[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6250647B2 - - Google Patents

Info

Publication number
JPS6250647B2
JPS6250647B2 JP14284778A JP14284778A JPS6250647B2 JP S6250647 B2 JPS6250647 B2 JP S6250647B2 JP 14284778 A JP14284778 A JP 14284778A JP 14284778 A JP14284778 A JP 14284778A JP S6250647 B2 JPS6250647 B2 JP S6250647B2
Authority
JP
Japan
Prior art keywords
intake
exhaust
combustion chamber
dome
side dome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14284778A
Other languages
Japanese (ja)
Other versions
JPS5569720A (en
Inventor
Takeo Aoyama
Yoji Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP14284778A priority Critical patent/JPS5569720A/en
Publication of JPS5569720A publication Critical patent/JPS5569720A/en
Publication of JPS6250647B2 publication Critical patent/JPS6250647B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は2球形燃焼室を備えた内燃機関のシ
リンダ・ヘツドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cylinder head for an internal combustion engine with two spherical combustion chambers.

〔従来の技術〕[Conventional technology]

4サイクル往復機関においては、その出力を向
上させるために、燃焼室における吸・排気の流れ
を改良することが考えられる。例えば半球形燃焼
室にすると、吸・排気弁の弁径を大きくできて
吸・排気抵抗を減少できるばかりでなく、吸・排
気孔と燃焼室内面との連ながりが滑らかで吸・排
気の流れが良好になり、出力性能の向上が期待で
きる。しかしこのような半球形燃焼室の場合に
は、シリンダ・ヘツドの半球とシリンダとが滑ら
かに連続するように形成されるため、ピストン・
ヘツドの周縁とシリンダ・ヘツドとで挾まれる領
域(スキツシユ・エリア)が無く、圧縮乱流(ス
キツシユ)が発生しない。このため火災伝播速度
が低くなり、機関の安定運転のための要求オクタ
ン価が高くなるという不都合がある。
In a four-stroke reciprocating engine, in order to improve its output, it is conceivable to improve the flow of intake and exhaust air in the combustion chamber. For example, by creating a hemispherical combustion chamber, not only can the diameters of the intake and exhaust valves be increased and intake and exhaust resistance can be reduced, but also the connection between the intake and exhaust holes and the inside of the combustion chamber is smooth, allowing for smooth intake and exhaust flow. The flow will be better and output performance can be expected to improve. However, in the case of such a hemispherical combustion chamber, the hemisphere of the cylinder head and the cylinder are formed in a smooth continuity, so the piston
There is no area (squeeze area) sandwiched between the peripheral edge of the head and the cylinder head, and compression turbulence (squeeze) does not occur. This results in a disadvantage that the fire propagation speed becomes low and the required octane number for stable operation of the engine becomes high.

そこで、例えば特開昭51−64111号、実開昭53
−58202号公報に示すような燃焼室を2個のドー
ム(球形)で形成した2球形燃焼室が考えられ
た。2球形にした場合には各ドームが燃焼室合面
に交つてできる開口形状が略ダルマ型となるた
め、この開口の周囲とシリンダとの間に段部が形
成され、この段部とピストン・ヘツドとの間に吸
気が挾まれて圧縮乱流が発生する。このため火災
伝播速度が上がり、燃焼が促進され安定した運転
が可能となると共に、要求オクタン価も下がる。
また、2球形燃焼室にすることによつて燃焼室容
積を小さくできるから、圧縮比の増大およびこれ
に伴なう出力増大を図ることができる。
Therefore, for example, Japanese Patent Application Publication No. 51-64111, Utility Model Application No. 53
A two-spherical combustion chamber in which the combustion chamber was formed of two domes (spherical shapes) as shown in Publication No. 58202 was considered. In the case of two spheres, the opening formed when each dome intersects the combustion chamber mating surface becomes approximately Daruma-shaped, so a step is formed between the circumference of this opening and the cylinder, and this step and the piston. The intake air is caught between the head and the head, creating compression turbulence. This increases the fire propagation speed, promotes combustion, enables stable operation, and lowers the required octane number.
Further, by forming the two-spherical combustion chamber, the volume of the combustion chamber can be reduced, so that it is possible to increase the compression ratio and increase the output accordingly.

