminum oxide as essential components and optionally contains a boron compound.
上記(atl工程おいて用いられる水溶性銅塩としては
従来から使用されている銅の水溶性塩が包含され、硝酸
塩、シュウ酸塩、酢酸塩等の水溶性溶液中ハロゲンや硫
黄などの触媒毒となるような元素を含まない塩が好まし
く、硝酸塩が特に適している。The water-soluble copper salts used in the above (ATL process) include conventionally used water-soluble salts of copper, and include catalyst poisons such as halogens and sulfur in water-soluble solutions such as nitrates, oxalates, and acetates. Salts that do not contain such elements are preferred, and nitrates are particularly suitable.
かかる水溶性銅塩社水性媒体、例えば水(脱イオン水)
中溶解した状態で、炭酸アルカリ、重炭酸アルカリ及び
水酸化アルカリの中から選ばれた沈澱剤により沈澱せし
められる。その際の水溶性溶液中における該水溶性銅塩
の濃度は。Such water-soluble copper salts have an aqueous medium, such as water (deionized water).
In the dissolved state, it is precipitated with a precipitant selected from alkali carbonates, alkali bicarbonates and alkali hydroxides. The concentration of the water-soluble copper salt in the water-soluble solution at that time is:
用いる銅塩の桟類により広範に変え得るが、一般には0
.1〜1.0モル/!の濃度(溶解度よりはるかに低い
)とするのが有利である。Although it can vary widely depending on the type of copper salt used, it is generally 0.
.. 1 to 1.0 mol/! (much lower than the solubility).
この水溶性銅塩の水溶液から銅成分を不溶性固体として
沈澱させるための沈澱剤としては。As a precipitant for precipitating the copper component as an insoluble solid from the aqueous solution of the water-soluble copper salt.
KHCO3などである。この沈澱剤を水溶液の形として
使用するのが便利であり、その沈殿剤成分の使用量は銅
塩に対して少なくとも0.8倍当盆、好ましくは1.0
〜2倍当量、更に好ましくは1.0〜1.3倍当量の盆
で使用するのが有利である。上記沈澱反応は常温におい
て行なうことができ−或い社適宜加温下に行なっても良
いが、約50℃までの温度下に行なうのが有利である。Such as KHCO3. It is convenient to use the precipitant in the form of an aqueous solution, the amount of precipitant component used being at least 0.8 times the amount of the copper salt, preferably 1.0 times the amount of the precipitant component relative to the copper salt.
It is advantageous to use trays of ~2 equivalents, more preferably 1.0 to 1.3 times equivalents. The precipitation reaction may be carried out at room temperature or with heating as appropriate, but it is advantageous to carry out the precipitation reaction at a temperature of up to about 50°C.
一方、前記工程(b)の亜鉛成分としては平均結晶子径
が100OA’以下、好ましく/I′1500A0以下
の酸化亜鉛が使用される。市販の酸化亜鉛の平均結晶子
径は2000〜5oooA0であり、か\る微結晶子径
の酸化亜鉛は市販されていないが、塩基性炭酸亜鉛や炭
酸亜鉛の熱分解、有機亜鉛化合物の加水分解等により製
造することができ、工業的にも容易に調達することがで
きる、この工程で使用される酸化亜鉛は、そのままの形
で鋼のスラリー(アルカリ成分で沈澱させた溶液)K加
えても良いが、あらかじめ、水(脱イオン水)に混合し
てスラリーとなし、溶液中の分散をよくした状態で加え
る方が有利である。酸化亜鉛と水の混合比率は特に制限
されるものではないが、一般に5〜50重量%になるよ
うに調製するのが好ましい。このスラリー調製は常温に
おいて行なうことができるが、適宜的50℃までの温度
の加温下に行なっても良い。On the other hand, as the zinc component in step (b), zinc oxide having an average crystallite diameter of 100 OA' or less, preferably /I'1500 A0 or less is used. The average crystallite size of commercially available zinc oxide is 2000 to 5oooA0, and zinc oxide with such a microcrystalline size is not commercially available, but it can be used for thermal decomposition of basic zinc carbonate and zinc carbonate, and for hydrolysis of organic zinc compounds. The zinc oxide used in this process, which can be produced by such methods and can be easily procured industrially, can be added as is to steel slurry (a solution precipitated with an alkali component). However, it is more advantageous to mix it with water (deionized water) to form a slurry in advance and add it in a well-dispersed state in the solution. The mixing ratio of zinc oxide and water is not particularly limited, but is generally preferably adjusted to 5 to 50% by weight. This slurry preparation can be carried out at room temperature, but may also be carried out while being heated to a temperature of up to 50°C.
