【発明の詳細な説明】[Detailed description of the invention]
本発明は加熱処理することにより被着体を変
質・変形させることなく被着体から確実に脱落す
る保護テープを提供するものである。塗料、イン
キ、紫外線などからの汚染・暴露を保護テープで
防ぎ、目的を達したのち加熱処理によつて該保護
テープを被着体から脱落させ剥離作業を省くこと
が実施されている(例えば実開昭52−155751号な
ど)。しかし、現在市販されているいずれの熱収
縮性フイルム、例えばポリ塩化ビニル・フイル
ム、ポリ塩化ビニリデン・フイルム、架橋ポリエ
チレン・フイルム、ポリプロピレン・フイルム、
ポリエステル・フイルム、ポリアミド・フイルム
などを保護テープ用の基材に利用しても、加熱処
理による該保護テープの脱落する割合、すなわち
脱落率は40〜60%程度と低く、充分とはいえなか
つた。このために熱収縮率を高めると共に、加熱
処理温度を異常に高い温度、例えば230℃以上に
することによつて脱落率を高めようとすることが
行なわれ(例えばポリエステル熱収縮性フイル
ム、ポリアミド熱収縮性フイルム、ポリ塩化ビニ
リデン系熱収縮性フイルムなど)一見して有効そ
うに思えるが、このように異常に高い温度に被着
体をさらすことにより、被着体が変質・変色・変
形などをおこし、被着体が使用できないものにな
つてしまうばかりか、保護テープ基材からも塩素
ガスやシアンガスなどの有毒・有害ガスを多量に
発生し、被着体を変質させたり、作業環境を悪く
したりするものもあるために、加熱処理温度を高
温にして脱落率を向上させることもできない。
このように、被着体に変形・変質などをおこさ
せずに、しかも加熱処理によつて脱落率の高い保
護テープを得るべく鋭意検討した結果、本発明に
達したのである。すなわち本発明の骨子は、120
℃での長手方向および巾方向の熱収縮率が、それ
ぞれ15%以上ある熱収縮性フイルムを基材とした
保護テープにおいて、該熱収縮性フイルムの長手
方向と巾方向との熱収縮開始温度の差の絶対値
が、20〜50℃の範囲にあることを特徴とする保護
テープである。
長手方向および巾方向の120℃での熱収縮率
は、それぞれ15%以上、好ましくは長手方向には
18%以上、巾方向には35%以上ないと、脱落率が
80%以上とはならないためである。すなわち、長
手方向の熱収縮率が15%以下、好ましくは18%以
下では、および/または巾方向の熱収縮率が15%
以下、好ましくは35%以下では、たとえ該熱収縮
性フイルムの長手方向と巾方向との熱収縮開始温
度の差の絶対値が20〜50℃の範囲内にあつても、
該熱収縮性フイルムを基材に使つた保護テープの
脱落率は80%未満にしかならないためである。長
手方向の熱収縮率より巾方向の熱収縮率が大きい
方が好ましいのは、保護テープとして使用すると
きのテープ形状が長手方向に比べ巾方向の方が短
いために、巾方向に、より大きな熱収縮率を持た
ないと脱落率が低下したり、あるいは加熱処理温
度を少し高い目にする必要があるためである。も
ちろん長手方向と幅方向は通常ではほぼ直交して
いるものである。
長手方向の熱収縮開始温度と巾方向との熱収縮
開始温度の差の絶対値(ΔT)は20〜50℃、好ま
しくは、30〜40℃の範囲になければならない。こ
の絶対値(ΔT)が20℃以下、好ましくは30℃以
下だと、加熱処理により保護テープの収縮が長手
方向と巾方向とにほぼ同時に起こるため、収縮し
て被着体から剥れるに要する仕事量(エネルギ
ー)が大きくなり、このため該保護テープが収縮
脱落しにくくなり、脱落率が小さくなるためであ
り、さらに、収縮したフイルムの形状がコンパク
トにカールせず、平面状に大きく剛直に凸凹した
形状を保つているために、より大きな熱収縮率が
必要となり、このため脱落率が低下するのであ
る。また、絶対値(ΔT)が50℃以上、好ましく
は40℃以上だと、実質的に熱収縮が一方向のみに
起こる保護テープと同じ効果になり、長手方向お
よび巾方向の両方向に収縮しないために被着体か
ら剥れるに要する仕事量が異常に大きくなり、脱
落率が低下するためである。
本発明保護テープ用のベースフイルムとして
は、熱収縮率および熱収縮開始温度差が、上記の
ある特定の範囲にあることが必須条件であるが、
さらに好ましくは、熱収縮応力を測定(雰囲気)
温度に対してプロツトしたとき、長手方向の熱収
縮応力と幅方向の熱収縮応力との交点の熱収縮応
力の値は、熱収縮応力が極大値を示す時の極大応
力の80%以上であると、脱落率がさらに向上して
好ましい。
もちろん、この脱落率は保護テープに使用する