なお、この発明においては、各ドームがシリン
ダ・ヘツドとシリンダ・ブロツクとの接合面、す
なわち燃焼室合面に交つて形成される略ダルマ型
の開口を、シリンダのボアサイズに滑らかに合致
させるために前記ダルマ型開口の外周に円錐面取
りや球面取りを施した燃焼室も2球形燃焼室と考
えることにする。
In addition, in this invention, in order to smoothly match the bore size of the cylinder, the approximately daruma-shaped opening formed in each dome intersects the joint surface of the cylinder head and cylinder block, that is, the joint surface of the combustion chamber. A combustion chamber in which the outer periphery of the Daruma-shaped opening is chamfered conically or spherically is also considered to be a bispherical combustion chamber.

このような前記2球形燃焼室においては、従来
のものでは排気弁が設けられる排気側ドームと吸
気弁が設けられる吸気側ドームとが略同じか、あ
るいは排気側ドームが吸気側ドームよりも小さく
なるように形成されている。これは一般に吸・排
気弁はガス流速の違い等の理由から吸気弁の弁傘
径よりも大きくなるように作られているが、これ
らの弁傘径に合わせて各ドームの径を決めていた
ために、弁傘径が大きい吸気弁側のドーム半径が
大きく形成されているのである。
In such a two-spherical combustion chamber, in the conventional one, the exhaust side dome where the exhaust valve is provided and the intake side dome where the intake valve is installed are approximately the same, or the exhaust side dome is smaller than the intake side dome. It is formed like this. This is because intake and exhaust valves are generally made to be larger than the valve head diameter of the intake valve due to differences in gas flow velocity, etc., but the diameter of each dome was determined according to the valve head diameter of the intake valve. In addition, the dome radius on the intake valve side, where the valve umbrella diameter is large, is formed to be large.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このように排気側ドームと吸気側ドー
ムが略同じかあるいは吸気側ドームを大きくした
2球形燃焼室では、吸気孔および排気孔の流量係
数が悪くなるという不都合があつた。第1図と第
2図はそれぞれ吸・排気弁リフト量に対する吸・
排気孔流量係数の変化特性の一例を示すグラフで
ある。このグラフにおいて流量係数は、吸・排気
弁の上・下流間の圧力差を一定に保つた状態で、
吸・排気孔を通過する定常流の流量に基づいて算
出したものであり、この流量係数の値が大きいほ
ど単位バルブ面積当たりのガス流量は増加する。
これらの図において符号a,bは従来の2球形燃
焼室における特性を示している。特に第2図に示
すように排気側ドームが相対的に小さい従来のも
のでは排気弁リフト量の増加に対し、排気孔流量
係数の増加率が低下している。
However, such a two-spherical combustion chamber in which the exhaust side dome and the intake side dome are approximately the same or the intake side dome is larger has the disadvantage that the flow coefficients of the intake hole and the exhaust hole are poor. Figures 1 and 2 show the intake and exhaust valve lift amounts, respectively.
It is a graph which shows an example of the change characteristic of an exhaust hole flow coefficient. In this graph, the flow coefficient is determined by keeping the pressure difference between the upstream and downstream sides of the intake and exhaust valves constant.
It is calculated based on the flow rate of steady flow passing through the intake and exhaust holes, and the larger the value of this flow rate coefficient, the greater the gas flow rate per unit valve area.
In these figures, symbols a and b indicate characteristics in a conventional two-spherical combustion chamber. In particular, as shown in FIG. 2, in the conventional type with a relatively small exhaust side dome, the rate of increase in the exhaust hole flow coefficient decreases as the exhaust valve lift increases.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は以上のような不都合に鑑みなされた
ものであり、吸気側ドームを排気側ドームより小
さく形成することにより、燃焼室壁面に両ドーム
によつて形成される交線を燃焼室の開口縁に近く
なるにしたがつて排気孔から遠ざかる方向に彎曲
させ、吸気側ドームの開口縁とシリンダ内周面と
の間に段部を形成したものである。
This invention was made in view of the above-mentioned disadvantages, and by forming the intake side dome smaller than the exhaust side dome, the intersection line formed by both domes on the wall surface of the combustion chamber is aligned with the opening edge of the combustion chamber. The dome is curved in a direction that moves away from the exhaust hole as it approaches the exhaust hole, and a stepped portion is formed between the opening edge of the intake side dome and the inner circumferential surface of the cylinder.