炭酸化工程はスラリー溶液の温度を常温にして行なって
も良く、又適宜加温して約100”Cまでの加温下に行
なっても良い。使用する炭酸ガスは一般に市販されてい
る液化炭酸を気化して吹き込む方法が好適である。炭酸
ガスの吹き込み量は理論量以上の量を適宜吹き込む事に
より容易に炭酸化を行なわせることができるが。The carbonation step may be carried out with the slurry solution kept at room temperature, or may be carried out with appropriate heating up to about 100"C. The carbon dioxide gas used is generally commercially available liquefied carbonic acid. A preferred method is to vaporize and blow in carbon dioxide gas. Carbonation can be easily carried out by appropriately blowing in an amount of carbon dioxide gas that is greater than the theoretical amount.
銅を沈澱させる場合に炭酸アルカリを使用した場合は、
この反応の際、発生した炭酸ガスも存在するので、理論
量以下の量で足りる場合もある。吹き込み時間、吹き込
み速度は溶液の温度。If alkali carbonate is used to precipitate copper,
Since carbon dioxide gas is also generated during this reaction, an amount less than the theoretical amount may be sufficient in some cases. The blowing time and blowing speed are the temperature of the solution.
以上のようにして生成せしめた銅及び亜鉛成分で含んだ
スラリー溶液はそのまま後の工程での処理に付すること
もできるが、60〜100℃、特に60〜80℃の温度
において、少なくとも5分間1適常10〜60分間保持
することKより熟成するのが好ましい。The slurry solution containing the copper and zinc components produced as described above can be subjected to subsequent processing as it is, but at a temperature of 60 to 100°C, especially 60 to 80°C, for at least 5 minutes. 1. It is preferable to ripen by holding for 10 to 60 minutes.
また、本発明において、Cu−Zn−AI−B四元触媒
の製造を目的とする場合には、沈澱生成反応あるいは炭
酸ガス吹き込みに先立ち前記(a)。In addition, in the present invention, when the purpose is to produce a Cu-Zn-AI-B four-way catalyst, the above (a) is carried out prior to the precipitation formation reaction or carbon dioxide gas blowing.
(bl工程の銅塩の水溶液、アルカリ水溶液、酸化亜鉛
のスラリー溶液のいずれか一方、又は全部の溶液に硼素
の水溶性化合物を溶解させれば良い。この硼素化合物の
溶解量は得られる該四元触媒中に要求される硼素成分の
含量に依存し。(The water-soluble compound of boron may be dissolved in one or all of the copper salt aqueous solution, alkaline aqueous solution, and zinc oxide slurry solution in the BL step. It depends on the content of boron component required in the original catalyst.
亜鉛に対し原子比で0.1〜1.5の割谷となるように
適宜加えれば良い。この水溶性硼素化合物の沈澱生成機
構は正確には不明であり、また水溶性硼素化合物の添加
場所によっても異なるが、共沈あるいは物理吸着による
ものと推定される。この水溶性硼素化合物を使用する場
合でも、それに伴って沈澱剤あるいは炭酸ガスの使用量
を特に変える必要はなく、該水溶性硼素化合物を用いな
い場合と実質的に同じ条件下に工程を進めることができ
る。It may be added as appropriate to give an atomic ratio of 0.1 to 1.5 with respect to zinc. The exact mechanism by which the water-soluble boron compound precipitates is not known, and varies depending on the location where the water-soluble boron compound is added, but it is presumed to be due to coprecipitation or physical adsorption. Even when this water-soluble boron compound is used, there is no need to particularly change the amount of precipitant or carbon dioxide used, and the process can be carried out under substantially the same conditions as when the water-soluble boron compound is not used. I can do it.
