[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6251622B2 - - Google Patents

Info

Publication number
JPS6251622B2
JPS6251622B2 JP53061545A JP6154578A JPS6251622B2 JP S6251622 B2 JPS6251622 B2 JP S6251622B2 JP 53061545 A JP53061545 A JP 53061545A JP 6154578 A JP6154578 A JP 6154578A JP S6251622 B2 JPS6251622 B2 JP S6251622B2
Authority
JP
Japan
Prior art keywords
ray
common axis
ray source
detection
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53061545A
Other languages
Japanese (ja)
Other versions
JPS53147493A (en
Inventor
Betsuseru Zonnefuerudo Furansu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JPS53147493A publication Critical patent/JPS53147493A/en
Publication of JPS6251622B2 publication Critical patent/JPS6251622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4275Arrangements for detecting radiation specially adapted for radiation diagnosis using a detector unit almost surrounding the patient, e.g. more than 180°
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は扁平な扇形X−線ビーム発生用X−線
源と、円弧に沿つて配置される多数の検出素子か
ら成るX−線検出器とを具え、前記X−線源およ
びX−線検出器が前記扇形X−線ビームの平面に
直角の共通回転軸線のまわりを回動し得るように
したコンピユータ・トモグラフイ用装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises an X-ray source for generating a flat fan-shaped X-ray beam and an X-ray detector consisting of a large number of detection elements arranged along an arc, The present invention relates to an apparatus for computer tomography in which a radiation source and an X-ray detector are rotatable about a common axis of rotation perpendicular to the plane of the fan-shaped X-ray beam.

斯種装置は特にX−線診断用に好適である。こ
のような診断中に患者の人体の或る部位は扁平な
扇形ビームによつて種々の方向から照射される。
局部的に透過した放射線を測定し、かつこのよう
にして得た測定データを用いてコンピユータによ
り照射平面における患者の人体部位の濃度分布を
計算して、その結果を例えばテレビジヨンモニタ
に映出させる。
Such a device is particularly suitable for X-ray diagnostics. During such a diagnosis, a certain part of the patient's body is illuminated from various directions by means of a flat fan beam.
The locally transmitted radiation is measured, and the measurement data thus obtained is used to calculate the concentration distribution of the patient's body part in the irradiation plane using a computer, and the results are displayed on, for example, a television monitor. .

上述した種類の装置は既に公開されているオラ
ンダ国特許願第7503520号から既知であり、これ
に記載されている装置では診断すべき人体部位を
少なくとも一方向において完全に包囲する扁平な
扇形X−線ビームを用いている。適当な数の測定
データを得るために、X−線源およびX−線検出
器をこれらの共通回転軸線の近くに配置した患者
のまわりにて一緒に回転させる。上記装置は種種
の検出素子の感度の相違が測定信号に及ぼす影響
を補正する手段を具えている。
A device of the above-mentioned type is known from the already published Dutch patent application no. It uses a line beam. In order to obtain a suitable number of measurement data, the X-ray source and X-ray detector are rotated together around the patient, which is placed near their common axis of rotation. The device comprises means for compensating for the effect on the measurement signal of differences in sensitivity of the various detection elements.

従来装置のX−線源およびX−線検出器は診断
中均一速度で共通回転軸線のまわりを一緒に回転
する。検出素子の出力信号は信頼できる測定値を
得るために短期間にわたり積分され、この短期間
の間にX−線源およびX−線検出器は例えば1゜
のような僅かな角度だけ回転する。ついで放射線
強度測定の対数値を決定する。従つて診断中各検
出素子は患者の人体を種々の方向から透過したX
−線強度に関する1組の対数値を供給する。診断
中これらのデータは第1電子メモリに蓄積され、
診断終了後に多数の検出素子から到来するデータ
は対応する方向に向けられた平行な通路組に沿つ
て透過したX−線の強度に関する多数の対数値の
組に分類される。これらの分類した各組の対数値
は第2の電子メモリに蓄積される。ついで診断し
た人体部位の照射面に関する画素として再現され
る局部的濃度を再構成法によつて計算する。この
ことは、該当する再現画素に係わる上記分類した
各組の対数値からすべての測定通路に関する測定
データが加算されることを意味する。
The X-ray source and X-ray detector of conventional devices rotate together about a common axis of rotation at a uniform speed during diagnosis. The output signal of the detection element is integrated over a short period of time in order to obtain a reliable measurement value, during which the X-ray source and the X-ray detector are rotated by a small angle, for example 1 DEG. Then, the logarithm value of the radiation intensity measurement is determined. Therefore, during diagnosis, each detection element detects the X that passes through the patient's body from various directions.
- provides a set of logarithmic values for the line intensity; During diagnosis, these data are stored in a first electronic memory;
After completion of the diagnosis, the data arriving from the multiple detection elements are classified into multiple sets of logarithmic values relating to the intensity of the transmitted X-rays along sets of parallel paths oriented in corresponding directions. The logarithmic values of each of these sorted sets are stored in a second electronic memory. Then, the local density reproduced as pixels on the irradiated surface of the diagnosed human body part is calculated by a reconstruction method. This means that the measurement data for all measurement paths are added from the logarithmic values of each of the classified sets for the corresponding reproduction pixel.