粘着剤の種類にも大きく影響を受けるため、粘着
剤の種類、塗布厚み、などの接着力の調整と合わ
せて考慮しないと、優れた脱落率をもつた保護テ
ープとはならない。なお、粘着剤としては一般に
アクリル系粘着剤がよく用いられる。
本発明保護テープ用の素材としては、ポリプロ
ピレン、エチレン−酢ビ共重合体、ポリエチレ
ン、4−メチルペンテン−1ポリマー、およびそ
れらの共重合体などのポリオレフイン、ポリエチ
レンテレフタレート、ポリブチレンテレフタレー
ト、ポリヘキセンテレフタレート、およびそれら
の共重合体などのポリエステル、ナイロン6、ナ
イロン66、ナイロン11、ナイロン12、ナイロン
610、ポリメタキシリレンアジパミド、ポリヘキ
サメチレンテレフタラミド/イソフタラミド、お
よびそれらの共重合体などのポリアミド、などの
ポリマーからなるフイルムを用途や加熱システム
によつて自由に選択して保護テープとして使用す
ることができる。ただし、素材としてポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリアクリロニトリ
ルなどのポリマーは、加熱処理によつて有毒ガス
を発生することが多いため、好ましいものではな
い。特に本発明保護テープに最適なポリマーとし
ては、ポリオレフイン系ポリマーがすぐれてい
る。これは、低い加熱処理温度で、100%もしく
はそれに近い高脱落率を達成することができるの
みならず、加熱処理によつても有毒なガスを発生
することもなく、さらに熱的にも安定なポリマー
であり、ゲル化したり、熱分解や加水分解なども
せず、かつオリゴマーなどの不純物も含まず、取
り扱いやすいポリマーであり、また汎用ポリマー
であるためポリマーのコストも安いなどの種々の
すぐれた特徴をもつている。ポリオレフインの中
でも、特にポリプロピレンおよびその共重合体が
好ましい。これは、溶融粘度の高さ、強靭性、製
膜のしやすさ、透明性、耐熱性などにすぐれてい
るためである。さらに好ましくは、エチレンが2
〜6重量%ランダムに共重合されたポリプロピレ
ンが特に本発明保護テープ用素材にすぐれてい
る。これは160〜180℃の低温で、しかも広い温度
範囲にわたつて高い脱落率を維持できるためであ
る。エチレンの共重合率は、加熱処理温度によつ
て適宜選択することができるが、160〜180℃程度
の加熱処理温度の場合、2〜6重量%のものが特
に好ましい。もちろん本発明テープ用の素材中
に、ポリマーとして公知の添加剤類、例えば酸化
防止剤、着色防止剤、耐候剤、ゲル化防止剤、滑
剤、ブロツキング防止剤、顔料、帯電防止剤、界
面活性剤、紫外線吸収剤、充填剤、などを添加す
ることができる。
次に、本発明テープの製法を述べる。ただし、
説明を簡単にするためポリプロピレン系樹脂に限
定して述べるが、必ずしも本発明テープ用の素材
としてはこの樹脂に限定されるものではない。す
なわち、原料としてエチレンが2〜6重量%ラン
ダムに共重合されたポリプロピレン(230℃での
メルトインデツクス3〜9、酸化防止剤、滑剤、
帯電防止剤、ブロツキング防止剤など含有)樹脂
を押出機に供給し、200〜270℃で溶融押出して、
5〜95℃に保たれたキヤステイングドラム上に公
知の方法でキヤストし、無延伸フイルムを得る。
該キヤストフイルムを、表面温度60〜110℃に加
熱された縦延伸ロール上で予熱し、長手方向に4
〜7倍延伸し、ただちに20℃以下に急冷する。つ
づいて雰囲気温度が70〜120℃に加熱された予熱
ゾーンで該一軸延伸フイルムを予熱し、次に76〜
125℃に加熱された延伸区間で巾方向に4〜11倍
延伸するのである。このとき、個々の条件を設定
するに際しては、長手方向と幅方向との熱収縮開
始温度の差の絶対値を20〜50℃となるようにしな
ければならない。結晶性ポリマの場合、ポリマの
融点による影響も大きいが、一般に、延伸温度を
低くする程、また延伸倍率を高くする程熱収縮率
は増大し、熱収縮開始温度は低下する傾向にあ
る。従つて、例えば長手方向と幅方向の延伸倍率
を同倍率とするのであれば、両者の延伸温度の差
を10℃以上、好ましくは15℃以上とることが望ま
しい。一方、長手方向と幅方向の延伸温度を同温
度に設定するのであれば、両者の倍率に3倍以
上、好ましくは4倍以上の差を設けることが望ま
しい。また、延伸方法としては、逐次二軸延伸法
が好ましく、チユーブラー延伸法や同時二軸延伸
法では、更に長手方向あるいは幅方向に再延伸す
る手法等を組み合わせないと所望の特性が得られ
にくい。
必要によつては、熱処理ゾーンを加熱して熱延
伸してもよく、また、逐次二軸延伸法を用いた場
