[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6252049B2 - - Google Patents

Info

Publication number
JPS6252049B2
JPS6252049B2 JP54164684A JP16468479A JPS6252049B2 JP S6252049 B2 JPS6252049 B2 JP S6252049B2 JP 54164684 A JP54164684 A JP 54164684A JP 16468479 A JP16468479 A JP 16468479A JP S6252049 B2 JPS6252049 B2 JP S6252049B2
Authority
JP
Japan
Prior art keywords
yarn
polyester
undrawn
residual elongation
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54164684A
Other languages
Japanese (ja)
Other versions
JPS5691013A (en
Inventor
Koichi Iohara
Yukikage Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16468479A priority Critical patent/JPS5691013A/en
Publication of JPS5691013A publication Critical patent/JPS5691013A/en
Publication of JPS6252049B2 publication Critical patent/JPS6252049B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、新規なポリエステル未延伸糸に関
し、更に詳しくは、スチレン系重合体を含有す
る、生産性に優れたポリエステル未延伸糸に関す
るものである。 [従来技術] ポリエステル繊維の溶融紡糸に際し、その口金
からの吐出量をできるだけ多くすることは、生産
性を上げるうえで極めて有効な方法であり、特に
細繊度の繊維に対する指向が著しい昨今において
は、生産性を高め製糸コストを低減させるために
極めて望ましいことである。この目的を達成する
一つの手段として、紡糸引取速度を高くして、口
金からの吐出量を増加させる方法がある。しかし
ながら、この方法では、引取速度が高いため、紡
出糸条の分子配向が大きくなり、得られた未延伸
糸の残留伸度が低下する。その結果、当然のこと
ながら、後につづく延伸又は延伸仮撚時の延伸比
が小さくなり、引取速度上昇による吐出量増加効
果が、延伸比の低下によつて相殺されてしまう。
即ち、一定繊度の延伸糸又は延伸仮撚糸を得よう
とする場合に、延伸比が低下すれば、それに見合
うだけ紡糸口金からのポリマー吐出量を低下させ
なければならないことになり、引取速度の上昇に
よつてもたらされる吐出量増加を打ち消してしま
う結果となるのである。 このような問題を解消するには、紡糸引取速度
を高くしても、紡出糸条の分子配合が大きくなら
ないようにすればよいわけであり、その一手段と
して、紡糸口金直下に加熱紡糸筒を設け、ポリマ
ー吐出流を緩やかに冷却固化させる方法が提案さ
れている。しかしながら、この方法は、特別な加
熱装置が必要となるうえ、紡出糸条の冷却過程の
管理が極めて難しいという欠点がある。 一方、ポリエステルにペンタエリスリトール等
の連鎖分枝剤を第3成分として共重合させて、吐
出量、延伸比を増大させ生産性を向上させる方法
(特開昭53−292号)も提案されているが、この方
法では、特別な重合条件を採用する必要があり、
更に紡糸調子が悪くなり易く、そのうえ得られた
糸条の力学的諸物性が低下するという問題があ
る。 [発明の目的] 本発明の目的は、原料となるポリマー更には紡
糸装置に格別の工夫を伴うことなく、簡便な手段
で高度の残留伸度を呈するポリエステル未延伸糸
を提供することにある。 [発明の構成] 本発明者らは、上記の目記を達成するため鋭意
検討を重ねた結果、従来の概念とは逆に特定のス
チレン系重合体を添加したポリエステルに限つて
これに高速の紡糸引取速度を適用して初めて、分
子配向が上らず、残留伸度の大きいポリエステル
未延伸糸が得られ、従つて高延伸比での延伸が可
能で生産性を高めることができることを究明し
た。 かくして、本発明によれば重合度が20以上のス
チレン系重合体を0.5〜10重量%含むポリエステ
ルを溶融して、紡糸口金から紡出し、2500〜8000
m/分の速度で引取ることによつて得られ、次式
で示される伸度増加率(I)が15%以上であることを
特徴とするポリエステル未延伸糸 I(%)=(ELb/ELo−1)×100 〔但し、ELbは本発明の未延伸糸の残留伸度
(%)、ELoは本発明の未延伸糸において、スチレ
ン系重合体成分を含まない場合の残留伸度(%)
を示す。〕 が提供される。 本発明において用いられるポリエステルは、芳
香族ジカルボン酸を主たる酸成分とする繊維形成
能を有するポリエステルであり、例えば、ポリエ
チレンテレフタレート、ポリテトラメチレンテレ
フタレート、ポリシクロヘキサンジメチレンテレ
フタレート、ポリエチレン−2・6−ナフタレン
ジカルボキシレート等を挙げることができる。ま
た、これらのポリエステルは第3成分として、他
のアルコール又はイソフタル酸、5−ソジウムス
ルホイソフタル酸等の他のカルボン酸を共重合さ
せた共重体でもよく、更にこれら各種ポリエステ
ルの混合体でもよい。なかでも、ポリエチレンテ
レフタレートが最適である。 これらのポリエステルには、必要に応じて艶消
剤、熱安定剤、紫外線安定剤、帯電防止剤、末端
停止剤、螢光増白剤等が含まれていても良い。ま
たこれらのポリエステルは紡糸性及び糸条物性の
観点から固有粘度が0.5〜1.1である事が望まし
い。 他方、ポリエステルに添加混合するスチレン系
重合体は、スチレン、α−メチルスチレン、p−
メトキシスチレン、ビニルトルエン、クロルスチ
レン、ジクロルスチレン等のスチレン誘導体の重
合体、あるいはこれらを主体とする共重合体で、
重合度が20以上であることが必要である。つまり
重合度が20以上のプレポリマーまたポリマーの場
合には未延伸糸の伸度を高める効果が認められる
が、重合度20未満の場合には分子量が低くなり過
ぎてポリエステルの分子運動に変化を与えるだけ
の作用がなく、残留伸度を高める効果がない。さ
らに、スチレン系重合体の添加量は0.5〜10重量
%、好ましくは1〜6重量%が望ましい。0.5%
未満では本発明の残留伸度向上効果が小さ過ぎ、
一方10%を越える場合は、紡糸工程において単糸
切れ、引取ローラ巻付きが多発し紡糸調子が悪く
なる他、得られる糸の強伸度等の力学的諸特性も
低下する。 ポリエステルへのスチレン系重合体の添加は、
任意の方法を採用することができ、例えばポリエ
ステルの重合工程で行つてもよく、また、ポリエ
ステルとスチレン系重合体とを溶融混合して、押
出し冷却後、切断してチツプ化してもよい。更に
は、両者をチツプ状で混合した後、そのまま溶融
紡糸してもよい。この場合には、混練度を高める
ため、スクリユー型溶融押出機を用いるのが好ま
しい。いずれの方式を採用するにしても、混合を
十分に行ない、スチレン系重合体がポリエステル
中に分子オーダーで分散混合するように配慮する
ことが必要である。混練が不十分で、ポリエステ
ル中にスチレン系重合体が海島状に混在している
ような場合は、残留伸度向上の効果が認められ
ず、フイブリル化の好ましくない現象があらわれ
てくる。 本発明のポリエステル未延伸糸を得るに際し
て、重要なことは、紡糸引取速度を2500〜8000
m/分とすることである。紡糸引取速度が2500
m/分未満では、後述するように、添加したスチ
レン系重合体がポリエステルの分子鎖配向に対し
て「コロ」としての働きをなすに至らず、紡出未
延伸糸の残留伸度上昇効果は実質的に認められな
い。他方、紡糸引取速度が大きくなるほど、残留
伸度上昇効果は大きくなるが、8000m/分を越え
ると、スチレン系重合体の添加が、逆に欠点とし
て作用し、紡出未延伸糸の強伸度が低下する、い
わゆる弱糸化という現象があらわれてくる。 [作用・効果] このようにして、紡糸し、引取られたポリエス
テル未延伸糸は、スチレン系重合体を添加しない
以外はまつたく同一条件で紡糸したポリエステル
未延伸糸よりも高い残留伸度を有している。即
ち、次式で定義される伸度増加率(I)が8%以上好
ましい場合は15%以上を示す。 I(%)=(ELb/ELo−1)×100 〔但し、ELbは本発明の未延伸糸の残留伸度
(%)、ELoは本発明の未延伸糸において、スチレ
ン系重合体成分を含まない場合の残留伸度(%)
を示す。〕 従つて、本発明の未延伸糸は、スチレン系重合
体を含まない未延伸糸よりも高い延伸比で延伸す
ることができる。 残留伸度が大きくなると、次式で示される延伸
比向上率(J)も増加する。 J(%)=DRb/DRo−1)×100 〔但し、DRbは本発明の未延伸糸の延伸比、DRo
は本発明の未延伸をDRbの延伸比で延伸した場合
の延伸糸の残留伸度とと同一の残留伸度を与える
スチレン系重合体を含まない未延伸糸の延伸比を
示す。〕 いま、ポリエステルの溶融紡糸において、溶融
ポリマーの吐出量Q(g/分)は、一般に、目的
とする延伸糸の繊度をde、紡糸引取速度をV
(m/分)、延伸比をDRとすると、 Q=1/9000de×V×DR で示される。従つて、紡糸引取速度が一定で、延
伸比をJ%高くできるということは、紡糸時の吐