〔作用〕[Effect]

吸入行程では吸気孔の下流となる燃焼室壁面の
吸気孔から近い部位に両ドームによつて形成され
る交線(稜線)および吸気側ドームの開口縁とシ
リンダ内周面との間に形成される段部によつて人
為的に境界層のはがれによる剥離を起こさせ、ま
た排気行程では排気孔の上流側となる排気側ドー
ムにおいては滑らかな広い面により円滑な流れを
得る。
During the intake stroke, there is an intersection line (ridge line) formed by both domes on the downstream side of the intake hole in the combustion chamber wall near the intake hole, and an intersection line formed between the opening edge of the intake side dome and the cylinder inner peripheral surface. The stepped portion artificially causes separation due to separation of the boundary layer, and in the exhaust stroke, the smooth wide surface of the exhaust side dome, which is the upstream side of the exhaust hole, provides a smooth flow.

〔実施例〕〔Example〕

第3図はこの発明の一実施例を適用した2頭上
カム軸式ガソリン機関の一部を断面した側面図、
第4図は同じく縦断正面図、第5図A,Bはその
2球形燃焼室形状を示すシリンダ・ヘツドの縦断
側面図と底面図である。第3,4図において符号
1はクランク・ケース、2はシリンダ・ブロツ
ク、3はシリンダ・ヘツドであり、シリンダ・ブ
ロツク2内にはシリンダ・ライナ4が嵌入されシ
リンダ・ヘツド3によつて固定されている。シリ
ンダ・ブロツク2とシリンダ・ヘツド3の接合面
すなわち燃焼室合面5において、シリンダ・ライ
ナ4は押圧されている。6はこのシリンダ・ライ
ナ4内を摺動するピストン、7は前記クランク・
ケース1内に保持されたクランク軸、8はピスト
ン6とクランク軸7とを連結するコネクテイン
グ・ロツドである。シリンダ・ヘツド3にはシリ
ンダ・ライナ4に対応する凹部が設けられ、ここ
に2球形燃焼室9が形成されている。この燃焼室
9には吸気弁10の傘部10aと、この傘部10
aの径より小さな排気弁11の傘部11aが臨
み、それぞれ吸気通路12、排気通路13と燃焼
室9との間を仕切つている。この吸気弁10およ
び排気弁11は、それぞれカム軸14,15、タ
ペツト16等を含む公知の動弁機構によつてクラ
ンク軸7の回転に同期するように動き、それぞれ
吸気孔17および排気孔18を開閉する。第3図
において19は前記吸気通路12の上流側に接続
された気化器、20は前記排気通路13の下流側
に接続された排気管である。また第4図において
21は点火栓である。
FIG. 3 is a partially sectional side view of a twin overhead camshaft gasoline engine to which an embodiment of the present invention is applied;
FIG. 4 is a vertical front view, and FIGS. 5A and 5B are a vertical side view and a bottom view of the cylinder head showing the two-spherical combustion chamber shape. In Figs. 3 and 4, reference numeral 1 is a crank case, 2 is a cylinder block, and 3 is a cylinder head. A cylinder liner 4 is fitted into the cylinder block 2 and fixed by the cylinder head 3. ing. The cylinder liner 4 is pressed at the joint surface 5 of the cylinder block 2 and cylinder head 3, that is, the combustion chamber joint surface 5. 6 is a piston that slides inside this cylinder liner 4, and 7 is the above-mentioned crank.
A crankshaft 8 held within the case 1 is a connecting rod that connects the piston 6 and the crankshaft 7. The cylinder head 3 is provided with a recess corresponding to the cylinder liner 4, in which a two-spherical combustion chamber 9 is formed. This combustion chamber 9 includes an umbrella portion 10a of an intake valve 10, and an umbrella portion 10a of an intake valve 10.
The umbrella portion 11a of the exhaust valve 11, which has a diameter smaller than that of a, faces and partitions the combustion chamber 9 from the intake passage 12, the exhaust passage 13, and the combustion chamber 9, respectively. The intake valve 10 and the exhaust valve 11 move in synchronization with the rotation of the crankshaft 7 by a known valve mechanism including camshafts 14, 15, a tappet 16, etc., and are connected to an intake hole 17 and an exhaust hole 18, respectively. Open and close. In FIG. 3, 19 is a carburetor connected to the upstream side of the intake passage 12, and 20 is an exhaust pipe connected to the downstream side of the exhaust passage 13. Further, in FIG. 4, 21 is a spark plug.