上記の方法により製造した混合スラリーは次のアルミナ
前駆化合物の存在下に焼成する工程へまわされる。この
際のアルミナ前駆化合物の添加は各種の方法が採用でき
る。例えば−上記鋼、亜鉛混合スラリーにアルミナ前駆
化合物を添加した後その混合物を濾過等の通常の手段で
溶液から分離、洗浄して、余分の沈澱剤あるいは生成し
た水溶性塩を除去した後、乾燥する方法、あるいは上記
鋼、亜鉛混合スラリーを濾過等の通常の手段で溶液から
分離し、洗浄して余分の沈澱剤あるいは生成した水溶性
塩を除去した後、アルミナ前駆化合物を混合する方法、
y!には上記の洗浄された銅、亜鉛混合物を乾燥した後
、アルミナ前駆化合物を添加する方法等が採用できる。The mixed slurry produced by the above method is sent to the next step of firing in the presence of an alumina precursor compound. Various methods can be used to add the alumina precursor compound at this time. For example - after adding the alumina precursor compound to the steel and zinc mixed slurry, the mixture is separated from the solution by conventional means such as filtration, washed to remove excess precipitant or water-soluble salts formed, and then dried. or a method in which the steel and zinc mixed slurry is separated from the solution by ordinary means such as filtration, washed to remove excess precipitant or generated water-soluble salts, and then mixed with an alumina precursor compound;
Y! For example, a method may be adopted in which an alumina precursor compound is added after drying the above-mentioned washed copper/zinc mixture.
本発明において、アルミナ前駆化合物とは。In the present invention, what is an alumina precursor compound?
後述する焼成条件下に熱分解してアルミナを与え、しか
も分解後に本発明の触媒にとって有害な物質を残さない
ような物質であり、いわゆるアルミナゾル、あるいは水
溶性アルミニウム化金物から、加水分解もしくはアルカ
リ等の沈澱剤により沈澱させて得た水酸化アルミニウム
等を意味する。この前駆化合物は市販のアルミナゾルも
使用できるし、必要に応じて1反応系に水溶性アルミニ
ウム塩1例えばアルミン酸ソーダ、酢酸アルミニウム、
硝酸アルミニウム等を共存させておいて銅成分と共に該
アルミナ前駆体を析出せしめることによって結果的に上
記混合された沈澱生成中に該アルミナ前駆化合物が存在
するようにしても良く、また必要に応じて、混合された
沈澱物に加えるアルミナ前駆化合物には、Ml* Z
rz TJb Mn+ Cr+ st等の酸化物
前駆体、たとえば水酸化物、炭酸塩等、あるいはリンの
酸素酸塩等を含ませることができる。It is a substance that thermally decomposes to give alumina under the calcination conditions described below, and does not leave any substances harmful to the catalyst of the present invention after decomposition. means aluminum hydroxide etc. obtained by precipitation with a precipitating agent. Commercially available alumina sol can be used as this precursor compound, and if necessary, one reaction system may include one water-soluble aluminum salt, such as sodium aluminate, aluminum acetate, etc.
By precipitating the alumina precursor together with the copper component in the coexistence of aluminum nitrate, etc., the alumina precursor compound may be present in the mixed precipitate as a result, and if necessary, , the alumina precursor compound added to the mixed precipitate includes Ml*Z
Oxide precursors such as rz TJb Mn+ Cr+ st, such as hydroxides, carbonates, etc., or phosphorous oxyaltates, etc. can be included.
上記の如く、製造した沈澱混合物は適宜公知の手段によ
り混和、乾燥等の処理を行なった後。The precipitate mixture produced as described above is subjected to appropriate treatments such as mixing and drying by known means.
焼成する。焼成は、例えば電気炉、燃焼ガス焼成炉、流
動床焼成炉等の装置により、酸素含有ガス雰囲気下に、
280℃〜500℃、好ましくは300〜450℃の温
度に0.5〜4時間時間角熱することによって行なうこ
とができる。Fire. Firing is performed in an oxygen-containing gas atmosphere using equipment such as an electric furnace, a combustion gas firing furnace, or a fluidized bed firing furnace.
This can be carried out by heating at a temperature of 280 DEG C. to 500 DEG C., preferably 300 DEG C. to 450 DEG C., for 0.5 to 4 hours.
かくして得られる触媒は、そのまま使用するかあるいは
必要に応じて粉砕し1錠剤機で成形する。成形の方法は
、1回の成形で工業用触媒として十分な強度を得ること
ができるが、1回目を予備成形してこれを一旦粉砕し、
再び錠剤に成形すればさらにすぐれた強度を有する触媒
が得られる。The catalyst thus obtained may be used as it is or, if necessary, may be pulverized and molded using a tablet machine. The molding method can obtain sufficient strength as an industrial catalyst with one molding, but the first molding is preforming, which is then pulverized.
If the catalyst is re-formed into tablets, a catalyst with even better strength can be obtained.