合であつても、更に長手方向や幅方向に再延伸す
ることは妨げない。また、該二軸延伸フイルムの
表面に炭酸ガス、窒素、空気などの気体下でコロ
ナ放電処理や火炎処理などの表面活性化処理をし
てもよい。かくして得られたフイルム厚みは特に
限定しないが、本発明テープの場合は12〜70ミク
ロン、好ましくは20〜50ミクロン程度が好まし
い。このようにして出来た二軸配向フイルムの少
なくとも片面に、感圧粘着剤(アクリル酸を主成
分とするゴム系の粘着剤)を、厚さ2〜10ミクロ
ン塗布し、粘着力として50〜150g/cm(対クロ
ムメツキ0.4S板)程度になるようにし、必要な巾
にスリツトして保護テープとした。
なお、本明細書で使用した語句や測定法の説明
をしておく。
熱収縮率Sは、長さAmm、巾10mmのサンプルに
荷重2.5gをかけたまま熱風オーブン中で処定の
温度に15分間熱処理し、熱処理後の長さをBmmと
すれば、Sは次式で求められる。
熱収縮率S(%)=A−B/A×100
熱収縮開始温度は、長さ50mm、巾10mmのサンプ
ルの(測定方向の)片端を固定し、他の片端をス
トレンゲージのついたチヤツクで固定し、その状
態でシリコンオイルバス中に浸漬させ、初期荷重
として130gr/mm2をかけ、2℃/分の昇温速度で
加熱し、収縮応力が150g/mm2を越えた温度を熱
収縮開始温度とした。
本発明の効果を明確にするために、以下実施例
で説明するが、必ずしもこれに限定されるもので
はない。
実施例1および比較例1〜4
原料としてエチレンが3.8重量%ランダムに共
重合されたポリプロピレン樹脂(住友化学社製
“ノーブレン”FA6411)を用い、これに添加剤と
して帯電防止剤(三洋化成社製TPA130)を0.1重
量%混合し、これを150mm径の押出機に供給し、
230℃で溶融させたのち、スリツト間隙2.0mmのT
ダイ口金から吐出させ、30℃に冷却されたキヤス
テイングドラム上に常法によりキヤストして無配
向シートを得た。該シートを別表に示した温度に
加熱された延伸ロールを使つて5.5倍、長手方向
に延伸し、ただちに20〜30℃に急冷した。つづい
て別表の温度に加熱された巾方向延伸機(テンタ
ー)で8.5倍に延伸し、厚さ40ミクロンの二軸配
向フイルムを得た。かくして得られたフイルム上
に市販のアクリル系粘着剤を塗布し、巾58mmにス
リツトして保護テープとした。該テープの熱収縮
率(120℃、15分間)、熱収縮開始温度およびその
差(ΔT)と脱落率とを次表に一覧して示した。
The present invention provides a protective tape that can be reliably removed from an adherend by heat treatment without altering or deforming the adherend. Protective tape is used to prevent contamination and exposure from paint, ink, ultraviolet rays, etc., and after the purpose is achieved, the protective tape is removed from the adherend through heat treatment, thereby eliminating the need for peeling (for example, in practice). (Sho 52-155751, etc.) However, any heat-shrinkable film currently on the market, such as polyvinyl chloride film, polyvinylidene chloride film, crosslinked polyethylene film, polypropylene film,