従来装置では計算した濃度分布の表示に際し、
実際には存在しない環状虚像パターンと称される
厄介な環状の妨害パターンが発生するのを検出素
子の感度の相違を補正することによつて抑制して
いる。これがため、X−線源の速い運動をこのX
−線源とX−線検出器との均等の共通回転運動に
別々に重畳させて、各検出素子による各測定を診
断中各素子に隣接している検出素子によつて繰り
返すようにしている。このようにして得た測定値
に基いて検出素子を互いに比較し、かつ検出素子
の感度の相違を補正している。従つてこの補正目
的のために追加の電子式処理回路網を設けてい
る。
With conventional equipment, when displaying the calculated concentration distribution,
The occurrence of a troublesome annular interference pattern called an annular virtual image pattern that does not actually exist is suppressed by correcting the difference in sensitivity of the detection elements. This makes the fast motion of the X-ray source
- separately superimposed on an equal common rotational movement of the radiation source and the X-ray detector, so that each measurement by each detection element is repeated by the detection element adjacent to each element during diagnosis; The detection elements are compared with each other based on the measured values obtained in this manner, and differences in sensitivity of the detection elements are corrected. Additional electronic processing circuitry is therefore provided for this correction purpose.

本発明の目的は検出素子の感度の相違によつて
環状の虚像パターンの発生が明らかとなることの
ないようにすると共に、診断中の各検出素子によ
つて患者を平行方向に透過した1組のX−線強度
に関する測定値を発生させて、診断終了後の測定
値の分類を省けるようにしたコンピユータ・トモ
グラフイ用装置を提供せんとするにある。
It is an object of the present invention to prevent the occurrence of annular virtual image patterns from becoming apparent due to differences in sensitivity of the detection elements, and to provide a set of images transmitted through the patient in parallel directions by each detection element during diagnosis. It is an object of the present invention to provide an apparatus for computer tomography, which generates measured values regarding the X-ray intensity of X-rays, thereby making it possible to omit classification of the measured values after the diagnosis is completed.

本発明は扁平な扇形X−線ビーム発生用X−線
源を具え、該X−線源が作動中該X−線源本体に
対して実質上固定の比較的小さなX−線放射領域
を有しており、さらに診断下にある物体を通過し
た後の前記扇形ビームからのX−線放射を受光す
るように円弧に沿つて配置した多数の検出素子か
ら成るX−線検出器を具えており、前記各検出素
子のX−線検出領域を比較的小さくし、第1およ
び第2の各回転自在の支持部材を固定支持手段に
よつて回転自在に支持して、前記第1および第2
の回転自在の支持部材が前記扇形ビームの平面に
対し直角に向けられた共通軸線のまわりを回転し
得るようにし、前記扇形ビームがほぼ前記共通軸
線の方を向くように前記X−線源を前記第1回転
支持部材に固着し、かつ各検出素子のX−線検出
面と前記共通軸線との間の距離が、X−線源の前
記X−線放射領域と前記共通軸線との間の距離に
ほぼ等しくなるように前記X−線検出器を前記第
2回転支持部材に固着し、さらに前記第1および
第2回転支持部材を前記共通軸線のまわりにて同
じ角速度ではあるが、互い反対の回転方向に回転
させる手段を具えるように構成したことを特徴と
するコンピユータ・トモグラフイ用装置にある。
The present invention includes an x-ray source for generating a flat fan-shaped x-ray beam, the x-ray source having a relatively small x-ray emitting area that is substantially fixed relative to the body of the x-ray source during operation. and further comprising an X-ray detector consisting of a number of detection elements arranged along an arc to receive X-ray radiation from the fan beam after passing through the object under diagnosis. , the X-ray detection area of each of the detection elements is made relatively small, the first and second rotatable support members are rotatably supported by fixed support means, and the first and second rotatable support members are rotatably supported by fixed support means.
a rotatable support member is rotatable about a common axis oriented perpendicular to the plane of the fan beam, and the X-ray source is oriented such that the fan beam is oriented generally toward the common axis. is fixed to the first rotating support member, and the distance between the X-ray detection surface of each detection element and the common axis is the same as the distance between the X-ray emission area of the X-ray source and the common axis. the X-ray detector is fixed to the second rotary support member so that the distances are substantially equal to each other; An apparatus for computer tomography is characterized in that it is configured to include means for rotating in the rotational direction of the computer tomography apparatus.