本発明触媒の組成はCu : Zn原子比は0゜2〜1
2:1の範囲であり、好ましくは0.3〜7:1の範囲
である。打錠成形して使用する触媒の場合Cu−Zn−
Al!三元触媒では各成分の比率は原子比基準でCuは
45〜80%、好ましくは5[]−770%Znは15
〜50%、好ましくは20〜45%、AIは1〜20%
、好ましくは4〜16%である。 Cu−Zn−AJf
−B四元触媒では各成分の比率は原子比基準で、 Cu
は45〜80%、好ましくは50〜70%、 Znは1
5〜50%、好ましくは20〜45%1Mは1〜16%
、好ましくは3〜12%、Bは0゜3〜5%、好ましく
は0.5〜3%である。The composition of the catalyst of the present invention is that the atomic ratio of Cu:Zn is 0°2 to 1.
The ratio is in the range of 2:1, preferably 0.3 to 7:1. In the case of catalysts that are used after being formed into tablets, Cu-Zn-
Al! In the three-way catalyst, the ratio of each component is based on the atomic ratio: Cu is 45 to 80%, preferably 5[]-770%, Zn is 15%.
~50%, preferably 20-45%, AI 1-20%
, preferably 4 to 16%. Cu-Zn-AJf
In the -B four-way catalyst, the ratio of each component is based on the atomic ratio, Cu
is 45-80%, preferably 50-70%, Zn is 1
5-50%, preferably 20-45% 1M is 1-16%
, preferably 3 to 12%, and B is 0.3 to 5%, preferably 0.5 to 3%.
本発明の触媒は、上記成分以外に混入する若干の金属原
子の存在は許容され1例えばアルカリ金属原子は100
〜a o o ppm8度含まれていてもかまわない。In the catalyst of the present invention, the presence of some metal atoms mixed in other than the above-mentioned components is allowed.
It does not matter if it contains 8 degrees of ~a o o ppm.
本発明の方法により製造される触媒は、例えば水素での
還元により活性化処理を行なった後、CO及び/又はC
O2とH2との混合ガスからメタノールを合成する反応
、あるい拡CO転化反応、水添反応、メタノール分解反
応等の反応のための触媒として使用することができる。The catalyst produced by the method of the present invention is activated by, for example, reduction with hydrogen, and then CO and/or C
It can be used as a catalyst for reactions such as synthesis of methanol from a mixed gas of O2 and H2, CO expansion reaction, hydrogenation reaction, and methanol decomposition reaction.
本発明の触媒を用いるメタノール合成反応は。The methanol synthesis reaction using the catalyst of the present invention is as follows.
20〜300龜Lm、好ましくは30〜150 aty
nの加圧下、150〜550℃、好ましくは200〜6
00℃の温度において、2000〜50o o o h
r の空間速度で行なうことができる。20-300 Lm, preferably 30-150 aty
Under pressure of n, 150-550°C, preferably 200-6
At a temperature of 00℃, 2000~50 o o o h
This can be done with a space velocity of r.
(発明の効果)
本発明触媒は従来の同種の触媒と比べて、従来触媒の他
の利点を犠牲にすることなく1.5〜2倍高い活性を有
しており、種々のメタノール合成プロセスに適応でき、
特に大形のプラントでは省エネルギーと共に触媒使用量
が少なくて済むという大きな利点を有している。(Effects of the invention) Compared to conventional catalysts of the same type, the catalyst of the present invention has 1.5 to 2 times higher activity without sacrificing other advantages of conventional catalysts, and is suitable for various methanol synthesis processes. can adapt,
Particularly in large plants, this has the great advantage of saving energy and requiring less catalyst usage.
(実施例)
実施例 1
硝酸銅195Iをイオン交換水1490d中に溶解し、
液温を40℃に保持する。次に重炭酸アンモニウム13
4Iをイオン交換水1130 ml中に溶解して液温を
40℃とした後、撹拌下に前記硝酸銅水溶液を加え、銅
スラリーを調製する。(Example) Example 1 Copper nitrate 195I was dissolved in ion exchange water 1490d,
Maintain the liquid temperature at 40°C. Next, ammonium bicarbonate 13
After dissolving 4I in 1130 ml of ion-exchanged water and bringing the temperature of the solution to 40° C., the copper nitrate aqueous solution is added while stirring to prepare a copper slurry.