Even when polyester films, polyamide films, etc. are used as base materials for protective tapes, the rate at which the protective tapes fall off due to heat treatment, that is, the shedding rate, is as low as 40 to 60%, which is not sufficient. . For this reason, attempts have been made to increase the shedding rate by increasing the heat shrinkage rate and by increasing the heat treatment temperature to an abnormally high temperature, for example, 230°C or higher (for example, polyester heat shrinkable films, polyamide heat shrinkable films, etc.). Although it may seem effective at first glance (shrinkable film, heat-shrinkable polyvinylidene chloride film, etc.), exposing the adherend to abnormally high temperatures like this can cause deterioration, discoloration, and deformation of the adherend. Not only does this make the adherend unusable, but the protective tape base material also generates large amounts of toxic and noxious gases such as chlorine gas and cyan gas, altering the quality of the adherend and worsening the working environment. Therefore, it is not possible to improve the shedding rate by increasing the heat treatment temperature. As described above, the present invention was achieved as a result of intensive studies to obtain a protective tape that does not cause deformation or alteration of the adherend and has a high shedding rate through heat treatment. In other words, the gist of the present invention is 120
In a protective tape based on a heat-shrinkable film that has a heat shrinkage rate of 15% or more in the longitudinal direction and width direction at °C, the temperature at which the heat shrinkage starts in the longitudinal direction and width direction of the heat-shrinkable film is The protective tape is characterized in that the absolute value of the difference is in the range of 20 to 50°C. The heat shrinkage rate at 120℃ in the longitudinal direction and width direction is 15% or more, preferably in the longitudinal direction.
If it is not more than 18% and not more than 35% in the width direction, the dropout rate will be high.
This is because it does not exceed 80%. That is, if the heat shrinkage rate in the longitudinal direction is 15% or less, preferably 18% or less, and/or the heat shrinkage rate in the width direction is 15% or less.