出量をJ%高くすることができ、それだけ生産性
を向上させることができることになる。伸度増加
率(I)が8%以上であると、延伸比向上率(J)は5%
以上となり、生産性も5%以上向上する結果とな
る。 本発明においてスチレン系重合体の添加が何故
吐出生産性向上のため特異的効果をもたらすかに
ついては充分明らかではない。おそらくスチレン
系重合体の化学構造の特徴、非晶性であること、
モビリテイーの低さ等、スチレン系重合体分子自
身の特質と、ポリエステル分子との相溶性、ブレ
ンド体における分散状態等ポリマー同士の組み合
せによつて生じる特質とが重なつた結果、スチレ
ン系重合体分子がポリエステルの変形に対して
「コロ」の如き作用をすなのではないかと考えら
れる。このような機構のためか、重合度20未満の
ステレン系オリゴマーを添加したのでは、効果が
ほとんどない。重合度20以上においては、重合度
が大きくなればなるほど効果も著しくなる。しか
し、スチレン系重合体の重合度が大きくなりすぎ
ると、紡糸性が若干悪くなる傾向が認められるの
で注意を要する。 以上のように本発明は極めて簡単な手段により
紡糸生産性を飛躍的に向上させることができたも
のであり工業上の意義は極めて大きい。 [実施例] 実施例 1 固有粘度0.64であり、艶消剤として酸化チタン
0.5%を含むポリエチレンテレフタレートチツプ
を160℃で4時間乾燥した後、ポリスチレン(旭
ダウ(株)製商品名スタイロン683重合度約700)をチ
ツプ状にて種々の比率で混合し、直径25mmのスク
リユー型溶融押出機にて、300℃で溶融混合し、
ポリエチレン分子をポリエチレンテレフタレート
分子中へ拡散させた。次いで、直径0.35mmのノズ
ルを24個有する紡糸口金から、溶融ポリマーを吐
出させ紡糸口金下方10〜110cmに設けた横吹き紡
糸筒で室温の空気を10m/分の速度で吹きつけて
冷却固化せしめ、油剤処理後3500m/分の速度で
引取り72deの未延伸糸を得た。このときの紡糸
性、並びに得られた未延伸糸の強度、残留伸度及
び伸度増加率(I)は次表に示す通りであつた。
[Industrial Field of Application] The present invention relates to a novel undrawn polyester yarn, and more particularly to an undrawn polyester yarn containing a styrene polymer and having excellent productivity. [Prior Art] When melt-spinning polyester fibers, increasing the amount of ejection from the spinneret as much as possible is an extremely effective method for increasing productivity. Especially in recent years, there has been a marked trend towards finer fibers. This is highly desirable in order to increase productivity and reduce spinning costs. One way to achieve this objective is to increase the spinning take-off speed to increase the amount of yarn discharged from the spinneret. However, in this method, since the take-off speed is high, the molecular orientation of the spun yarn increases, and the residual elongation of the obtained undrawn yarn decreases. As a result, as a matter of course, the stretching ratio during the subsequent stretching or stretch false twisting becomes small, and the effect of increasing the discharge amount due to the increase in the take-up speed is offset by the decrease in the stretching ratio.
That is, when trying to obtain a drawn yarn or drawn false twisted yarn with a constant fineness, if the drawing ratio decreases, the amount of polymer discharged from the spinneret must be reduced accordingly, and the take-up speed must be increased. This results in canceling out the increase in discharge amount brought about by this. In order to solve this problem, it is necessary to prevent the molecular composition of the spun yarn from increasing even if the spinning take-off speed is increased.One way to do this is to install a heated spinning tube directly below the spinneret. A method has been proposed in which the polymer discharge flow is slowly cooled and solidified. However, this method requires a special heating device and has the disadvantage that it is extremely difficult to control the cooling process of the spun yarn. On the other hand, a method has also been proposed in which polyester is copolymerized with a chain branching agent such as pentaerythritol as a third component to increase the discharge amount and stretching ratio and improve productivity (Japanese Patent Application Laid-Open No. 53-292). However, this method requires the adoption of special polymerization conditions;
Furthermore, there are problems in that the spinning condition tends to deteriorate and, in addition, the mechanical properties of the obtained yarn deteriorate. [Object of the Invention] An object of the present invention is to provide an undrawn polyester yarn that exhibits a high degree of residual elongation by a simple means without requiring any special modifications to the raw material polymer or spinning device. [Structure of the Invention] As a result of intensive studies to achieve the above-mentioned goals, the present inventors have determined that, contrary to the conventional concept, a high-speed It was discovered that undrawn polyester yarn with high residual elongation without increased molecular orientation could be obtained only by applying a spinning take-off speed, and therefore it was possible to draw at a high draw ratio and increase productivity. . Thus, according to the present invention, a polyester containing 0.5 to 10% by weight of a styrene polymer having a degree of polymerization of 20 or more is melted and spun from a spinneret to obtain a polyester of 2500 to 8000% by weight.