次に、2球形燃焼室9の形状を第5図に基づい
て説明する。同図Aはシリンダ・ヘツド3の縦断
側面図、同図Bはその底面図であり、吸気弁10
は吸気側ドーム22に設けられ、また排気弁11
は排気側ドーム23に設けられている。排気側ド
ーム23の半径R1は吸気側ドーム22の半径R2
よりも大きく、また各ドーム22,23は互いに
交わり、その交線24は前記吸気弁10と排気弁
11の間を通る。そしてこれら各ドーム22,2
3が前記燃焼室合面5に交つてできる第5図Bに
示すような略ダルマ型の開口25において、前記
排気側ドーム23の開口半径r1は吸気側ドーム2
2の開口半径r2よりも大きい。したがつて、この
ダルマ型の開口25においては、排気側ドーム2
3の占める面積が、吸気側ドーム22の占める面
積よりも大きく、また燃焼室9の上壁面に両ドー
ム22,23によつて形成される交線(稜線)2
4は、開口25に近ずくにしたがつて排気孔18
から遠ざかる方向に彎曲しいる。第5図において
26は前記シリンダ・ライナ4の内周面を表わし
ている。同図に明らかなように開口25の外周と
シリンダ・ライナ4との間には段部27が形成さ
れている。すなわち、吸気側ドーム22において
は、吸気孔17の開口縁から前記交線24および
吸気側ドームの開口線25aまでの距離を可及的
短かく形成している。したがつて、特に吸気側ド
ーム22は必ずしも半球状でなければならない理
由はなく、前記条件を満たせばこれに近似する形
状であればよい。なお、この段部27は第4図で
は球面取りがなされガスの流れを促進するように
形成されているが、第5図Aにおいてはこの球面
取りは表わされていない。また第5図Bにおいて
28は前記点火栓21の取付孔である。
Next, the shape of the two-spherical combustion chamber 9 will be explained based on FIG. 5. Figure A is a longitudinal sectional side view of the cylinder head 3, Figure B is its bottom view, and the intake valve 10 is
is provided on the intake side dome 22, and the exhaust valve 11 is provided on the intake side dome 22.
is provided on the exhaust side dome 23. The radius R 1 of the exhaust side dome 23 is the radius R 2 of the intake side dome 22
The domes 22 and 23 intersect with each other, and the line of intersection 24 passes between the intake valve 10 and the exhaust valve 11. And each of these domes 22,2
In the substantially daruma-shaped opening 25 as shown in FIG .
larger than the aperture radius r 2 of 2. Therefore, in this Daruma-shaped opening 25, the exhaust side dome 2
3 is larger than the area occupied by the intake side dome 22, and the intersection line (ridge line) 2 formed by both domes 22 and 23 on the upper wall surface of the combustion chamber 9.
4 is an exhaust hole 18 as it approaches the opening 25.
It curves in the direction away from. In FIG. 5, 26 represents the inner circumferential surface of the cylinder liner 4. As shown in FIG. As is clear from the figure, a step 27 is formed between the outer periphery of the opening 25 and the cylinder liner 4. That is, in the intake side dome 22, the distance from the opening edge of the intake hole 17 to the intersection line 24 and the opening line 25a of the intake side dome is made as short as possible. Therefore, there is no particular reason why the intake side dome 22 necessarily has to be hemispherical, and it may have a shape similar to this as long as the above conditions are met. Note that although this stepped portion 27 is formed with a spherical chamfer in FIG. 4 to promote gas flow, this spherical chamfer is not shown in FIG. 5A. Further, in FIG. 5B, 28 is a mounting hole for the ignition plug 21.