診断中適切な測定精度を得るために検出素子の
出力信号を短期間にわたり積分し、この期間中に
X−線源およびX−線検出器を例えば1゜のよう
な小角度にわたつて回転させる。X−線源および
X−線検出器は反対方向に動くため、診断すべき
人体部位は相対的にほぼ平行な連続通路内にてX
−線源と所定の検出素子とによつて走査される。
このことは、照射面の各画素として再現される濃
度に関する各計算値が各検出素子による測定値を
含むことを意味する。従つて計算した濃度分布の
表示に際し、検出素子の感度の相違によつて生ず
る妨害パターンは実質上低減させることができ
る。さらに、上記環状虚像パターンも減らすこと
ができる。
To obtain adequate measurement accuracy during diagnosis, the output signal of the detection element is integrated over a short period of time, during which the X-ray source and the X-ray detector are rotated through a small angle, e.g. 1°. . The X-ray source and X-ray detector move in opposite directions, so that the body part to be diagnosed is exposed to the X-ray in a continuous, generally parallel path.
- scanned by a radiation source and a defined detection element;
This means that each calculated value regarding the density reproduced as each pixel of the irradiated surface includes the measured value by each detection element. Therefore, when displaying the calculated concentration distribution, interference patterns caused by differences in sensitivity of the detection elements can be substantially reduced. Furthermore, the annular virtual image pattern can also be reduced.

本発明によるコンピユータ・トモグラフイ用装
置の好適な実施に当つては、X−線検出器を円形
状に並べた多数の検出素子をもつて構成する。こ
のようにすることにより、平行方向に透過したX
−線の強度に関する各組の測定値を、診断平面の
凡ゆる方向に対して求めることができる。
In a preferred implementation of the computer tomography apparatus according to the invention, the X-ray detector is constructed with a large number of detection elements arranged in a circular arrangement. By doing this, the X transmitted in the parallel direction
- Each set of measurements regarding the intensity of the line can be determined for all directions of the diagnostic plane.

図面につき本発明を説明する。 The invention will be explained with reference to the drawings.

第1および2図は本発明によるコンピユータ・
トモグラフイ用装置の一例を示す縦および横断面
図である。患者用テーブル2の上に載せられてい
る患者1を扁平な扇形のX−線ビーム3によつて
照射する。このX−線ビーム3は例えば第2図の
図面の平面で30゜のような開口角(以後扇形角度
αと称する)を有し、これは上記平面の垂直方向
に対しては比較的扁平であり、その厚さは約10mm
である。扇形角度αはビーム3がその扇形方向に
て患者全体をまたぐのに十分な大きさとする。X
−線ビーム3を回転陽極(図示せず)を具えてい
るX−線管4によつて発生させる。回転陽極(実
際のX−線源)の放射面は比較的小さく、その長
さおよび幅は約2mmとするため、このX−線源は
実際上点状のものと見なすことができる。患者を
透過した放射線をX−線検出器5によつて測定す
る。この検出器5は円形に配列した例えば400個
の一連の検出素子6をもつて構成する。後述する
所から明らかなように、検出素子6の寸法は比較
的小さく、これらの素子も実際上点状のものと見
なすことができ、これらの素子は例えばシンチレ
ーシヨン結晶と光検出器とで構成する。X−線管
4を固定支持手段を成す外厘9に取付けたホイー
ル10で軸受けされる回転自在の支持部材を成す
リング7に取付ける。このリング7は扇形ビーム
3の平面に対し直角に延在している軸線14のま
わりを駆動モータ12によつて回動し得るように
する。実際のX−線源、すなわち回転陽極の表面
におけるX−線放射面は、それが円形通路15を
辿るように軸線14を中心として回転させる。X
−線検出器5を別の回転自在の支持部材を成すリ
ング8に接続する。このリング8を外厘9に接続
したホイール11で軸受けし、駆動モータ13に
よつて軸線14のまわりを回動し得るようにす
る。リング7および8は診断中反対方向に回転さ
せる。検出素子6は円形通路を回転し、その半径
は実際のX−線源が回転する円形通路の半径にほ
ぼ等しく、それらの円の半径はそれぞれ例えば90
cmおよび85cmとする。つぎに測定データの処理に
つき第3図を参照して詳細に説明する。
1 and 2 show a computer system according to the present invention.
FIG. 1 is a longitudinal and transverse cross-sectional view showing an example of a tomography device. A patient 1 placed on a patient table 2 is irradiated with a flat fan-shaped X-ray beam 3. This X-ray beam 3 has an aperture angle (hereinafter referred to as sector angle α) of, for example, 30° in the plane of the drawing of FIG. 2, which is relatively flat with respect to the direction perpendicular to said plane. Yes, its thickness is approximately 10mm
It is. The fan angle α is large enough so that the beam 3 straddles the entire patient in its fan direction. X
- The ray beam 3 is generated by an X-ray tube 4 with a rotating anode (not shown). The emitting surface of the rotating anode (the actual X-ray source) is relatively small, with a length and width of approximately 2 mm, so that the X-ray source can be considered as point-shaped in practice. The radiation transmitted through the patient is measured by an X-ray detector 5. The detector 5 includes a series of, for example, 400 detection elements 6 arranged in a circular manner. As will be clear from the description below, the dimensions of the detection elements 6 are relatively small, and these elements can also be considered as point-like elements in practice, and these elements may be composed of, for example, a scintillation crystal and a photodetector. do. The X-ray tube 4 is mounted on a ring 7, which constitutes a rotatable support member, which is supported by a wheel 10, which is mounted on a sling 9, which constitutes a fixed support means. This ring 7 can be rotated by a drive motor 12 about an axis 14 extending at right angles to the plane of the fan beam 3. The actual X-ray source, ie the X-ray emitting surface at the surface of the rotating anode, is rotated about the axis 14 so that it follows a circular path 15. X
- connecting the line detector 5 to a ring 8 forming a further rotatable support member; This ring 8 is supported by a wheel 11 connected to a sling 9 so that it can be rotated about an axis 14 by a drive motor 13. Rings 7 and 8 are rotated in opposite directions during diagnosis. The detection element 6 rotates in a circular path, the radius of which is approximately equal to the radius of the circular path in which the actual X-ray source rotates, the radius of each of these circles being e.g.
cm and 85cm. Next, processing of measurement data will be explained in detail with reference to FIG.