一方、イオン交換水400d中に塩基性炭酸亜鉛を32
0℃にて熱分解して得た平均結晶子径が280A°の酸
化亜鉛49.4.9を仕込み、 ・30分間攪拌して
酸化亜鉛スラリー溶液を調製する。これを前記鋼スラリ
ー溶液に加え、炭酸ガスを61/hrの流速で吹き込む
。この時液温を40℃に保ち、40分経過後70℃に液
温を上昇させ、該温度で30分間反応を続けて熟成を行
なう。次に得られたCu−Znスラリー溶液を濾過、洗
浄後、得られたケーキにアルミナゾル(Az2o310
%)60Iを加え、混練機で30分間混練する。混練後
は110℃で12時間乾燥し、次いで焼成炉に入れ、3
70”Cで25hr焼成する。焼成後得られた触媒を1
4メツシユ以下に粉砕し、グラファイトを3%混合後6
關φ×5闘りに打錠成形し1錠剤を製造した。この触媒
の組成は金属原子比でCu : Zn :AJ中1.3
3:1.0:0.19である。また、本触媒の比表面積
は65m”/I、細孔容積は0.27cc/IIであり
、平均細孔直径は98Aであった。On the other hand, 32 d of basic zinc carbonate was added to 400 d of ion-exchanged water.
Charge zinc oxide 49.4.9 with an average crystallite diameter of 280 A° obtained by thermal decomposition at 0°C, and stir for 30 minutes to prepare a zinc oxide slurry solution. This is added to the steel slurry solution, and carbon dioxide gas is blown in at a flow rate of 61/hr. At this time, the liquid temperature is maintained at 40°C, and after 40 minutes, the liquid temperature is raised to 70°C, and the reaction is continued at this temperature for 30 minutes to perform ripening. Next, the obtained Cu-Zn slurry solution was filtered and washed, and then alumina sol (Az2o310
%) 60I and knead for 30 minutes using a kneader. After kneading, it was dried at 110°C for 12 hours, then put into a baking furnace and heated for 3
Calcinate at 70"C for 25 hours.The catalyst obtained after firing is
After crushing to 4 mesh or less and mixing 3% graphite, 6
One tablet was produced by compression molding into a size of 5 mm. The composition of this catalyst is Cu:Zn:AJ with a metal atomic ratio of 1.3.
The ratio is 3:1.0:0.19. Further, the specific surface area of this catalyst was 65 m''/I, the pore volume was 0.27 cc/II, and the average pore diameter was 98A.
翅施例 2
実施例1において硝酸鋼195.9のかわりに酢酸第二
鋼(1水塩)104.6#を使用し、重炭酸アンモニウ
ムの代わりにアンモニア水(濃度25%)132IIを
使用して反応を行なわせた以外は実施例1と全く同様に
して触媒を製造した。Wing Example 2 In Example 1, steel acetate (monohydrate) 104.6# was used instead of nitrate steel 195.9, and ammonia water (concentration 25%) 132II was used instead of ammonium bicarbonate. A catalyst was produced in exactly the same manner as in Example 1, except that the reaction was carried out using
実施例 3
硝酸銅2281とホウ酸14.6&をイオン交換水16
80m/中に溶解し、液温を30℃に保持する。次に重
炭酸アンモニウム16411をイオン交換水1380−
に溶解して液温30℃とした後、攪拌下に前記硝酸銅水
溶液を加え。Example 3 Copper nitrate 2281 and boric acid 14.6 & ion-exchanged water 16
Dissolve in 80m/ml and maintain the liquid temperature at 30°C. Next, ammonium bicarbonate 16411 was added to ion-exchanged water 1380-
After dissolving the solution and bringing the temperature to 30°C, the copper nitrate aqueous solution was added while stirring.
銅スラリー管調製する。Prepare a copper slurry tube.
一方、イオン交換水300d中に塩基性炭酸1Ih−鉛
を280℃にで熱分解して得た平均結晶子径が22OA
の酸化亜鉛38.511を仕込み。On the other hand, the average crystallite diameter obtained by thermally decomposing basic 1Ih-lead carbonate at 280°C in 300 d of ion-exchanged water was 22OA.
Contains 38.511% of zinc oxide.
30分間攪拌して酸化亜鉛スラリー溶液を調製する。こ
れを前記鋼スラリー溶液に加え、C02を61 / h
rの流速で吹き込む。この時溶液を30℃に保ち1 h
rr過後65℃に液温を上昇させ。Stir for 30 minutes to prepare a zinc oxide slurry solution. Add this to the steel slurry solution and add C02 to 61/h.
Blow at a flow rate of r. At this time, the solution was kept at 30℃ for 1 h.
After passing through the rr, the liquid temperature was raised to 65°C.