以上のように構成された機関において、ピスト
ン6が下降する吸入行程では、吸気弁10が前記
動弁機構によつて開かれ、吸気が気化器19、吸
気通路12、吸気孔17を通つて燃焼室9に吸入
される。この時吸気は吸気弁10の傘部10aの
裏面(吸気通路12側の面)に沿うようにして傘
部10aと吸気孔17の間を通り、さらに吸気側
ドーム22に沿つて燃焼室9内に流入する。この
時の流量係数特性は第1図Aで示す。すなわち、
吸気側ドーム22半径R2を従来の燃焼室より小
さくしたことにより、交線24および吸気側ドー
ム22の開口縁25aでそれより下流側の壁面を
流れの方向に対し後退させることによつて人為的
に境界層のはなれを生じさせることにより、実質
的な流路空間が狭まるのを防止して流量係数特性
を向上させている。
In the engine configured as described above, during the intake stroke in which the piston 6 descends, the intake valve 10 is opened by the valve operating mechanism, and the intake air passes through the carburetor 19, the intake passage 12, and the intake hole 17, and is combusted. is inhaled into chamber 9. At this time, the intake air passes between the umbrella part 10a and the intake hole 17 along the back surface (the surface on the intake passage 12 side) of the umbrella part 10a of the intake valve 10, and then flows into the combustion chamber 9 along the intake side dome 22. flows into. The flow coefficient characteristics at this time are shown in FIG. 1A. That is,
By making the radius R 2 of the intake side dome 22 smaller than that of the conventional combustion chamber, the wall surface on the downstream side of the intersection line 24 and the opening edge 25a of the intake side dome 22 is pushed back with respect to the flow direction. By causing the boundary layer to separate, the substantial flow path space is prevented from narrowing and the flow coefficient characteristics are improved.

圧縮行程および爆発行程を経て、排気行程に入
ると排気弁11が開き、ピストン6の上昇に伴な
い既燃焼ガスが排気通路13および排気管20へ
導かれる。この時、ガスは燃焼室9の排気側ドー
ム23に導かれるようにして排気弁11の傘部1
1aと排気孔18の間に集まり、排気弁11の裏
面(排気通路13側の面)に沿うように流れる。
前記ダルマ型の開口25に占める排気側ドーム2
3の滑らかな曲面をもち面積は広くなるように構
成されているので、シリンダ・ヘツド3に接する
ガスのうち、排気側ドーム23に接するガスが多
くなる。したがつて、従来の燃焼室形状の場合に
比べ、より多くのガスが排気側ドーム23に沿つ
て導かれるようになるからガスは滑らかに排気さ
れる。第2図のBはこの実施例の流量係数特性を
表わし、この結果によれば、従来の燃焼室形状の
ものの特性bに比べ著しく性能が向上しているこ
とが解る。
After passing through a compression stroke and an explosion stroke, the exhaust valve 11 opens when the engine enters an exhaust stroke, and as the piston 6 moves upward, burned gas is guided to the exhaust passage 13 and the exhaust pipe 20. At this time, the gas is guided to the exhaust side dome 23 of the combustion chamber 9 and the umbrella portion 1 of the exhaust valve 11
1a and the exhaust hole 18, and flows along the back surface of the exhaust valve 11 (the surface on the exhaust passage 13 side).
Exhaust side dome 2 occupying the Daruma-shaped opening 25
Since the cylinder head 3 is configured to have a smooth curved surface and a large area, more of the gas that comes into contact with the cylinder head 3 comes into contact with the exhaust side dome 23. Therefore, more gas is guided along the exhaust side dome 23 than in the case of a conventional combustion chamber shape, so that the gas can be smoothly exhausted. B in FIG. 2 represents the flow coefficient characteristic of this embodiment, and it is clear from the results that the performance is significantly improved compared to characteristic b of the conventional combustion chamber shape.