第3図は患者20、X−線源21および円形に
配列される一連の検出素子23を具えるX−線検
出器22を有している上述した種類の装置に対す
るデータ処理回路を示す。X−線源21および検
出素子23は、診断中これらがほぼ同じ円形通路
24を辿るように互いに反対方向に中央軸線(第
1図の14)のまわりを回転させる。すべての検
出素子を対応する積分回路25に接続(図面では
3個の検出素子に対してのみ示す)し、この回路
にて検出素子23の測定信号を短期間にわたり積
分する。その積分時間は適切な測定精度を得るた
めに例えば10ミリ秒とする。X−線源21および
X−線検出器22は互いに反対方向に動くため、
診断すべき人体20の部位は第4図に示すように
相対的にほぼ平行な連続通路内で走査される。第
4図ではX−線源21と1個の検出素子23との
位置関係を各々連続瞬時ta、tb、tc……th
対して示してある。X−線源21およびX−線検
出器23は診断中ほぼ同じ円形通路24を辿るた
め、X−線源と検出素子との間の距離は診断中に
変化し、従つて検出素子によつて測定されるX−
線の強度は診断中患者の局部的な部位でのX−線
の吸収度に無関係に変化する。これらの変化を回
路26で補正する。この補正後に検出素子による
測定信号の対数値を対数増幅器27で形成し、こ
のようにして得られた信号をメモリ28に蓄積
(記憶)させる。従つて診断中検出素子23は患
者をほぼ平行な方向に透過したX−線の強度に関
する1組の対数値を発生する。診断の終了後、コ
ンピユータ29によつて人体20の照射部分にお
ける局部的な濃度分布を再構成法により計算し
て、これを例えばテレビジヨンモニタ30に映出
させる。
FIG. 3 shows the data processing circuitry for a device of the type described above, having a patient 20, an X-ray source 21 and an X-ray detector 22 with a series of detection elements 23 arranged in a circular manner. X-ray source 21 and detection element 23 are rotated about a central axis (14 in FIG. 1) in opposite directions so that they follow substantially the same circular path 24 during diagnosis. All detection elements are connected to a corresponding integrating circuit 25 (only three detection elements are shown in the drawing), and this circuit integrates the measurement signal of the detection element 23 over a short period of time. The integration time is, for example, 10 milliseconds to obtain adequate measurement accuracy. Since the X-ray source 21 and the X-ray detector 22 move in opposite directions,
The region of the human body 20 to be diagnosed is scanned in a relatively generally parallel continuous path as shown in FIG. FIG. 4 shows the positional relationship between the X-ray source 21 and one detection element 23 for successive instants t a , t b , t c . . . th . Since the X-ray source 21 and the X-ray detector 23 follow approximately the same circular path 24 during the diagnosis, the distance between the X-ray source and the detection element changes during the diagnosis and is therefore X- to be measured
The intensity of the radiation varies independently of the absorption of the X-rays in the local area of the patient during diagnosis. These changes are corrected by circuit 26. After this correction, a logarithmic amplifier 27 forms a logarithmic value of the signal measured by the detection element, and the signal thus obtained is stored (stored) in a memory 28. During diagnosis, the detection element 23 thus generates a set of logarithmic values for the intensity of the X-rays transmitted through the patient in approximately parallel directions. After the diagnosis is completed, the computer 29 calculates the local concentration distribution in the irradiated portion of the human body 20 using a reconstruction method, and displays this on, for example, a television monitor 30.

