[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6249975B2 - - Google Patents

Info

Publication number
JPS6249975B2
JPS6249975B2 JP54130522A JP13052279A JPS6249975B2 JP S6249975 B2 JPS6249975 B2 JP S6249975B2 JP 54130522 A JP54130522 A JP 54130522A JP 13052279 A JP13052279 A JP 13052279A JP S6249975 B2 JPS6249975 B2 JP S6249975B2
Authority
JP
Japan
Prior art keywords
tio
semiconductor
crystal grain
semiconductor porcelain
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130522A
Other languages
Japanese (ja)
Other versions
JPS5654024A (en
Inventor
Harufumi Bandai
Kunitaro Nishimura
Masami Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP13052279A priority Critical patent/JPS5654024A/en
Publication of JPS5654024A publication Critical patent/JPS5654024A/en
Publication of JPS6249975B2 publication Critical patent/JPS6249975B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は粒界絶縁形半導体磁器コンデンサ用
の組成物に関する。 従来、小型で大容量のコンデンサとしては、堰
層容量形半導体磁器コンデンサ、表面絶縁層形半
導体磁器コンデンサ、あるいは粒界絶縁形半導体
磁器コンデンサがある。これら各種の半導体磁器
コンデンサの標準的な電気特性を第1表に示し
た。
This invention relates to a composition for a grain-boundary insulated semiconductor ceramic capacitor. Conventionally, small-sized, large-capacity capacitors include barrier layer capacitance type semiconductor ceramic capacitors, surface insulation layer type semiconductor ceramic capacitors, and grain boundary insulation type semiconductor ceramic capacitors. Standard electrical characteristics of these various semiconductor ceramic capacitors are shown in Table 1.