該温度で30分間反応を続けて熟成を行なう。The reaction is continued at this temperature for 30 minutes to effect aging.
した。以降、実施例1同様にして触媒を調製した。did. Thereafter, a catalyst was prepared in the same manner as in Example 1.
実施例 4
硝酸銅195.9をイオン交換水1490wJK溶解し
、液温を30℃に保持する。次に水酸化ナトリウム68
Iを水113Q+lj中に溶解し液温を30℃にした後
、攪拌下に前記硝酸銅水溶液を加え、銅スラリーを調製
する。Example 4 Copper nitrate (195.9%) was dissolved in 1490wJK of ion-exchanged water, and the temperature of the solution was maintained at 30°C. Next, sodium hydroxide 68
After dissolving I in water 113Q+lj and bringing the temperature of the solution to 30° C., the copper nitrate aqueous solution is added while stirring to prepare a copper slurry.
一方、イオン交換水中に塩基性炭酸亜鉛を320℃にて
熱分解して得た平均結晶子径280人、の酸化亜鉛49
.4Ilを仕込み、30分間攪拌して零化亜鉛溶液スラ
リーを調製する。これを前記鋼スラリー溶液に加え、c
o2を61/hrの流速で吹き込む。この時液温t−4
0℃に保ち1 、5 hr紗通過後液温を80℃に上昇
させて。On the other hand, zinc oxide 49 with an average crystallite diameter of 280 people was obtained by thermally decomposing basic zinc carbonate in ion-exchanged water at 320°C.
.. 4Il was charged and stirred for 30 minutes to prepare a zero zinc oxide solution slurry. Add this to the steel slurry solution and c
Blow in o2 at a flow rate of 61/hr. At this time, liquid temperature t-4
The liquid was kept at 0°C and after passing through the gauze for 1.5 hours, the temperature was raised to 80°C.
該温度で1 hr熱熟成せた。得られたCu−Znスラ
リー溶液t濾過、洗浄した。このケーキにアルミナゾル
6(1?を添加し、混練機で混練した。Thermal aging was carried out at the same temperature for 1 hr. The obtained Cu-Zn slurry solution was filtered and washed. Alumina sol 6 (1?) was added to this cake and kneaded with a kneader.
以降、実施例1と同様にして触媒を調製した。Thereafter, a catalyst was prepared in the same manner as in Example 1.
実施例 5
実施例1に2いて、平均結晶子径280Aの酸化亜鉛の
代わりに塩基性炭酸亜鉛を420℃で熱分解して得た平
均結晶子径400大の酸化亜鉛を使用して調製した以外
は、実施例1と全く同様セして触媒を調製した。Example 5 In Example 1 and 2, zinc oxide with an average crystallite diameter of 400 large obtained by thermally decomposing basic zinc carbonate at 420°C was used instead of zinc oxide with an average crystallite diameter of 280A. Except for this, a catalyst was prepared in exactly the same manner as in Example 1.
比較例 1
実施例1において平均結晶子径220Aの酸化亜鉛の代
わりに平均結晶子径2000Aの酸化亜鉛を使用して調
製した以外は実施例1と全く同様にして触媒を調製した
。Comparative Example 1 A catalyst was prepared in exactly the same manner as in Example 1, except that zinc oxide with an average crystallite diameter of 2000 A was used instead of zinc oxide with an average crystallite diameter of 220 A in Example 1.
比較例 2
実施例3において平均結晶子径220Aの酸化亜鉛の代
わりに平均結晶子径2000Aの酸化亜鉛を使用して調
製した以外は実施例3と全く同様にして触媒を調製した
。Comparative Example 2 A catalyst was prepared in exactly the same manner as in Example 3, except that zinc oxide having an average crystallite diameter of 2000 A was used instead of zinc oxide having an average crystallite diameter of 220 A in Example 3.