第5図は上述したようなコンピユータ・トモグ
ラフイ用装置の検出素子として使用するのに特に
好適なX−線検出器31の一例を示す斜視図であ
り、この検出器31は例えば直径が5mmで、長さ
が20mmの円筒状シンチレータ32と、これの軸線
方向に連結した光検出器33とを具えている。
種々の方向から検出器に入射するX−線ビーム
(2つのX−線ビーム34および35のみを示
す)はこの検出器が円筒状で対称のため同じ方法
で検出される。検出器のこのような特性は上述し
た用途にとつて特に好適である。その理由は検出
素子に入射するX−線の方向は診断中に断えず変
化するからである。このX−線の入射方向の変化
は患者の局部的な部位によるX−線の吸収度には
無関係であるため、斯る変化は測定信号には何等
影響を及ぼさない。
FIG. 5 is a perspective view showing an example of an X-ray detector 31 particularly suitable for use as a detection element in a computer tomography apparatus such as that described above, and this detector 31 has a diameter of, for example, 5 mm. It includes a cylindrical scintillator 32 with a length of 20 mm and a photodetector 33 connected in the axial direction of the scintillator.
X-ray beams incident on the detector from different directions (only two X-ray beams 34 and 35 are shown) are detected in the same way due to the cylindrical shape and symmetry of this detector. These characteristics of the detector are particularly suitable for the above-mentioned applications. The reason for this is that the direction of the X-rays incident on the detection element constantly changes during diagnosis. Since this change in the direction of incidence of the X-rays is independent of the degree of absorption of the X-rays by local areas of the patient, such changes have no effect on the measurement signal.

つぎに上述した装置で実行し得る走査操作の一
形態につき第6図を参照して詳述する。ここに円
41は点状のX−線源42および一連の検出素子
44は具えているX−線検出器43が辿る通路を
示す。X−線源42を3つの瞬時、すなわち診断
の開始時t=0と、診断の終了時t=Tと、これ
らの中間の瞬時とにおける位置にそれぞれ示して
ある。検出器43はt=0の時点における位置を
図示してある。診断中X−線源42は円41の中
心Mを通る共通の中心軸線のまわりを均一角速度
ωで動き、X−線源と検出器の総合角変位置は
ω・Tである。X−線ビームの扇形角度αをダイ
ヤフラム45によつて決定する。このダイヤフラ
ム45をX−線源と一緒に動かして、X−線ビー
ムの中心が常に円41の中心Mに向くようにす
る。診断中各検出素子は相対的に平行な方向(こ
の方向はX−線46と47との間に位置する)に
て患者を透過したX−線の強度に関する1組の測
定値を発生する。上記2つのX−線46と47は
診断角度φを包囲する。瞬時t=0とt=Tとに
おけるX−線源の位置と、X−線46と47との
交点とによつて定まる三角形から容易に明らかな
ようにω・T=α+φである。放射線は最外側の
X−線46と47との間に位置する相対的に平行
な方向でしか測定されないから、瞬時t=0の時
点におけるX−線46以外のX−線ビームおよび
瞬時t=Tの時点におけるX−線47以外のX−
線ビームはX−線源42と一緒に動かす別のダイ
ヤフラム48によつて遮蔽する。このために患者
の放射線被爆量は相当低減する。ダイヤフラム4
8は第6図で左から右へと並進運動させるだけで
あるため、この図から明らかなようにダイヤフラ
ムの開口角βはφに等しい。診断中検出器43は
角速度ωで図示の方向に円形通路41を辿る。時
間Tまでの間に瞬時t=TにおけるX−線47を
測定する検出素子は最初の位置からωt角変位す
る。診断を可能ならしめるためには検出器の検出
角θをω・T+Δに等しくし、このために(第6
図から明らかなように)Δ=360−ω・T−2
(180−α−Δ)=ω・T−2αとして、θ=2
(ω・T−α)=2φとなるようにする必要があ
る。
One form of scanning operation that can be performed with the above-described apparatus will now be described in detail with reference to FIG. Here, a circle 41 indicates the path followed by an X-ray detector 43 comprising a point-like X-ray source 42 and a series of detection elements 44 . The X-ray source 42 is shown in position at three instants: at the beginning of the diagnosis, t=0, at the end of the diagnosis, t=T, and at moments in between. Detector 43 is shown in its position at time t=0. During diagnosis, the X-ray source 42 moves around a common central axis passing through the center M of the circle 41 with a uniform angular velocity ω, and the total angular displacement of the X-ray source and detector is ω·T. The fan angle α of the X-ray beam is determined by the diaphragm 45. This diaphragm 45 is moved together with the X-ray source so that the center of the X-ray beam is always directed towards the center M of the circle 41. During diagnosis, each detection element produces a set of measurements regarding the intensity of the X-rays transmitted through the patient in a relatively parallel direction (this direction is located between X-rays 46 and 47). The two X-rays 46 and 47 enclose the diagnostic angle φ. As is readily apparent from the triangle defined by the position of the X-ray source at the instants t=0 and t=T and the intersection of the X-rays 46 and 47, ω·T=α+φ. Since radiation is only measured in a relatively parallel direction located between the outermost X-rays 46 and 47, the X-ray beam other than X-ray 46 at instant t=0 and the instant t= X- other than X-ray 47 at time T
The ray beam is screened by another diaphragm 48 moving together with the X-ray source 42. This considerably reduces the patient's radiation exposure. diaphragm 4
Since 8 is only translated from left to right in FIG. 6, the opening angle β of the diaphragm is equal to φ, as is clear from this figure. During diagnosis, the detector 43 follows a circular path 41 in the direction shown at an angular velocity ω. Up to time T, the detection element measuring the X-ray 47 at instant t=T is displaced by an angle ωt from its initial position. In order to make diagnosis possible, the detection angle θ of the detector should be equal to ω・T+Δ, and for this purpose (6th
As is clear from the figure) Δ=360−ω・T−2
(180−α−Δ)=ω・T−2α, θ=2
It is necessary to ensure that (ω·T−α)=2φ.

