[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS624439A - Apparatus for producing atmospheric gas - Google Patents

Apparatus for producing atmospheric gas

Info

Publication number
JPS624439A
JPS624439A JP60142427A JP14242785A JPS624439A JP S624439 A JPS624439 A JP S624439A JP 60142427 A JP60142427 A JP 60142427A JP 14242785 A JP14242785 A JP 14242785A JP S624439 A JPS624439 A JP S624439A
Authority
JP
Japan
Prior art keywords
catalytic reactor
partial pressure
oxygen partial
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60142427A
Other languages
Japanese (ja)
Other versions
JPH0472576B2 (en
Inventor
Hiroshi Mori
博 森
Yasushi Fujita
藤田 恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60142427A priority Critical patent/JPS624439A/en
Publication of JPS624439A publication Critical patent/JPS624439A/en
Publication of JPH0472576B2 publication Critical patent/JPH0472576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Incineration Of Waste (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To obtain a gas consisting essentially of N2 and having stabilized contents of CO and O2 at low temp. by providing a catalytic reactor for passing a catalytic combustion waste gas and reducing the oxygen in the gas on the downstream side of an oxygen partial pressure detector. CONSTITUTION:Zirconia is used as the detecting cell in an oxygen partial pressure detector 6. A gas to be measured is introduced into the detected by utilizing the pressure difference between an inlet pipeline 6a and an outlet pipeline 6b and the oxygen partial pressure is detected by the detecting cell. The value of the detected oxygen partial pressure is fed to a regulator 7, a flow control valve 8 is controlled on the basis of the value so that the theoretical air fuel ratio can be obtained in the combustion in the first catalyst reactor 1 and the supply of hydrocarbonic fuel 9 is controlled. A waste gas 10 contg. oxygen is supplied from the upstream side of the first catalytic reactor 1 and mixed with the hydrocarbonic fuel 9. The gaseous mixture is passed through the catalytic reactor 1, a pipeline and a catalytic reactor 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、接触燃焼器を用いて燃焼排ガスよりN2を主
成分とする雰囲気ガスを製造する装置に関するものであ
り、更に詳しくは、2重の接触燃焼反応器を用いたCO
及び0281度の変動が少ない雰囲気ガス製造装置に関
するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an apparatus for producing atmospheric gas mainly composed of N2 from combustion exhaust gas using a contact combustor. CO using a catalytic combustion reactor
The present invention relates to an atmospheric gas production device with little variation in temperature and 0281 degrees.

(従来の技術) 従来、排ガスを利用して雰囲気ガス特に窒素ガスを効率
良く製造する装置として、第5図に示すにうに燃焼排ガ
ス51と炭化水素系燃料52どの混合ガスをpd 、p
t等の酸化触媒を担持した触媒反応器53内で触媒と接
触させて、炭化水素系燃料52により排気ガス中の酸素
を接触燃焼しN2を主成分とする雰囲気ガス54を製造
する装置において、炭化水素系燃料52の供給量を酸素
分圧検出器55により検出した雰囲気ガス54中の酸素
分圧に応じて調節器56および温良調節バルブ57によ
りフィードバック制御して供給する装置が、特開昭60
−60489号公報により知られている。
(Prior Art) Conventionally, as shown in FIG. 5, as an apparatus for efficiently producing atmospheric gas, particularly nitrogen gas, using exhaust gas, a mixed gas of combustion exhaust gas 51 and hydrocarbon fuel 52 is mixed into pd and pd.
In an apparatus for catalytically burning oxygen in exhaust gas with a hydrocarbon fuel 52 in a catalytic reactor 53 supporting an oxidation catalyst such as t and producing an atmospheric gas 54 mainly composed of N2, A device for supplying hydrocarbon fuel 52 through feedback control using a regulator 56 and a temperature control valve 57 according to the partial pressure of oxygen in the atmospheric gas 54 detected by an oxygen partial pressure detector 55 is disclosed in Japanese Patent Application Laid-open No. 60
It is known from the publication No.-60489.