Below, preferably 35% or less, even if the absolute value of the difference in heat shrinkage start temperature between the longitudinal direction and the width direction of the heat shrinkable film is within the range of 20 to 50 °C,
This is because the shedding rate of a protective tape using the heat-shrinkable film as a base material is only less than 80%. The reason why it is preferable that the heat shrinkage coefficient in the width direction is larger than that in the longitudinal direction is because the tape shape when used as a protective tape is shorter in the width direction than in the longitudinal direction. This is because if it does not have a heat shrinkage rate, the shedding rate will decrease, or the heat treatment temperature will need to be slightly higher. Of course, the longitudinal direction and the width direction are generally orthogonal. The absolute value of the difference (ΔT) between the heat shrinkage start temperature in the longitudinal direction and the heat shrinkage start temperature in the width direction must be in the range of 20 to 50°C, preferably 30 to 40°C. If this absolute value (ΔT) is below 20℃, preferably below 30℃, the protective tape will shrink almost simultaneously in the longitudinal and width directions due to heat treatment, so it will take a long time for the protective tape to shrink and peel off from the adherend. This is because the amount of work (energy) increases, which makes it difficult for the protective tape to shrink and fall off, reducing the falling rate.Furthermore, the shape of the shrunken film does not curl compactly, but becomes flat and rigid. In order to maintain the uneven shape, a higher heat shrinkage rate is required, which reduces the shedding rate. In addition, if the absolute value (ΔT) is 50°C or higher, preferably 40°C or higher, the effect is essentially the same as that of a protective tape that causes thermal contraction only in one direction, and does not shrink in both the longitudinal and width directions. This is because the amount of work required to separate the adhesive from the adherend becomes abnormally large, and the rate of removal decreases. As a base film for the protective tape of the present invention, it is essential that the heat shrinkage rate and heat shrinkage start temperature difference be within the above-mentioned specific range.
More preferably, heat shrinkage stress is measured (atmosphere)
When plotted against temperature, the value of the heat shrinkage stress at the intersection of the heat shrinkage stress in the longitudinal direction and the heat shrinkage stress in the width direction is 80% or more of the maximum stress when the heat shrinkage stress reaches its maximum value. This is preferable because the shedding rate is further improved. Of course, this shedding rate is greatly affected by the type of adhesive used for the protective tape, so if you do not take into consideration the type of adhesive, coating thickness, etc., as well as adjusting the adhesive strength, you will not be able to achieve an excellent shedding rate. It cannot be used as a protective tape. Incidentally, as the adhesive, an acrylic adhesive is generally used. Materials for the protective tape of the present invention include polyolefins such as polypropylene, ethylene-vinyl acetate copolymer, polyethylene, 4-methylpentene-1 polymer, and copolymers thereof, polyethylene terephthalate, polybutylene terephthalate, and polyhexene terephthalate. , and polyesters such as their copolymers, nylon 6, nylon 66, nylon 11, nylon 12, nylon
Films made of polymers such as polyamides such as 610, polymethaxylylene adipamide, polyhexamethylene terephthalamide/isophthalamide, and their copolymers can be freely selected depending on the application and heating system as protective tapes. can be used. However, polymers such as polyvinyl chloride, polyvinylidene chloride, and polyacrylonitrile are not preferred as materials because they often generate toxic gases when heated. In particular, polyolefin polymers are excellent as the most suitable polymers for the protective tape of the present invention. This material not only can achieve a high shedding rate of 100% or close to 100% at low heat treatment temperatures, but also does not generate toxic gases even during heat treatment, and is also thermally stable. It is a polymer that does not gel, thermally decompose, or hydrolyze, does not contain impurities such as oligomers, is easy to handle, and has various excellent features such as being a general-purpose polymer and being inexpensive. It has Among polyolefins, polypropylene and copolymers thereof are particularly preferred. This is because it has excellent properties such as high melt viscosity, toughness, ease of film formation, transparency, and heat resistance. More preferably, ethylene is 2
~6% by weight randomly copolymerized polypropylene is particularly excellent as a material for the protective tape of the present invention. This is because it can maintain a high shedding rate at low temperatures of 160 to 180°C and over a wide temperature range. The copolymerization rate of ethylene can be appropriately selected depending on the heat treatment temperature, but in the case of a heat treatment temperature of about 160 to 180°C, a copolymerization rate of 2 to 6% by weight is particularly preferable. Of course, additives known as polymers, such as antioxidants, anti-coloring agents, weathering agents, anti-gelling agents, lubricants, anti-blocking agents, pigments, anti-static agents, and surfactants, may also be added to the material for the tape of the present invention. , ultraviolet absorbers, fillers, etc. can be added. Next, a method for manufacturing the tape of the present invention will be described. however,
In order to simplify the explanation, the description will be limited to polypropylene resin, but the material for the tape of the present invention is not necessarily limited to this resin. That is, polypropylene randomly copolymerized with 2 to 6% ethylene as a raw material (melt index 3 to 9 at 230°C, antioxidant, lubricant,
The resin (containing antistatic agent, antiblocking agent, etc.) is fed to an extruder and melted and extruded at 200 to 270℃.