Polyester undrawn yarn I (%) = (ELb/ ELo-1)×100 [However, ELb is the residual elongation (%) of the undrawn yarn of the present invention, and ELo is the residual elongation (%) of the undrawn yarn of the present invention when the styrene polymer component is not included. )
shows. ] will be provided. The polyester used in the present invention is a polyester having fiber-forming ability containing aromatic dicarboxylic acid as the main acid component, and examples thereof include polyethylene terephthalate, polytetramethylene terephthalate, polycyclohexane dimethylene terephthalate, and polyethylene-2,6-naphthalene. Dicarboxylate and the like can be mentioned. Furthermore, these polyesters may be copolymers obtained by copolymerizing other alcohols or other carboxylic acids such as isophthalic acid or 5-sodium sulfoisophthalic acid as a third component, or may be mixtures of these various polyesters. . Among them, polyethylene terephthalate is most suitable. These polyesters may contain a matting agent, a heat stabilizer, an ultraviolet stabilizer, an antistatic agent, a terminal stopper, a fluorescent whitening agent, etc., as necessary. Further, it is desirable that these polyesters have an intrinsic viscosity of 0.5 to 1.1 from the viewpoint of spinnability and filament properties. On the other hand, the styrene polymers added to polyester include styrene, α-methylstyrene, p-
A polymer of styrene derivatives such as methoxystyrene, vinyltoluene, chlorstyrene, dichlorostyrene, or a copolymer mainly composed of these.
It is necessary that the degree of polymerization is 20 or more. In other words, in the case of prepolymers or polymers with a degree of polymerization of 20 or more, the effect of increasing the elongation of undrawn yarn is recognized, but if the degree of polymerization is less than 20, the molecular weight becomes too low and the molecular motion of the polyester changes. It does not have the effect of increasing residual elongation. Further, the amount of the styrene polymer added is preferably 0.5 to 10% by weight, preferably 1 to 6% by weight. 0.5%
If it is less than that, the residual elongation improving effect of the present invention is too small;
On the other hand, if it exceeds 10%, single filament breakage and take-up roller winding occur frequently during the spinning process, resulting in poor spinning quality, and the mechanical properties such as strength and elongation of the resulting yarn also deteriorate. Addition of styrenic polymer to polyester
Any method can be used, for example, it may be carried out in a polyester polymerization step, or the polyester and the styrene polymer may be melt-mixed, extruded, cooled, and then cut into chips. Furthermore, after mixing both in the form of chips, they may be melt-spun as they are. In this case, in order to increase the degree of kneading, it is preferable to use a screw type melt extruder. Whichever method is adopted, it is necessary to perform sufficient mixing so that the styrene polymer is dispersed and mixed in the polyester in molecular order. If the kneading is insufficient and the styrene polymer is mixed in the polyester in a sea-island pattern, the effect of improving the residual elongation will not be observed and the undesirable phenomenon of fibrillation will occur. When obtaining the undrawn polyester yarn of the present invention, it is important to control the spinning take-off speed from 2500 to 8000.
m/min. Spinning take-off speed is 2500