(発明が解決しようとする問題点) しかしながら上述した装置においては、主に酸素分圧検
出器としてジルコニアなどの固体電解質を使用した検出
器を用いているが、第6図にこの種の酸素分圧検出器の
出力を示すように理論空気比の当量点近傍でその出力が
急激に変化するため当量点近傍での制御が難しく、第7
図にCOおよび02の濃度変化を示すように変動が大き
く低濃度でかつ安定したC0,021度のガスが得られ
ない欠点があった。また、lvi素分圧検出器として磁
気式の酸素分圧検出器を用いた場合でも、その原理から
応答時間が遅いため変動が大きいという欠点があった。
(Problems to be Solved by the Invention) However, in the above-mentioned apparatus, a detector using a solid electrolyte such as zirconia is mainly used as an oxygen partial pressure detector. As shown in the output of the pressure detector, the output changes rapidly near the equivalence point of the stoichiometric air ratio, making it difficult to control near the equivalence point.
As shown in the figure, the concentration changes of CO and 02 are large, and there is a drawback that it is not possible to obtain a stable gas with a low concentration of CO and 021 degrees. Furthermore, even when a magnetic type oxygen partial pressure detector is used as the lvi elemental partial pressure detector, there is a drawback that the response time is slow due to its principle, resulting in large fluctuations.

本発明の目的は上述した不具合を解消して、還元性ガス
であるCOと酸化性ガスである02を低減して、低濃度
でかつ安定したC0,02濃度のN2を主成分とする雰
囲気ガスを得ることができる雰囲気ガス製造装置を提供
しようとするものである。
The purpose of the present invention is to eliminate the above-mentioned problems and reduce CO, which is a reducing gas, and 02, which is an oxidizing gas, thereby creating an atmospheric gas mainly composed of N2 with a low and stable concentration of CO and 02. The present invention aims to provide an atmospheric gas production device that can obtain the following.

(問題点を解決するための手段) 本発明の雰囲気ガス製造装置は、酸素を含む燃焼排ガス
と炭化水素系燃料との混合ガスを接触燃焼させる第1の
触媒反応器と、該第1の触媒反応器より排出される接触
燃焼排ガス中の酸素分圧を検出するM素分圧検出器と、
該酸素分圧検出器より検出された酸素分圧に応じて、前
記第1の触媒反応器の上流部に導入する燃焼排ガス中に
加える炭化水素系燃料の徂を制御°する燃料調節器とを
具える雰囲気ガス製造装置において、前記酸素分圧検出
器の下流側に前記第1の触媒反応器より排出される接触
燃焼排ガスを流通させてガス中の酸素をより減少するた
めの第2の触媒反応器を設けることを特徴とするもので
ある。
(Means for Solving the Problems) The atmospheric gas production device of the present invention includes a first catalytic reactor that catalytically burns a mixed gas of a combustion exhaust gas containing oxygen and a hydrocarbon fuel; an M elemental partial pressure detector that detects the oxygen partial pressure in the catalytic combustion exhaust gas discharged from the reactor;
a fuel regulator that controls the amount of hydrocarbon fuel to be added to the combustion exhaust gas introduced into the upstream portion of the first catalytic reactor according to the oxygen partial pressure detected by the oxygen partial pressure detector; a second catalyst for further reducing oxygen in the gas by flowing the catalytic combustion exhaust gas discharged from the first catalytic reactor downstream of the oxygen partial pressure detector; It is characterized by being equipped with a reactor.

(作 用) 上述した構成により、酸素分圧検出器によるフィードバ
ック制御のほかに、第1の触媒反応器から排出される微
量のCOおよび02を更に第2の触媒反応器中で接触燃
焼させているので、低02およびCO21B度のN2を
主成分とする雰囲気ガスを簡単に得ることができる。
(Function) With the above-described configuration, in addition to feedback control using the oxygen partial pressure detector, trace amounts of CO and 02 discharged from the first catalytic reactor are further catalytically combusted in the second catalytic reactor. Therefore, it is possible to easily obtain an atmospheric gas containing N2 as a main component with low 02 and CO2 degrees.