【表】 第1表中の電気特性は次に示す条件で測定した
値である。 静電容量(Cs)、誘電体損失(tanδ): 温度20℃、周波数1KHz、電圧0.2Vrms以
下で測定した値。 絶縁抵抗(IR):温度20℃において、試料の
厚み単位mm当り、直流電圧10Vを印加した
30秒後の値である。 静電容量温度特性(△TC): +20℃を基準として、−25℃〜+85℃の温
度範囲における最大容量変化率を示した
値。 静電容量変化率(DCB): 温度20℃において、直流電圧0.2vを印加し
たときの静電容量に対して、直流電圧10v
を印加したときの静電容量の変化を百分率
で表わした値。 歪率:温度20℃、周波数1KHz、印加電圧1vに
おける全高調波歪率を示した値。 周波数特性(E,S,R,):1MHz付近の値。 第1表から明らかなように、堰層形半導体磁器
コンデンサは静電容量(Cs)が400〜500nF/cm2
(見掛誘電率200000前後)であるが、tanδが大き
く、IRは小さい値しか示さなかつた。 また、表面絶縁層形半導体磁器コンデンサは、
tanδ,△TC,DCB,歪率などの特性に良好なも
のが得られなかつた。さらに粒界絶縁形半導体磁
器コンデンサは表面絶縁層形半導体磁器コンデン
サにくらべてほとんどすぐれた電気特性を示す
が、静電容量がせいぜい300nF/cm2であつた。 したがつて、この発明は上記した各種のコンデ
ンサのうち、粒界絶縁形半導体磁器コンデンサ用
の組成物に関し、電気特性に良好なものが得られ
るとともに、特に静電容量が450〜550nF/cm2
非常に大きい値を示すコンデンサが得られる組成
物を提供することを目的とする。 粒界絶縁形半導体磁器を構成する組成物は、
(Sr1-xBax)TiO3(x=0.30〜0.50)と、または
(Sr1-xBax)TiO3(x=0.30〜0.50)を主体とし
その他にチタン酸塩、ジルコン酸塩を含んだもの
が主成分となり、半導体化剤としてLa,Yなど
の希土類元素、Nb,Ta,Wなどを添加したもの
である。また必要に応じSiO2,Al2O3のうち少な
くとも1種を含有させたものである。 上記したうち、(Sr1-xBax)TiO3のxは0.30〜
0.50の範囲が好ましい。この範囲に限定したのは
xが0.30未満になると、Csが低下し、△TCが悪
くなり、0.50を超えると、、Csが低下し、tanδが
大きくなり、さらに△TCが悪くなるからであ
る。 また、(Sr1-xBax)TiO3に、その他の、たとえ
ばCaTiO3などのチタン酸塩、BaZrO3などのジル
コン酸塩のうち少なくとも1種を含有させる場
合、含有させる量は10モル%以下が適当である。
これは10モル%を越えると、その含有効果である
焼結性の向上や、電気特性の再現性が期待できな
いからである。 さらに、半導体化剤の含有範囲としては、0.1
〜1.0モル%が好ましい。この範囲を外れると通
常中性または還元性雰囲気中で焼成しても100
10-1Ω・cm程度と十分な値の半導体磁器が得られ
なくなる。 また、SiO2,Al2O3のうち少なくとも1種を含
有させると、焼成温度を低下させることができ、
絶縁破壊も高めることができる。このうちSiO2
の含有範囲としては0.05〜0.5モル%が好まし
い。これはSiO2が0.05モル%末満では焼成温度が
高くなり、0.5モル%を超えると誘電率の低下が
見られる。またAl2O3の含有範囲としては0.02〜
0.2モル%が好ましい。これは0.02モル%未満で
は絶縁破壊が高くならず、0.2モル%を越えると
誘電率の低下が見られる。 半導体磁器の結晶粒界を絶縁体化するには、
Cuと、Bi,Pb,B,Siのうち少なくとも1種か
らなる金属、酸化物などの化合物を結晶粒界に熱
処理により拡散させる方法が採られる。このよう
な組み合わせ以外ではIRの低下が見られる。な
お、このような組み合わせが満足されていれば、
そのほかに他の金属または化合物を用いてもよ
い。絶縁体化処理するには、蒸着法などの技術に
より半導体磁器表面に付与したのち熱処理する方
法、あるいは金属酸化物のペーストを塗布し、熱
処理する方法などがある。 この半導体磁器組成物は、原料を所定比率に混
合し、一定の形に成形したのち、中性または還元
性雰囲気で焼成されるが、得られた半導体磁器の
結晶粒径、特に最大結晶粒径が100μ以上である
ことが電気特性に好ましい結果を示す。もし100
μ未満であれば、Cs,△TC,DCBが低下するこ
とになる。最大結晶粒径を100μ以上とするに
は、たとえば、(Sr1-xBax)TiO3のxの割合を調
整するとか、半導体化剤の含有量を調整するなど
の組成比の調整、焼成条件などにより制御する。
また、最大結晶粒径の最大値は250μまでが限度
である。これは250μを越えると電気特性が劣化
するとともに、大きな静電容量を得るための磁器
板の薄膜化に障害となるからである。 なお、半導体磁器には特性に影響を与えない程
度に不可避的な不純物が含まれることが許容され
るが、そのほか鉱化剤としてAl2O3,SiO2のほか
に、TiO2,ZnO,Bi2O3,CuOなどを含有させる
と、焼結性、つまり、焼成温度を下げても緻密な
磁器が得られるという効果をもたらし、再現性、
つまり、同じ温度で焼成しても特性のバラツキが
生じないという効果をもたらす。含有させる範囲
は明確に限定できないが、特性改善のため微量含
有させればよい。 以下、この発明を実施例に従つて詳細に説明す
る。 実施例 第2表の組成比の半導体磁器が得られるよう
に、SrCO3,BaCO3,TiO2,CaTiO3,BaZrO3
どの主材料、Y2O3,La2O3,WO3などの半導体化
剤、SiO2,Al2O3,TiO2などの鉱化剤を秤量し、
1100℃で2時間仮焼した。 次いで酢酸ビニル系樹脂を10重量%加えて湿式
粉砕し、30メツシユの篩で整粒したのち、成形圧
力750Kg/cm2で直径10mmφ、肉厚0.5mmの円板に成
形した。 成形円板を空気中1150℃で一旦予備焼成し、さ
らに窒素98容量%、水素2容量%からなる還元性
雰囲気にて1400℃で2〜4時間焼成し、半導体磁
器を得た。 得られた半導体磁器の結晶粒界を絶縁体化する
ため、あらかじめ用意していた金属酸化物のペー
ストを塗布方法により半導体磁器表面に付与し、
空気中1150℃で2時間熱処理を行い、結晶粒界を
絶縁体化した。 金属酸化物のペーストの種類としては次のよう
なものを用い、各試料に付与する金属酸化物のペ
ーストは記号A,B,Cで第2表に示した。 A:CuO 2重量%、Bi2O2 46重量%、H2BO2