なお、前記圧縮行程においてはその行程終期に
おいて、前記ダルマ状の開口25外周の段部27
と、ピストン6のピストン・ヘツドとの間に吸気
ガスが挾まれるので、このガスは燃焼室9の中央
方向へ押し出され、ガスの乱流が激しくなる(圧
縮乱流)。このため、火災伝播速度が上昇し、ノ
ツキング等が発生しにくくなつて、運転が安定す
る。
In addition, in the compression stroke, at the end of the stroke, the stepped portion 27 on the outer periphery of the Daruma-shaped opening 25
Since the intake gas is trapped between the combustion chamber 9 and the piston head of the piston 6, this gas is pushed toward the center of the combustion chamber 9, and the gas turbulence becomes intense (compression turbulence). As a result, the fire propagation speed increases, knocking etc. are less likely to occur, and operation becomes stable.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、吸気側
ドームを排気側ドームより小さく形成することに
より、燃焼室壁面に両ドームによつて形成される
交線を開口縁に近くなるにしたがつて排気孔から
遠ざかる方向に彎曲させ、かつ吸気側ドームの開
口縁とシリンダ内周面との間に段部を形成したも
のである。したがつて、吸入行程では吸気弁から
近い部位に両ドームによつて形成される交線およ
び吸気側ドームの開口縁とシリンダ内周面との間
に形成される段部によつて境界層のはがれによる
剥離が起きるから、従来の吸気側ドームのように
境界層のはがれにより流路を狭めるようなことが
なく、流量係数の向上がはかれる。また、排気行
程では略ダルマ型の開口に占める排気側ドームの
開口面積が相対的に広くなるから、既燃焼ガスの
流れが円滑になり流量係数の向上がはかれるの
で、排気が促進され燃焼室内に残る残留ガス量が
減少する。このため前記吸気弁側の流量係数の向
上が相俟つて容積効率(吸入効率)が向上し機関
出力の増大に大きく寄与する。
As explained above, according to the present invention, by forming the intake side dome smaller than the exhaust side dome, the line of intersection formed by both domes on the wall surface of the combustion chamber is adjusted closer to the opening edge. It is curved in a direction away from the hole, and a stepped portion is formed between the opening edge of the intake side dome and the inner peripheral surface of the cylinder. Therefore, during the intake stroke, the boundary layer is created near the intake valve by the intersection line formed by both domes and the step formed between the opening edge of the intake side dome and the inner peripheral surface of the cylinder. Since separation occurs due to peeling, the flow path is not narrowed due to boundary layer peeling unlike in conventional intake side domes, and the flow coefficient can be improved. In addition, in the exhaust stroke, the opening area of the exhaust side dome in the approximately Daruma-shaped opening becomes relatively large, so the flow of burned gas becomes smoother and the flow coefficient is improved, so exhaust is promoted and inside the combustion chamber. The amount of residual gas remaining is reduced. Therefore, the improvement in the flow coefficient on the intake valve side improves the volumetric efficiency (intake efficiency), which greatly contributes to an increase in engine output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図はそれぞれ吸気孔と排気孔の流
量係数特性を示すグラフ、第3図はこの発明の一
実施例を示す内燃機関の一部を断面した側面図、
第4図は同じく縦断正面図、第5図A,Bはこの
発明の要部となる2球形燃焼室形状を示すシリン
ダヘツドの縦断側面図と底面図である。 3……シリンダ・ヘツド、5……燃焼室合面、
9……2球形燃焼室、10……吸気弁、11……
排気弁、22……吸気側ドーム、23……排気側
ドーム、25……ダルマ型の開口、R1……排気
側ドーム半径、R2……吸気側ドーム半径、r1……
排気側ドームの開口半径、r2……吸気側ドームの
開口半径。
1 and 2 are graphs showing flow coefficient characteristics of intake holes and exhaust holes, respectively, and FIG. 3 is a partially sectional side view of an internal combustion engine showing an embodiment of the present invention.
FIG. 4 is a vertical front view, and FIGS. 5A and 5B are a vertical side view and a bottom view of the cylinder head showing the two-spherical combustion chamber shape which is the essential part of the present invention. 3... Cylinder head, 5... Combustion chamber mating surface,
9...2 spherical combustion chambers, 10...intake valve, 11...
Exhaust valve, 22... Intake side dome, 23... Exhaust side dome, 25... Daruma-shaped opening, R 1 ... Exhaust side dome radius, R 2 ... Intake side dome radius, r 1 ...
Opening radius of the exhaust side dome, r 2 ... Opening radius of the intake side dome.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気弁10が設けられた吸気側ドーム22と
排気弁11が設けられた排気側ドーム23とによ
つて形成される2球形燃焼室9を備えた内燃機関
において、前記吸気側ドーム22を前記排気側ド
ーム23より小さく形成することにより、燃焼室
壁面に両ドーム22,23によつて形成される交
線24を燃焼室9の開口縁25に近くなるにした
がつて排気孔18から遠ざかる方向に彎曲させ、
吸気側ドーム22の開口縁25aとシリンダ内周
面26との間に段部27を形成したことを特徴と
する内燃機関のシリンダ・ヘツド。
1. In an internal combustion engine equipped with two spherical combustion chambers 9 formed by an intake side dome 22 provided with an intake valve 10 and an exhaust side dome 23 provided with an exhaust valve 11, the intake side dome 22 is By forming the dome smaller than the exhaust side dome 23, the intersection line 24 formed by both domes 22 and 23 on the wall surface of the combustion chamber is directed in a direction that moves away from the exhaust hole 18 as it gets closer to the opening edge 25 of the combustion chamber 9. curved into
A cylinder head for an internal combustion engine, characterized in that a stepped portion 27 is formed between an opening edge 25a of an intake side dome 22 and a cylinder inner peripheral surface 26.
JP14284778A 1978-11-21 1978-11-21 Cylinder head for internal combustion engine Granted JPS5569720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14284778A JPS5569720A (en) 1978-11-21 1978-11-21 Cylinder head for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14284778A JPS5569720A (en) 1978-11-21 1978-11-21 Cylinder head for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5569720A JPS5569720A (en) 1980-05-26
JPS6250647B2 true JPS6250647B2 (en) 1987-10-26