m/min, as will be described later, the added styrene polymer does not function as a "roller" for the molecular chain orientation of the polyester, and the effect of increasing the residual elongation of the spun undrawn yarn is Practically not allowed. On the other hand, as the spinning take-off speed increases, the effect of increasing the residual elongation increases; however, when the speed exceeds 8000 m/min, the addition of the styrene polymer becomes a drawback, and the strength and elongation of the spun and undrawn yarn decreases. A phenomenon called so-called weakening of the threads, in which the fibers become weaker, begins to appear. [Function/Effect] The undrawn polyester yarn spun and taken in this way has a higher residual elongation than the undrawn polyester yarn spun under the same conditions except that no styrene polymer is added. are doing. That is, when the elongation increase rate (I) defined by the following formula is preferably 8% or more, it is 15% or more. I (%) = (ELb/ELo-1) x 100 [However, ELb is the residual elongation (%) of the undrawn yarn of the present invention, and ELo is the residual elongation (%) of the undrawn yarn of the present invention that contains a styrene polymer component. Residual elongation (%) without
shows. ] Therefore, the undrawn yarn of the present invention can be drawn at a higher drawing ratio than the undrawn yarn that does not contain a styrenic polymer. As the residual elongation increases, the draw ratio improvement rate (J) shown by the following formula also increases. J (%) = DRb/DRo-1) x 100 [However, DRb is the drawing ratio of the undrawn yarn of the present invention, DRo
indicates the drawing ratio of an undrawn yarn not containing a styrenic polymer that gives the same residual elongation as the residual elongation of the drawn yarn when the undrawn yarn of the present invention is drawn at the draw ratio of DRb. ] Now, in melt spinning of polyester, the discharge amount Q (g/min) of the molten polymer is generally determined by setting the target fineness of the drawn yarn to de and the spinning take-off speed to V.
(m/min) and the stretching ratio is DR, it is expressed as Q=1/9000de×V×DR. Therefore, if the spinning take-off speed is constant and the drawing ratio can be increased by J%, the discharge amount during spinning can be increased by J%, and productivity can be improved accordingly. When the elongation increase rate (I) is 8% or more, the stretch ratio improvement rate (J) is 5%.
This results in an increase in productivity of 5% or more. It is not fully clear why the addition of a styrene polymer in the present invention has a specific effect on improving discharge productivity. Probably due to the characteristics of the chemical structure of styrenic polymers, being amorphous,
As a result of the overlap between the characteristics of the styrenic polymer molecule itself, such as low mobility, and the characteristics caused by the combination of polymers, such as compatibility with polyester molecules and the state of dispersion in the blend, the styrenic polymer molecule It is thought that this may act like a "roller" on the deformation of polyester. Perhaps because of this mechanism, adding a sterene oligomer with a degree of polymerization of less than 20 has almost no effect. When the degree of polymerization is 20 or more, the effect becomes more significant as the degree of polymerization increases. However, if the degree of polymerization of the styrenic polymer becomes too large, the spinnability tends to deteriorate slightly, so care must be taken. As described above, the present invention has been able to dramatically improve spinning productivity by extremely simple means, and has extremely great industrial significance. [Example] Example 1 Intrinsic viscosity is 0.64, and titanium oxide is used as a matting agent.
After drying polyethylene terephthalate chips containing 0.5% at 160°C for 4 hours, polystyrene (trade name Styron 683, polymerization degree approximately 700, manufactured by Asahi Dow Co., Ltd.) was mixed in various ratios in the form of chips, and a screw with a diameter of 25 mm was added. Melt and mix at 300℃ using a molded melt extruder,
Polyethylene molecules were diffused into polyethylene terephthalate molecules. Next, the molten polymer was discharged from a spinneret having 24 nozzles with a diameter of 0.35 mm, and cooled and solidified by blowing room temperature air at a speed of 10 m/min through a side-blown spinning tube installed 10 to 110 cm below the spinneret. After treatment with an oil agent, the yarn was taken off at a speed of 3500 m/min to obtain an undrawn yarn of 72 de. The spinnability, strength, residual elongation, and elongation increase rate (I) of the obtained undrawn yarn were as shown in the following table.