重量%、樹脂ワニス 50重量% B:CuO 5重量%、Pb3O4 45重量%、樹脂ワニ
ス 50重量% C:Pb3O4 45重量%、H3BO3 5重量%、樹脂ワ
ニス 50重量% なお、樹脂ワニスは、エチルセルロースをα―
テレピネオールで希釈したものである。 さらに、粒界絶縁形半導体磁器の両面に銀ペー
ストを印刷、塗布し、800℃で30分間焼付けてコ
ンデンサを作成した。 得られたコンデンサについて電気特性を測定
し、その結果を第3表に示した。なお、電気特性
の測定条件は第1表に示した特性の測定条件と同
じである。第2表、第3表中※印を付したものは
この発明範囲外のものであり、それ以外は発明範
囲内のものである。
[Table] The electrical properties in Table 1 are values measured under the following conditions. Capacitance (Cs), dielectric loss (tanδ): Values measured at a temperature of 20°C, a frequency of 1KHz, and a voltage of 0.2Vrms or less. Insulation resistance (IR): At a temperature of 20°C, a DC voltage of 10V was applied per mm of sample thickness.
This is the value after 30 seconds. Capacitance temperature characteristic (△TC): Value indicating the maximum capacitance change rate in the temperature range of -25°C to +85°C, with +20°C as the standard. Capacitance change rate (DCB): At a temperature of 20°C, the capacitance when applying a DC voltage of 0.2v is compared to the capacitance when a DC voltage of 10v is applied.
The value expressed as a percentage of the change in capacitance when . Distortion rate: A value showing the total harmonic distortion rate at a temperature of 20°C, a frequency of 1KHz, and an applied voltage of 1V. Frequency characteristics (E, S, R,): Values around 1MHz. As is clear from Table 1, the weir layer type semiconductor ceramic capacitor has a capacitance (Cs) of 400 to 500 nF/cm 2
(apparent dielectric constant around 200,000), but tan δ was large and IR only showed a small value. In addition, surface insulating layer type semiconductor ceramic capacitors are
Good characteristics such as tan δ, △TC, DCB, and distortion rate could not be obtained. Further, although grain boundary insulated semiconductor ceramic capacitors exhibit almost superior electrical characteristics to surface insulated layer type semiconductor ceramic capacitors, their capacitance is at most 300 nF/cm 2 . Therefore, the present invention relates to a composition for a grain-boundary insulated semiconductor ceramic capacitor among the various capacitors described above, which has good electrical properties and particularly has a capacitance of 450 to 550 nF/cm 2 . The object of the present invention is to provide a composition from which a capacitor exhibiting a very large value of . The composition constituting the grain boundary insulated semiconductor porcelain is
(Sr 1-x Ba x ) TiO 3 (x = 0.30 to 0.50) or (Sr 1-x Ba x ) TiO 3 (x = 0.30 to 0.50), with titanate and zirconate as the main component. This is the main component, and rare earth elements such as La and Y, Nb, Ta, and W are added as semiconductor agents. In addition, at least one of SiO 2 and Al 2 O 3 may be contained if necessary. Among the above, x of (Sr 1-x Ba x )TiO 3 is 0.30 ~