前述した所から明らかなように、扇形角α=60
゜でφ=180゜にわたつて診断走査し得るように
するためには、X−線源および検出器を角度ω・
T=240゜にわたり反対方向に回転させ、検出器
の検出角θをθ=360゜とする必要がある。この
場合ダイヤフラム48の開口角βはβ=180゜と
するのが好適である。検出角θ=360゜とする場
合には各検出素子43を2回用い、ωTを420゜
とすることにより診断角度φがφ=360゜に増大
することは明らかである。
As is clear from the above, sector angle α=60
In order to be able to perform a diagnostic scan over φ = 180° at
It is necessary to rotate it in the opposite direction over T=240° so that the detection angle θ of the detector is θ=360°. In this case, the opening angle β of the diaphragm 48 is preferably set to β=180°. It is clear that when the detection angle θ=360°, each detection element 43 is used twice and ωT is set to 420°, thereby increasing the diagnostic angle φ to φ=360°.

診断角度φが180゜以上の場合、第1および2
図のX−線管4およびX−線検出器5は実際上同
一円形通路を動くことはできないが、これらは数
センチメートルだけ半径が異なる円形通路内を動
くことは可能である。この場合診断中各検出素子
は(X−線源および検出器は同一角速度で移動す
る)相対的に正確には平行でない多数の方向にて
患者を透過した放射線の強度に関する一組の測定
値を供給する。このような非平行性は扇形角が約
30゜で、円形通路の半径が100cmの長さの場合に
は非常に小さく、この非平行性がX−線照射面に
おける局部濃度の計算に及ぼす影響は無視し得る
程度に小さい。所要に応じかような非平行性は、
小さ目の円形通路内を動かすX−線源をX−線検
出器よりも僅かに速く回転させることによつて補
正することができる。
If the diagnostic angle φ is 180° or more, the first and second
Although the illustrated X-ray tube 4 and X-ray detector 5 cannot move in practically the same circular path, it is possible for them to move in circular paths that differ by a few centimeters in radius. In this case, during diagnosis, each detection element makes a set of measurements regarding the intensity of the radiation transmitted through the patient in a number of relatively not exactly parallel directions (X-ray source and detector moving with the same angular velocity). supply Such non-parallelism is caused by a sector angle of approximately
30° and the radius of the circular path is very small for a length of 100 cm, and the effect of this non-parallelism on the calculation of the local concentration at the X-ray irradiation plane is negligible. Such non-parallelism can be
This can be corrected by rotating the X-ray source moving in a smaller circular path slightly faster than the X-ray detector.