試験例 1
以上の如き方法で製造した触媒(実施例1〜5及び比較
例1〜2)7点をそれぞれ20〜40メツシユに粉砕し
、 N2気流中140℃に保ち、急激な発熱をさけるた
め、還元ガス(合成原料ガス)を徐々に加えながら昇温
し、最終的に240℃で3時間保持することKより触媒
を還元した。次いで、H270%−C025%、002
5%、CH41%、N21%よりなる合成原料ガスを用
いて圧カフ0気圧、空間速度2X10’hr””、反応
温度260℃でメタノール合成を行なわせた。又ここで
触媒の寿命を短期間に知るために、触媒の温度t360
℃に昇温し、2時間メタノール合成を行なわせたのち、
再び温度を260℃に下げた時の触媒活性、及び360
℃の温度で4時間処理しく計6時間)、再び温度を26
0℃に下げた時の触媒活性、ならびに更に660℃に昇
温して4時間処理しく計10時間)、再び260℃に温
度を下げた時の触媒活性全測定し、それぞれ出口ガス中
のメタノール濃度で示した値を第1表に示す。Test Example 1 Seven catalysts (Examples 1 to 5 and Comparative Examples 1 to 2) produced in the above manner were each ground into 20 to 40 meshes and kept at 140°C in a N2 stream to avoid rapid heat generation. The temperature was raised while gradually adding a reducing gas (synthesis raw material gas), and the catalyst was finally reduced by K at 240° C. for 3 hours. Then H270%-C025%, 002
Methanol synthesis was carried out using a synthesis raw material gas consisting of 5% CH, 41% CH, and 21% N at a pressure cuff of 0 atm, a space velocity of 2 x 10'hr'', and a reaction temperature of 260°C. Also, in order to know the life of the catalyst in a short period of time, the catalyst temperature t360
After raising the temperature to ℃ and performing methanol synthesis for 2 hours,
Catalytic activity when the temperature was lowered again to 260°C, and 360°C
Treat for 4 hours at a temperature of 26°C (total of 6 hours), then increase the temperature again to 26°C.
The catalytic activity was measured when the temperature was lowered to 0°C, the catalytic activity was further increased to 660°C for 4 hours (total of 10 hours), and the catalytic activity was measured when the temperature was lowered again to 260°C. The values expressed in concentration are shown in Table 1.
Claims (1)
の水溶液と、水溶性硼素化合物を含んでいても良い炭酸
アルカリ、重炭酸アルカリ及び水酸化アルカリから選ば
れたアルカリ水溶液を混合し銅成分を(硼素化合物が存
在する場合には硼素成分と共に)沈澱させる工程、 (b)上記(a)工程で得られる銅成分の沈澱スラリー
と、水溶性硼素化合物を含んでいても良い酸化亜鉛の水
性スラリー溶液又は酸化亜鉛粉末を混合し、これに炭酸
ガスを吹き込んで亜鉛成分を塩基性炭酸亜鉛とする工程
、 上記(b)工程で得られる沈澱の混合物をアルミナ前駆
化合物の存在下に焼成して触媒を製造するにあたり、(
b)工程で使用する酸化亜鉛として平均結晶子径が10
00A°以下の酸化亜鉛を使用することを特徴とする銅
、亜鉛およびアルミニウム酸化物を必須成分とし、適宜
硼素化合物を含有するメタノール合成触媒の製造方法[Scope of Claims] (a) An aqueous solution of a water-soluble copper salt that may contain a water-soluble boron compound, and an alkali carbonate, an alkali bicarbonate, and an alkali hydroxide that may contain a water-soluble boron compound. a step of precipitating the copper component (along with the boron component if a boron compound is present) by mixing an alkaline aqueous solution containing the copper component and the water-soluble boron compound; A process of mixing an aqueous slurry solution of zinc oxide or zinc oxide powder, which may be used as an alumina precursor, and blowing carbon dioxide gas into it to convert the zinc component into basic zinc carbonate. When producing a catalyst by calcination in the presence of a compound, (
b) Zinc oxide used in the process has an average crystallite diameter of 10
A method for producing a methanol synthesis catalyst containing copper, zinc and aluminum oxides as essential components and containing a boron compound as appropriate, characterized by using zinc oxide with a temperature of 00A° or less
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60191520A JPS6253739A (en) | 1985-08-31 | 1985-08-31 | Preparation of methanol synthesizing catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60191520A JPS6253739A (en) | 1985-08-31 | 1985-08-31 | Preparation of methanol synthesizing catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6253739A true JPS6253739A (en) | 1987-03-09 |
JPH0535017B2 JPH0535017B2 (en) | 1993-05-25 |
Family
ID=16276022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60191520A Granted JPS6253739A (en) | 1985-08-31 | 1985-08-31 | Preparation of methanol synthesizing catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6253739A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04122444A (en) * | 1990-09-13 | 1992-04-22 | Agency Of Ind Science & Technol | Production of methanol from carbon dioxide |