A non-stretched film is obtained by casting on a casting drum maintained at 5 to 95°C by a known method.
The cast film was preheated on a longitudinal stretching roll heated to a surface temperature of 60 to 110°C, and stretched 4 times in the longitudinal direction.
Stretch ~7 times and immediately quench to below 20°C. Next, the uniaxially stretched film is preheated in a preheating zone where the ambient temperature is 70 to 120°C, and then 76 to 120°C.
The film is stretched 4 to 11 times in the width direction in a stretching section heated to 125°C. At this time, when setting individual conditions, it is necessary to set the absolute value of the difference in thermal contraction start temperature between the longitudinal direction and the width direction to 20 to 50°C. In the case of crystalline polymers, the melting point of the polymer has a large influence, but in general, the lower the stretching temperature and the higher the stretching ratio, the higher the heat shrinkage rate and the lower the heat shrinkage start temperature tends to be. Therefore, for example, if the stretching ratios in the longitudinal direction and the width direction are to be the same, it is desirable that the difference in stretching temperature between the two be at least 10°C, preferably at least 15°C. On the other hand, if the stretching temperatures in the longitudinal direction and the width direction are set to the same temperature, it is desirable to provide a difference of 3 times or more, preferably 4 times or more, in the stretching ratios between the two. Further, as a stretching method, a sequential biaxial stretching method is preferable, and with the tubular stretching method or the simultaneous biaxial stretching method, it is difficult to obtain the desired properties unless a method of further stretching in the longitudinal direction or the width direction is combined. If necessary, the heat treatment zone may be heated for hot stretching, and even if a sequential biaxial stretching method is used, further stretching in the longitudinal direction or width direction is not prohibited. Further, the surface of the biaxially stretched film may be subjected to a surface activation treatment such as a corona discharge treatment or a flame treatment in a gas such as carbon dioxide, nitrogen, or air. The thickness of the film thus obtained is not particularly limited, but in the case of the tape of the present invention, it is preferably about 12 to 70 microns, preferably about 20 to 50 microns. A pressure-sensitive adhesive (a rubber-based adhesive whose main component is acrylic acid) is applied to a thickness of 2 to 10 microns on at least one side of the biaxially oriented film produced in this way, and the adhesive strength is 50 to 150 g. /cm (compared to chrome plated 0.4S board), and slit it to the required width to make a protective tape. Note that the terms and measurement methods used in this specification will be explained below. Thermal shrinkage rate S is calculated by heat-treating a sample with a length of Amm and a width of 10mm for 15 minutes at the specified temperature in a hot air oven with a load of 2.5g applied, and the length after heat treatment being Bmm, then S is as follows. It is determined by the formula. Heat shrinkage rate S (%) = A-B/A x 100 The heat shrinkage start temperature is determined by fixing one end (in the measurement direction) of a sample with a length of 50 mm and a width of 10 mm, and attaching the other end to a chuck with a strain gauge. In that state, immerse it in a silicone oil bath, apply an initial load of 130g/ mm2 , heat it at a temperature increase rate of 2℃/min, and heat it until the shrinkage stress exceeds 150g/ mm2 . This was taken as the contraction start temperature. In order to clarify the effects of the present invention, examples will be described below, but the present invention is not necessarily limited thereto. Example 1 and Comparative Examples 1 to 4 A polypropylene resin in which 3.8% by weight of ethylene was randomly copolymerized ("Noblen" FA6411, manufactured by Sumitomo Chemical Co., Ltd.) was used as a raw material, and an antistatic agent (manufactured by Sanyo Chemical Co., Ltd.) was used as an additive. Mix 0.1% by weight of TPA130) and feed this to a 150mm diameter extruder.