扇形度α=30°の場合には、各瞬時に用いられ
る第6図の検出素子44の検出角は僅か60゜であ
るため、例えば3個または5個のX−線源を用
い、これらのX−線源を正三角形または正五角形
に円形通路41に配置することによつて診断時間
を早めることができる。
In the case of a sector α = 30°, the detection angle of the detection element 44 of FIG. 6 used at each instant is only 60°, so that for example three or five By arranging the X-ray source in the circular channel 41 in the form of an equilateral triangle or a regular pentagon, the diagnostic time can be accelerated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるコンピユータ・トモグラ
フイ用装置の一例を示す縦断面図、第2図は第1
図の−線上の横断面図、第3図は本発明装置
に対するデータ処理回路の一例を示すブロツク線
図、第4図はX−線源および検出素子の各連続瞬
時に対する位置関係を示す説明図、第5図は検出
素子として使用するのに特に好適なX−線検出素
子の一例を示す斜視図、第6図は第1および2図
に示す装置によつて行なう走査方法を示す説明図
である。 1……被験者(患者)、2……テーブル、3…
…X−線ビーム、4……X−線管、5……X−線
検出器、6……検出素子、7,8……リング、9
……外厘、10,11……ホイール、12,13
……モータ、14……共通回転軸線、20……患
者、21,42……X−線源、22,43……X
−線検出器、23,44……X−線検出素子、2
4,41……X−線源および検出器移動通路、2
5……積分回路、26……補正回路、27……対
数増幅器、28……メモリ、29……コンピユー
タ、30……テレビジヨンモニタ、45……ダイ
ヤフラム、48……ダイヤフラム。
FIG. 1 is a longitudinal sectional view showing an example of a computer tomography apparatus according to the present invention, and FIG.
3 is a block diagram showing an example of a data processing circuit for the apparatus of the present invention, and FIG. 4 is an explanatory diagram showing the positional relationship of the X-ray source and the detection element with respect to each successive instant. , FIG. 5 is a perspective view showing an example of an X-ray detection element particularly suitable for use as a detection element, and FIG. 6 is an explanatory diagram showing a scanning method performed by the apparatus shown in FIGS. 1 and 2. be. 1... Subject (patient), 2... Table, 3...
...X-ray beam, 4...X-ray tube, 5...X-ray detector, 6...detection element, 7, 8... ring, 9
...Gairin, 10,11...Wheel, 12,13
...Motor, 14...Common axis of rotation, 20...Patient, 21,42...X-ray source, 22,43...X
-ray detector, 23, 44...X-ray detection element, 2
4, 41...X-ray source and detector moving path, 2
5... Integration circuit, 26... Correction circuit, 27... Logarithmic amplifier, 28... Memory, 29... Computer, 30... Television monitor, 45... Diaphragm, 48... Diaphragm.

Claims (1)

【特許請求の範囲】 1 扁平な扇形X−線ビーム発生用X−線源を具
え、該X−線源が作動中該X−線源本体に対して
実質上固定の比較的小さなX−線放射領域を有し
ており、さらに診断下にある物体を通過した後の
前記扇形ビームからのX−線放射を受光するよう
に円弧に沿つて配置した多数の検出素子から成る
X−線検出器を具えており、前記各検出素子のX
−線検出領域を比較的小さくし、第1および第2
の各回転自在の支持部材を固定支持手段によつて
回動自在に支持して、前記第1及び第2の回転自
在の支持部材が前記扇形ビームの平面に対し直角
に向けられた共通軸線のまわりを回転し得るよう
にし、前記扇形ビームがほぼ前記共通軸線の方を
向くように前記X−線源を前記第1回転支持部材
に固着し、かつ各検出素子のX−線検出面と前記
共通軸線との間の距離が、X−線源の前記X−線
放射領域と前記共通軸線との間の距離にほぼ等し
くなるように前記X−線検出器を前記第2回転支
持部材に固着し、さらに前記第1および第2回転
支持部材を前記共通軸線のまわりにて同じ角速度
ではあるが、互い反対の回転方向に回転させる手
段を具えるように構成したことを特徴とするコン
ピユータ・トモグラフイ用装置。 2 特許請求の範囲1記載の装置において、前記
X−線検出器を1つの閉成円を成すように配列し
た多数の検出素子をもつて構成したことを特徴と
するコンピユータ・トモグラフイ用装置。 3 特許請求の範囲1または2記載の装置におい
て、該装置に多数のX−線源を設け、これらのX
−線源を前記共通軸線を中心とする円弧内にて前
記第1回転支持部材に取付けたことを特徴とする
コンピユータ・トモグラフイ用装置。 4 特許請求の範囲1〜3のいずれか1つに記載
の装置において、該装置に前記第1および第2回
転支持部材が前記共通軸線のまわりを回転する際
に、各検出素子と、この検出素子に対応するX−
線源との間の距離の変動を補償するように、各検
出素子によつて供給される出力信号を補正する電
気回路26を設けたことを特徴とするコンピユー
タ・トモグラフイ用装置。
[Scope of Claims] 1. An X-ray source for generating a flat fan-shaped X-ray beam, the X-ray source being substantially fixed relative to the X-ray source body during operation. an X-ray detector having a radiation region and further comprising a number of detection elements arranged along an arc to receive the X-ray radiation from said fan beam after passing through the object under diagnosis; X of each of the detection elements
- The line detection area is made relatively small, and the first and second
each rotatable support member is rotatably supported by a fixed support means such that the first and second rotatable support members are of a common axis oriented at right angles to the plane of the fan beam. the X-ray source is fixed to the first rotating support member such that the X-ray source is rotatable about the first rotational support member such that the fan beam is oriented generally toward the common axis; fixing the X-ray detector to the second rotating support member such that the distance between the X-ray detector and the common axis is approximately equal to the distance between the X-ray emitting region of the X-ray source and the common axis; The computer tomography apparatus further comprises means for rotating the first and second rotational support members about the common axis at the same angular velocity but in opposite rotational directions. equipment. 2. An apparatus for computer tomography according to claim 1, wherein the X-ray detector is constructed with a large number of detection elements arranged to form one closed circle. 3. The device according to claim 1 or 2, wherein the device is provided with a number of X-ray sources, and these
- An apparatus for computer tomography, characterized in that a radiation source is mounted on the first rotary support member in an arc centered on the common axis. 4. In the device according to any one of claims 1 to 3, when the first and second rotation support members rotate around the common axis, each detection element and the detection X- corresponding to the element
Apparatus for computer tomography, characterized in that it is provided with an electrical circuit 26 for correcting the output signal provided by each detection element so as to compensate for variations in the distance to the source.
JP6154578A 1977-05-26 1978-05-23 Computer tomographic device Granted JPS53147493A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL7705788A NL7705788A (en) 1977-05-26 1977-05-26 DEVICE FOR COMPUTER TOMOGRAPHY.