【表】 サンプルNo.1においては、ポリスチレンの添加
がなく、またサンプルNo.2は混合量が少ないため
残留伸度が低い。 サンプルNo.8においてはポリスチレンの混合量
が多過ぎるため、断糸が多発し、紡糸性が悪化し
た。未延伸糸の残留伸度はポリスチレンの混合率
の増加とともに大きくなり伸度増加率(I)は9〜
128%にも達する。 実施例 2 実施例1におけるサンプルNo.1〜7の各未延伸
糸を予熱温度75℃、スリツトヒータ温度180℃、
延伸速度300m/分にて延伸を行い、延伸後の延
伸糸残留伸度が25%になる延伸比(DR)を求め
た。結果は次表に示す通りである。
[Table] In sample No. 1, no polystyrene was added, and in sample No. 2, the amount of mixture was small, so the residual elongation was low. In sample No. 8, since the amount of polystyrene mixed was too large, yarn breakage occurred frequently and spinnability deteriorated. The residual elongation of undrawn yarn increases as the mixing ratio of polystyrene increases, and the elongation increase rate (I) ranges from 9 to
It reaches 128%. Example 2 Each undrawn yarn of samples No. 1 to 7 in Example 1 was preheated at a temperature of 75°C, a slit heater temperature of 180°C,
Stretching was performed at a stretching speed of 300 m/min, and the stretching ratio (DR) at which the residual elongation of the drawn yarn after stretching was 25% was determined. The results are shown in the table below.