A range of 0.50 is preferred. The reason for limiting it to this range is that when x becomes less than 0.30, Cs decreases and △TC worsens, and when x exceeds 0.50, Cs decreases, tanδ increases, and ΔTC worsens. . In addition, when (Sr 1-x B x )TiO 3 contains at least one of other titanates such as CaTiO 3 and zirconates such as BaZrO 3 , the amount to be contained is 10 mol%. The following are appropriate.
This is because if the content exceeds 10 mol%, the effects of its inclusion, such as improvement in sinterability and reproducibility of electrical properties, cannot be expected. Furthermore, the content range of the semiconducting agent is 0.1
~1.0 mol% is preferred. Outside this range, even if fired in a neutral or reducing atmosphere, the
Semiconductor porcelain with a sufficient value of about 10 -1 Ω·cm cannot be obtained. Furthermore, when at least one of SiO 2 and Al 2 O 3 is contained, the firing temperature can be lowered,
Dielectric breakdown can also be increased. Of these, SiO 2
The content range is preferably 0.05 to 0.5 mol%. This is because when SiO 2 is less than 0.05 mol %, the firing temperature becomes high, and when it exceeds 0.5 mol %, the dielectric constant decreases. Also, the content range of Al 2 O 3 is 0.02~
0.2 mol% is preferred. If it is less than 0.02 mol%, dielectric breakdown will not increase, and if it exceeds 0.2 mol%, a decrease in dielectric constant will be observed. To make the grain boundaries of semiconductor porcelain into insulators,
A method is adopted in which a compound such as a metal or oxide consisting of Cu and at least one of Bi, Pb, B, and Si is diffused into the grain boundaries by heat treatment. A decrease in IR is seen for combinations other than these. Furthermore, if such a combination is satisfied,
Other metals or compounds may also be used. The insulator treatment can be performed by applying it to the semiconductor ceramic surface using a technique such as vapor deposition and then heat-treating it, or by applying a metal oxide paste and heat-treating it. This semiconductor porcelain composition is produced by mixing raw materials in a predetermined ratio, molding it into a certain shape, and then firing it in a neutral or reducing atmosphere. A value of 100μ or more shows favorable results in terms of electrical properties. If 100
If it is less than μ, Cs, ΔTC, and DCB will decrease. In order to make the maximum crystal grain size 100μ or more, for example, adjusting the proportion of x in (Sr 1-x Ba x )TiO 3 , adjusting the composition ratio such as adjusting the content of the semiconducting agent, and sintering. Control based on conditions, etc.