Family

ID=15324989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14284778A Granted JPS5569720A (en) 1978-11-21 1978-11-21 Cylinder head for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5569720A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815592B2 (en) * 1988-11-29 1998-10-27 マツダ株式会社 Engine combustion chamber

Also Published As

Publication number Publication date
JPS5569720A (en) 1980-05-26

Similar Documents

Publication Publication Date Title
US4321893A (en) Two-stroke engine having variable exhaust port timing
US4606308A (en) Engine cylinder intake port
EP0537745B1 (en) Intake system for engine
JPS624533B2 (en)
JPS6315447B2 (en)
JPH02204625A (en) Two-cycle engine
US4951642A (en) Combustion chamber of internal combustion engine
JPS6038535B2 (en) internal combustion engine
JPS6234927B2 (en)
JP2613811B2 (en) Internal combustion engine
US5678404A (en) Internal combustion engine variable tuned exhaust system
US3334618A (en) Four stroke high r.p.m. internal combustion engine for racing purposes
JPS5838610B2 (en) internal combustion engine
JPS6250647B2 (en)
JPH08506404A (en) Combustion chamber of internal combustion engine having a plurality of valves
JPS5925031A (en) Two cycle internal combustion engine
JP2820946B2 (en) Engine combustion chamber structure
JP3162145B2 (en) Engine combustion chamber structure
JPS6137790Y2 (en)
JPS63253114A (en) Exhaust system for two-cycle engine
JP2909588B2 (en) Combustion chamber of multi-valve engine
JPH0112925B2 (en)
JPH0351897B2 (en)
JPS606010A (en) Suction/exhaust valve for reciprocal engine
JPH05263647A (en) Combustion chamber of two-cycle internal combustion engine