【表】【table】

【表】 本発明による実施例1No.3〜No.7の未延伸糸に
おいては、延伸比向上率即生産性向上率が5%〜
42%に達する。 実施例 3 実施例1で用いたポリスチレンテレフタレート
に重合度550のポリビニルトルエン3%を添加
し、実施例1と同一条件で溶融吐出し、種々の引
取速度で引取り、192deの未延伸糸を得た。この
ときの紡糸性、並びに得られた未延伸糸の強度、
残留伸度及び伸度増加率(I)は次表に示す通りであ
つた。
[Table] In the undrawn yarns of Example 1 No. 3 to No. 7 according to the present invention, the drawing ratio improvement rate and productivity improvement rate ranged from 5% to
Reaching 42%. Example 3 3% polyvinyltoluene with a degree of polymerization of 550 was added to the polystyrene terephthalate used in Example 1, and the mixture was melted and discharged under the same conditions as in Example 1, and taken off at various take-off speeds to obtain undrawn yarn of 192 de. Ta. The spinnability at this time and the strength of the obtained undrawn yarn,
The residual elongation and elongation increase rate (I) were as shown in the following table.

【表】 実施例 4 実施例3におけるサンプルNo.1〜6の各未延伸
糸を実施例2と同一の条件で延伸し、延伸糸残留
伸度が25%になる延伸比(DR)を求めた。 結果は次表に示す通りである。
[Table] Example 4 Each undrawn yarn of samples No. 1 to 6 in Example 3 was stretched under the same conditions as in Example 2, and the drawing ratio (DR) at which the residual elongation of the drawn yarn was 25% was determined. Ta. The results are shown in the table below.