Further, the maximum value of the maximum crystal grain size is limited to 250μ. This is because if it exceeds 250μ, the electrical characteristics will deteriorate and it will be an obstacle to making the ceramic plate thinner to obtain a large capacitance. Semiconductor porcelain is allowed to contain unavoidable impurities to the extent that they do not affect its properties, but other mineralizing agents such as Al 2 O 3 and SiO 2 as well as TiO 2 , ZnO, and Bi Inclusion of 2 O 3 , CuO, etc. brings about sinterability, that is, the ability to obtain dense porcelain even if the firing temperature is lowered, and improves reproducibility and
In other words, the effect is that even if the materials are fired at the same temperature, there will be no variation in characteristics. Although the range in which it is contained cannot be clearly defined, it may be contained in a small amount in order to improve properties. Hereinafter, this invention will be explained in detail according to examples. Example Main materials such as SrCO 3 , BaCO 3 , TiO 2 , CaTiO 3 , BaZrO 3 , Y 2 O 3 , La 2 O 3 , WO 3 etc. were used to obtain semiconductor porcelain having the composition ratio shown in Table 2. Weigh the semiconducting agent, mineralizing agent such as SiO 2 , Al 2 O 3 , TiO 2 ,
It was calcined at 1100°C for 2 hours. Next, 10% by weight of vinyl acetate resin was added, wet-pulverized, sieved through a 30-mesh sieve, and then molded into a disc with a diameter of 10 mmφ and a wall thickness of 0.5 mm at a molding pressure of 750 kg/cm 2 . The formed disk was once preliminarily fired at 1150°C in air, and then fired at 1400°C for 2 to 4 hours in a reducing atmosphere consisting of 98% by volume of nitrogen and 2% by volume of hydrogen to obtain semiconductor porcelain. In order to make the grain boundaries of the obtained semiconductor porcelain an insulator, a metal oxide paste prepared in advance was applied to the surface of the semiconductor porcelain by a coating method.
Heat treatment was performed in air at 1150°C for 2 hours to transform grain boundaries into insulators. The following types of metal oxide pastes were used, and the metal oxide pastes applied to each sample are shown in Table 2 with symbols A, B, and C. A: CuO 2% by weight, Bi 2 O 2 46% by weight, H 2 BO 2 2
Weight%, resin varnish 50% by weight B: CuO 5% by weight, Pb 3 O 4 45% by weight, resin varnish 50% by weight C: Pb 3 O 4 45% by weight, H 3 BO 3 5% by weight, resin varnish 50% by weight % In addition, the resin varnish uses ethyl cellulose α-
It is diluted with terpineol. Furthermore, a capacitor was created by printing and applying silver paste on both sides of the grain-boundary insulated semiconductor porcelain and baking it at 800°C for 30 minutes. The electrical characteristics of the obtained capacitor were measured and the results are shown in Table 3. The conditions for measuring the electrical properties are the same as those shown in Table 1. Items marked with * in Tables 2 and 3 are outside the scope of this invention, and the others are within the scope of the invention.