Publications (2)

Publication Number Publication Date
JPS53147493A JPS53147493A (en) 1978-12-22
JPS6251622B2 true JPS6251622B2 (en) 1987-10-30

Family

ID=19828617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6154578A Granted JPS53147493A (en) 1977-05-26 1978-05-23 Computer tomographic device

Country Status (11)

Country Link
JP (1) JPS53147493A (en)
BE (1) BE867413A (en)
BR (1) BR7803296A (en)
CA (1) CA1107407A (en)
DE (1) DE2822089A1 (en)
ES (1) ES470148A1 (en)
FR (1) FR2391698A1 (en)
GB (1) GB1603593A (en)
IT (1) IT1095910B (en)
NL (1) NL7705788A (en)
SE (1) SE7805837L (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921820C2 (en) * 1979-05-29 1983-12-29 Siemens AG, 1000 Berlin und 8000 München Layering device for the production of transverse layer images
JPS5738023A (en) * 1980-08-20 1982-03-02 Tokyo Electric Power Co Inc:The Level detecting method of phase pulse signal
FR2578643B1 (en) * 1985-03-07 1990-03-09 Siderurgie Fse Inst Rech CROSS-SECTION THICKNESS PROFILE MEASUREMENT ASSEMBLY
CN103860190B (en) * 2013-04-15 2016-08-17 上海翰擎高新技术股份有限公司 A kind of X-ray detection and 3D imaging device
CN116919432B (en) * 2023-09-18 2023-12-05 四川大学华西第二医院 A medical imaging device based on mobile DR

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444597B2 (en) * 1974-03-23 1979-12-26

Also Published As

Publication number Publication date
FR2391698B1 (en) 1983-07-08
DE2822089A1 (en) 1978-12-14
IT7823714A0 (en) 1978-05-23
GB1603593A (en) 1981-11-25
CA1107407A (en) 1981-08-18
FR2391698A1 (en) 1978-12-22
SE7805837L (en) 1978-11-27
ES470148A1 (en) 1979-02-01
BR7803296A (en) 1979-01-23
BE867413A (en) 1978-11-24
IT1095910B (en) 1985-08-17
JPS53147493A (en) 1978-12-22
NL7705788A (en) 1978-11-28

Similar Documents

Publication Publication Date Title
US4150293A (en) Tomographic apparatus for producing transverse layer images
US6370218B1 (en) Methods and systems for determining x-ray beam position in multi-slice computed tomography scanners
US4010370A (en) Computerized tomography apparatus with means to periodically displace radiation source
US7778383B2 (en) Effective dual-energy x-ray attenuation measurement
JP2515973B2 (en) Projection radiographic system and radiation detector
JPS6411296B2 (en)
JPH027421B2 (en)
JPH08285793A (en) X-ray CT system
US4115698A (en) Radiography
EP0365660B2 (en) X-ray tomography apparatus having a position detector
JPS5844377B2 (en) Radiation absorption measurement device for three-dimensional objects
US4193001A (en) Tomographic apparatus for producing transverse layer images
US4138611A (en) Fan beam CT apparatus with post-processing weighting of picture element signals
JPH09285462A (en) Computer for computer type tomography system
JP5060862B2 (en) Tomography equipment
JPH10234724A (en) X-ray computed tomograph
JPS6251622B2 (en)
JPS62284250A (en) Industrial ct scanner
JP2004037267A (en) Computed tomography
JPS6347457B2 (en)
GB1572492A (en) Radiography
JPH08280663A (en) Spirally scanning x-ray ct apparatus
US6792067B2 (en) Method of correcting the extrafocal radiation of an X-ray tube in computed tomography
JP2004117024A (en) X-ray ct apparatus and x-ray ct imaging method
JPH1189825A (en) Radiation irradiating and detecting device and radiation tomographic apparatus