【表】 本発明による実施例3−No.2〜5の未延伸糸に
おいては、延伸比向上率即ち生産性向上率が5〜
39%に達する。 実施例 5 固有粘度が0.60であり、艶消剤として酸化チタ
ンを0.5%含有するポリスチレンテレフタレー
ト、5−ソジウムスルホイソフタレート共重合体
(5−ソジウムスルホイソフタル酸5モル%共重
合)に種々の重合度のポリp−メトキシチレンを
3%添加し、溶融混合温度を290℃としたほか
は、実施例1と同一の条件で紡糸引取を行ない
72deの未延伸糸を得た。また比較のため、ポリ
p−メトキシスチレンを添加しないものも紡糸し
た。このときの紡糸性並びに得られた未延伸糸の
残留伸度及び伸度増加率(I)は次表の通りであつ
た。
[Table] In the undrawn yarns of Example 3-Nos. 2 to 5 according to the present invention, the drawing ratio improvement rate, that is, the productivity improvement rate was 5 to 5.
Reaching 39%. Example 5 Various types of polystyrene terephthalate and 5-sodium sulfoisophthalate copolymer (5-mol % copolymer of 5-sodium sulfoisophthalate) were used, each having an intrinsic viscosity of 0.60 and containing 0.5% titanium oxide as a matting agent. The spinning was carried out under the same conditions as in Example 1, except that 3% of polyp-methoxyethylene with a polymerization degree of
An undrawn yarn of 72 de was obtained. For comparison, a fiber without polyp-methoxystyrene was also spun. The spinnability, residual elongation and elongation increase rate (I) of the obtained undrawn yarn were as shown in the following table.

【表】 サンプルNo.1はポリp−メトキシスチレンの重
合度が20未満であるため残留伸度向上効果はほと
んど認められなかつた。また、サンプルNo.4は、
重合度がやや高くなりすぎて紡糸調子が若干悪く
なつているが、残留伸度向上効果は極めて大き
い。
[Table] Since the degree of polymerization of polyp-methoxystyrene in sample No. 1 was less than 20, almost no effect on improving residual elongation was observed. In addition, sample No. 4 is
Although the degree of polymerization became a little too high and the spinning condition deteriorated a little, the effect of improving the residual elongation was extremely large.

Claims (1)

【特許請求の範囲】 1 重合度が20以上のスチレン系重合体を0.5〜
10重量%含むポリエステルを溶融して、紡糸口金
から紡出し、2500〜8000m/分の速度で引取るこ
とによつて得られ、次式で示される伸度増加率(I)
が8%以上であることを特徴とするポリエステル
未延伸糸。 I(%)=(ELb/ELo−1)×100 〔但し、ELbは本発明の未延伸糸の残留伸度
(%)、ELoは本発明の未延伸糸において、スチレ
ン系重合体成分を含まない場合の残留伸度(%)
を示す。〕 2 スチレン系重合体の含有量が1〜6重量%で
ある特許請求の範囲第1項記載のポリエステル未
延伸糸。
[Scope of Claims] 1. A styrenic polymer having a degree of polymerization of 20 or more from 0.5 to
Elongation increase rate (I) obtained by melting polyester containing 10% by weight, spinning it from a spinneret, and taking it off at a speed of 2500 to 8000 m/min, and shown by the following formula:
8% or more of polyester undrawn yarn. I (%) = (ELb/ELo-1) x 100 [However, ELb is the residual elongation (%) of the undrawn yarn of the present invention, and ELo is the residual elongation (%) of the undrawn yarn of the present invention that contains a styrene polymer component. Residual elongation (%) without
shows. 2. The undrawn polyester yarn according to claim 1, wherein the content of the styrene polymer is 1 to 6% by weight.
JP16468479A 1979-12-20 1979-12-20 Undrawn polyester yarn and its production Granted JPS5691013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16468479A JPS5691013A (en) 1979-12-20 1979-12-20 Undrawn polyester yarn and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16468479A JPS5691013A (en) 1979-12-20 1979-12-20 Undrawn polyester yarn and its production

Publications (2)