After melting at 230℃, T with a slit gap of 2.0mm
The mixture was discharged from a die and cast onto a casting drum cooled to 30° C. by a conventional method to obtain a non-oriented sheet. The sheet was stretched 5.5 times in the longitudinal direction using a stretching roll heated to the temperature shown in the attached table, and immediately quenched to 20-30°C. Subsequently, the film was stretched 8.5 times in a width direction stretching machine (tentter) heated to the temperature shown in the attached table to obtain a biaxially oriented film with a thickness of 40 microns. A commercially available acrylic adhesive was applied onto the film thus obtained, and the film was slit to a width of 58 mm to obtain a protective tape. The following table lists the heat shrinkage rate (120° C., 15 minutes), heat shrinkage start temperature, difference (ΔT), and shedding rate of the tape.
【表】
なお、同時に市販されている40ミクロン厚みの
熱収縮フイルムとして、比較例3にポリプロピレ
ン熱収縮フイルムを、比較例4に、ポリ塩化ビニ
ル熱収縮フイルムを用いて同様に保護テープとし
て比較評価した。
評価結果から明らかなように、単に熱収縮率の
みが大きくても、熱収縮開始温度の差が20〜50℃
の範囲にないと脱落率が向上しないし、逆に熱収
縮開始温度の差が上記範囲内にあつても熱収縮率
が15%以上ないとまた脱落率が向上しないことが
わかる。
比較例 5
実施例1と同様にして無配向シートを得、これ
を長手方向に90℃で5.5倍延伸した後、直ちに急
冷し、続いて幅方向延伸機(テンター)で幅方向
に90℃で5.5倍延伸し、厚み40μmの二軸配向フ
イルムを得た。該フイルムに実施例1と同様に粘
着剤を塗布し、保護テープとした。該テープの特
性を評価した結果、熱収縮率(%)は、MD/
TD=15/24、熱収縮開始温度(℃)は、MD/
TD=126/108、ΔT=18(℃)で、脱落率は、
58%であつた。[Table] At the same time, comparative evaluations were also made as protective tapes using polypropylene heat-shrinkable films in Comparative Example 3 and polyvinyl chloride heat-shrinkable films in Comparative Example 4 as heat-shrinkable films with a thickness of 40 microns that are commercially available. did. As is clear from the evaluation results, even if only the heat shrinkage rate is large, the difference in the heat shrinkage start temperature is 20 to 50℃.
It can be seen that the shedding rate will not improve if the temperature is not within the above range, and conversely, even if the difference in heat shrinkage start temperature is within the above range, the shedding rate will not improve unless the heat shrinkage rate is 15% or more. Comparative Example 5 A non-oriented sheet was obtained in the same manner as in Example 1, stretched 5.5 times in the longitudinal direction at 90°C, immediately quenched, and then stretched in the width direction at 90°C using a widthwise stretching machine (tentter). The film was stretched 5.5 times to obtain a biaxially oriented film with a thickness of 40 μm. An adhesive was applied to the film in the same manner as in Example 1 to obtain a protective tape. As a result of evaluating the characteristics of the tape, the heat shrinkage rate (%) was found to be MD/
TD=15/24, heat shrinkage start temperature (℃) is MD/
TD = 126/108, ΔT = 18 (℃), and the dropout rate is
It was 58%.