US6114279A (en) * | 1997-03-31 | 2000-09-05 | Director-General Of Agency Of Industrial Science And Technology | Catalyst for methanol synthesis and reforming |
CN105268442A (en) * | 2014-06-30 | 2016-01-27 | 大唐国际化工技术研究院有限公司 | Copper-based methanol synthesis catalyst and preparation method therefor |
CN110314688A (en) * | 2018-03-28 | 2019-10-11 | 国家能源投资集团有限责任公司 | Methanol synthesis catalyst and preparation method thereof |
JP2020503228A (en) * | 2016-12-20 | 2020-01-30 | ロッテ アドバンスト マテリアルズ カンパニー リミテッド | Composition for artificial marble |
US11505674B2 (en) | 2017-11-08 | 2022-11-22 | Lotte Chemical Corporation | Thermoplastic resin composition and molded article produced from same |
US12084569B2 (en) | 2018-11-30 | 2024-09-10 | Lotte Chemical Corporation | Thermoplastic resin composition and molded article formed therefrom |
-
1985
- 1985-08-31 JP JP60191520A patent/JPS6253739A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04122444A (en) * | 1990-09-13 | 1992-04-22 | Agency Of Ind Science & Technol | Production of methanol from carbon dioxide |
US6114279A (en) * | 1997-03-31 | 2000-09-05 | Director-General Of Agency Of Industrial Science And Technology | Catalyst for methanol synthesis and reforming |
CN105268442A (en) * | 2014-06-30 | 2016-01-27 | 大唐国际化工技术研究院有限公司 | Copper-based methanol synthesis catalyst and preparation method therefor |
JP2020503228A (en) * | 2016-12-20 | 2020-01-30 | ロッテ アドバンスト マテリアルズ カンパニー リミテッド | Composition for artificial marble |
US11034620B2 (en) | 2016-12-20 | 2021-06-15 | Lotte Chemical Corporation | Composition for artificial marble |
US11505674B2 (en) | 2017-11-08 | 2022-11-22 | Lotte Chemical Corporation | Thermoplastic resin composition and molded article produced from same |
CN110314688A (en) * | 2018-03-28 | 2019-10-11 | 国家能源投资集团有限责任公司 | Methanol synthesis catalyst and preparation method thereof |
US12084569B2 (en) | 2018-11-30 | 2024-09-10 | Lotte Chemical Corporation | Thermoplastic resin composition and molded article formed therefrom |
Also Published As
Publication number | Publication date |
---|---|
JPH0535017B2 (en) | 1993-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU706004B2 (en) | Process for manufacturing methanol and process for manufacturing catalyst for methanol synthesis | |
US4305842A (en) | Preparation of improved catalyst composition | |
US3923694A (en) | Methanol synthesis catalyst | |
CA1233810A (en) | Catalyst composition suitable for synthesis of methanol | |
JP3553066B2 (en) | Process for the catalytic decomposition of nitrous oxide contained in pure or gaseous mixtures | |
JPS5910256B2 (en) | Manufacturing method of methanol synthesis catalyst | |
JP3865848B2 (en) | Catalyst for methanol synthesis | |
JP2017081812A (en) | Manganese-zirconium composite oxide, method for producing the same, and use thereof | |
JPS6253739A (en) | Preparation of methanol synthesizing catalyst | |
JP3328845B2 (en) | Hydrogen production method and catalyst used for it | |
JPH06254414A (en) | Preparation of catalyst | |
EP0255295A1 (en) | Process for producing fluidized catalyst for synthesis of methanol | |
CN1331599C (en) | Catalyst for methanol oxidation and reforming for hydrogen making, manufacture method and uses | |
JP2535760B2 (en) | Method for producing catalyst for steam reforming of methanol | |
JPS6339287B2 (en) | ||
US3840478A (en) | Catalyst of copper oxide-zinc-oxide-chromium oxide for methanol synthesis | |
JPS60257837A (en) | Catalyst for decomposing/reforming methanol and its preparation | |
JP5628016B2 (en) | Method for producing copper catalyst and method for aging copper catalyst precursor | |
JP2004202310A (en) | Catalyst for water gas shift reaction | |
KR20210079068A (en) | Catalyst for manufacturing hydrocarbon and method for preparing thereof | |
US6875723B2 (en) | Process for the production of iron oxide containing catalysts | |
JP3265605B2 (en) | Exhaust gas purification catalyst carrier and method for producing the same | |
JPH0526543B2 (en) | ||
JP7161664B2 (en) | Method for producing catalyst for hydrogen production | |
JP4115724B2 (en) | Method for producing aminocarboxylic acid (salt) |