Publication Number Publication Date
JPS5691013A JPS5691013A (en) 1981-07-23
JPS6252049B2 true JPS6252049B2 (en) 1987-11-04

Family

ID=15797881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16468479A Granted JPS5691013A (en) 1979-12-20 1979-12-20 Undrawn polyester yarn and its production

Country Status (1)

Country Link
JP (1) JPS5691013A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157449A (en) * 1980-05-09 1981-12-04 Toray Ind Inc Polybutylene terephthalate polymer composition with modified moldability and fiber therefrom
DE3271192D1 (en) * 1981-11-23 1986-06-19 Ici Plc Process of melt spinning of a blend of a fibre-forming polymer and an immiscible polymer and melt spun fibres produced by such process
GB8405694D0 (en) * 1984-03-05 1984-04-11 Ici Plc Melt spinning of blend of fibre forming polymer
JPS6221817A (en) * 1985-05-30 1987-01-30 Teijin Ltd Ultra-high speed spinning of polyester fiber
JPH0639730B2 (en) * 1985-09-05 1994-05-25 株式会社クラレ Method for producing polyester fiber
US4900495A (en) * 1988-04-08 1990-02-13 E. I. Du Pont De Nemours & Co. Process for producing anti-static yarns
US5116681A (en) * 1988-04-08 1992-05-26 E. I. Du Pont De Nemours And Company Anti-static yarns containing polystyrene
DE19707447A1 (en) * 1997-02-25 1998-08-27 Zimmer Ag Process for processing polymer mixtures into filaments
US5993712A (en) * 1997-02-25 1999-11-30 Lurgi Zimmer Aktiengesellschaft Process for the processing of polymer mixtures into filaments
EP1002146B1 (en) * 1997-08-05 2002-06-12 Röhm GmbH & Co. KG Process for shaping polymer mixtures into filaments
DE19747867B4 (en) * 1997-10-30 2008-04-10 Lurgi Zimmer Gmbh Process for the production of filaments from polymer blends
US6923925B2 (en) 2002-06-27 2005-08-02 E. I. Du Pont De Nemours And Company Process of making poly (trimethylene dicarboxylate) fibers
US6921803B2 (en) 2002-07-11 2005-07-26 E.I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) fibers, their manufacture and use
US6641916B1 (en) 2002-11-05 2003-11-04 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) bicomponent fibers
US6967057B2 (en) 2002-12-19 2005-11-22 E.I. Du Pont De Nemours And Company Poly(trimethylene dicarboxylate) fibers, their manufacture and use

Also Published As

Publication number Publication date
JPS5691013A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
JPS6332885B2 (en)
US4454196A (en) Polyester multifilament yarn and a process for manufacturing the same
JPS6252049B2 (en)
US5565522A (en) Polyester fiber and process for the production thereof
US20040076823A1 (en) Poly (trimethylene terephthalate) filament yarn and method for production thereof
JP2003293223A (en) Endothermic conjugate fiber
WO2011022624A1 (en) Poly(trimethylene arylate)/polystyrene composition and process for preparing
Teli et al. Imparting disperse and cationic dyeability to polypropylene through melt blending
JP3849809B2 (en) Novel polymer blend fiber and process for producing the same
JPS6221817A (en) Ultra-high speed spinning of polyester fiber
JP2000248428A (en) Production of polyester filament yarn
JPH11302923A (en) Production of polyester fiber
JPH0931749A (en) Production of polyester fiber
JP2005206966A (en) Recycled polyester fiber
JPS60126322A (en) Manufacture of blended polyurethane fiber
JPH07173720A (en) Production of polyester filament
JPS588121A (en) Mixed spun fiber and its production
JPH0617317A (en) Production of polyester fiber
JP2001151997A (en) Melt spinning polyester composition, polyester high orientation undrawn yarn and its production method
JPH09250026A (en) Master batch type black-colored polyester fiber
KR0150172B1 (en) Method of manufacturing polyeterester elastic fiber
JPS6324087B2 (en)
JPH1161568A (en) Production of polyester yarn
JPS62250223A (en) Polybutylene terephthalate filament
JP2001146632A (en) Undrawn polypropylene yarn and its production