【表】【table】

【表】【table】

【表】【table】

【表】 上記した実施例から明らかなようにこの発明に
よれば、Csが450nF/cm2以上で、△TCが±10%
以内であり、しかもtanδ,DCB,歪率,E,
S,R,の各特性とも実用上十分な値を示し、粒
界絶縁形半導体磁器コンデンサ用の組成物として
工業利用上有用なものである。
[Table] As is clear from the above examples, according to the present invention, Cs is 450nF/cm 2 or more and △TC is ±10%.
and tanδ, DCB, distortion factor, E,
Each of the S and R properties exhibits practically sufficient values, and the composition is industrially useful as a composition for grain boundary insulated semiconductor ceramic capacitors.

Claims (1)

【特許請求の範囲】 1 (Sr1-xBax)TiO3(x=0.30〜0.50)、また
は(Sr1-xBax)TiO3(x=0.30〜0.50)を主体と
してその他にチタン酸塩、ジルコン酸塩を含む主
成分に対し、La、Yなどの希土類元素、Nb、
Ta、Wなどのような半導体化剤を含有し、かつ
最大結晶粒径が100〜250μである半導体磁器であ
つて、その半導体磁器の結晶粒界が、Cuと、
Bi、Pb、BおよびSiのうち少なくとも1種によ
り絶縁体化されてなる粒界絶縁形半導体磁器組成
物。 2 (Sr1-xBax)TiO3(x=0.30〜0.50)、また
は(Sr1-xBax)TiO3(x=0.30〜0.50)を主体と
してその他にチタン酸塩、ジルコン酸塩を含む主
成分に対し、La、Yなどの希土類元素、Nb、
Ta、Wなどのような半導体化剤、およびSiO2
Al2O3のうち少なくとも1種を含有し、かつ最大
結晶粒径が100〜250μである半導体磁器であつ
て、その半導体磁器の結晶粒界が、Cuと、Bi、
Pb、BおよびSiのうち少なくとも1種により絶
縁体化されてなる粒界絶縁形半導体磁器組成物。
[Claims] 1 Mainly containing (Sr 1-x Ba x )TiO 3 (x=0.30 to 0.50) or (Sr 1-x Ba x )TiO 3 (x=0.30 to 0.50), and also titanic acid. In addition to the main components including salts and zirconates, rare earth elements such as La and Y, Nb,
Semiconductor porcelain containing a semiconducting agent such as Ta, W, etc. and having a maximum crystal grain size of 100 to 250μ, in which the crystal grain boundaries of the semiconductor porcelain are Cu and
A grain boundary insulated semiconductor ceramic composition made of at least one of Bi, Pb, B and Si. 2 Mainly composed of (Sr 1-x Ba x )TiO 3 (x=0.30-0.50) or (Sr 1-x Ba x )TiO 3 (x=0.30-0.50), with other titanates and zirconates. The main components include rare earth elements such as La and Y, Nb,
Semiconducting agents such as Ta, W, etc., and SiO 2 ,
Semiconductor porcelain containing at least one kind of Al 2 O 3 and having a maximum crystal grain size of 100 to 250μ, in which the crystal grain boundaries of the semiconductor porcelain are composed of Cu, Bi,
A grain boundary insulated semiconductor ceramic composition made into an insulator by at least one of Pb, B and Si.
JP13052279A 1979-10-09 1979-10-09 Grain boundary insulating type semiconductor porcelain composition Granted JPS5654024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13052279A JPS5654024A (en) 1979-10-09 1979-10-09 Grain boundary insulating type semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13052279A JPS5654024A (en) 1979-10-09 1979-10-09 Grain boundary insulating type semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS5654024A JPS5654024A (en) 1981-05-13
JPS6249975B2 true JPS6249975B2 (en) 1987-10-22

Family

ID=15036303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13052279A Granted JPS5654024A (en) 1979-10-09 1979-10-09 Grain boundary insulating type semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPS5654024A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889837A (en) * 1986-09-02 1989-12-26 Tdk Corporation Semiconductive ceramic composition
US9174876B2 (en) * 2010-05-12 2015-11-03 General Electric Company Dielectric materials for power transfer system
EP2551988A3 (en) 2011-07-28 2013-03-27 General Electric Company Dielectric materials for power transfer system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125899A (en) * 1975-04-15 1976-11-02 Murata Mfg Co Ltd Boundary type ceramic dielectric
JPS5210597A (en) * 1975-07-16 1977-01-26 Sony Corp Insulated grain boundary type piezo-electric substance of polycrystall ine ceramic semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125899A (en) * 1975-04-15 1976-11-02 Murata Mfg Co Ltd Boundary type ceramic dielectric
JPS5210597A (en) * 1975-07-16 1977-01-26 Sony Corp Insulated grain boundary type piezo-electric substance of polycrystall ine ceramic semiconductor

Also Published As

Publication number Publication date
JPS5654024A (en) 1981-05-13

Similar Documents

Publication Publication Date Title
JPS6249977B2 (en)
JPS6249976B2 (en)
JPS6249975B2 (en)
JPS6129903B2 (en)
JPS6342849B2 (en)
JP2848712B2 (en) Dielectric porcelain composition
JPS6133249B2 (en)
JPS6129902B2 (en)
JPS6126208B2 (en)
JP3125481B2 (en) Grain boundary insulating layer type semiconductor ceramic composition
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JPH0522372B2 (en)
JPS6057213B2 (en) Manufacturing method of grain boundary insulated semiconductor ceramic capacitor
JPS6128209B2 (en)
JPS6341207B2 (en)
JPS63225407A (en) Intergranular insulation type semiconductor ceramic composition
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation
JPS6258128B2 (en)
JPS6133250B2 (en)
JPS59127826A (en) Grain boundary insulating semiconductor porcelain capacitor
JPH0761897B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0761898B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS63225405A (en) Intergranular insulation type semiconductor ceramic composition