(実施例) 第1図は本発明の雰囲気ガス製造装置の一実施例を示す
線図である。本実施例では、第1の触媒反応器1の下流
側に第2の触媒反応器2を直列に接続して全体の触媒反
応器を構成している。各触媒反応器1.2の内部には、
好ましくはセラミックハニカム触媒担体にパラジウム、
白金等の酸化触媒を担持した触媒3,4を複数段に積み
重ねている。第1おJ:び第2の触媒反応器1,2の間
の管路5には酸素分圧検出i’!!46の入口管路6a
と出口管路6bを接続する。この酸素分圧検出器6は検
出セルとしてジルコニアを使用しており、入口管路6a
と出口管路6bとの間の圧力差を利用して被測定ガスを
検出器内部へ導入し、検出セルにより酸素分圧が検出さ
れる。検出された酸素分圧の値は調節器7に供給され、
その値に基い−C第1の触媒反応器1内での燃焼が理論
空気比になるよう流量調節バルブ8を調節することによ
り炭化水素系燃料9の供給量を制御する。−上述した装
置で、第1の触媒反応器1の上流側から酸素を含む排ガ
ス10を供給して炭化水素系燃料9と混合した後、その
混合ガスを第1の触媒反応器1.管路5および第2の触
媒反応器2を通すと、各触媒反応器において混合ガスが
接触燃焼して所望の雰囲気ガス11として第2の触媒反
応器2の下流側へ流出する。
(Embodiment) FIG. 1 is a diagram showing an embodiment of the atmospheric gas production apparatus of the present invention. In this embodiment, the second catalytic reactor 2 is connected in series on the downstream side of the first catalytic reactor 1 to form the entire catalytic reactor. Inside each catalytic reactor 1.2,
Preferably palladium on the ceramic honeycomb catalyst carrier,
Catalysts 3 and 4 carrying an oxidation catalyst such as platinum are stacked in multiple stages. Oxygen partial pressure detection i'! ! 46 inlet pipes 6a
and the outlet pipe line 6b. This oxygen partial pressure detector 6 uses zirconia as a detection cell, and has an inlet pipe 6a.
The gas to be measured is introduced into the detector by utilizing the pressure difference between the output pipe 6b and the outlet pipe 6b, and the oxygen partial pressure is detected by the detection cell. The detected oxygen partial pressure value is supplied to the regulator 7,
Based on this value, the amount of hydrocarbon fuel 9 supplied is controlled by adjusting the flow control valve 8 so that the combustion in the -C first catalytic reactor 1 reaches the stoichiometric air ratio. - In the above-mentioned apparatus, after supplying the exhaust gas 10 containing oxygen from the upstream side of the first catalytic reactor 1 and mixing it with the hydrocarbon fuel 9, the mixed gas is transferred to the first catalytic reactor 1. When passed through the pipe line 5 and the second catalytic reactor 2, the mixed gas undergoes catalytic combustion in each catalytic reactor and flows out as a desired atmospheric gas 11 to the downstream side of the second catalytic reactor 2.

第2図は本発明の雰囲気ガス製造装置の他の実施例を示
す線図である。第2図において第1図と同一の部材は同
一の符号を付しその説明を省略する。第1図に示した実
施例と相違する点は、第1の触媒反応器1の上流部と酸
素分圧検出器6の下流側であって第2の触媒反応器2の
上流部との間に、バルブ12を介してバイパス導管13
を設けた点である。これは排ガス10中の00分は燃焼
して除去する以外方法がないので、第1の触媒反応器1
を出たガス中の00分を更に低減するため、第2の触媒
反応器2に酸素を含む排ガス10を少母バイパスして供
給し、第2の触媒反応器2内で00分を更に燃焼させる
ためである。
FIG. 2 is a diagram showing another embodiment of the atmospheric gas production apparatus of the present invention. In FIG. 2, the same members as in FIG. 1 are given the same reference numerals, and their explanations will be omitted. The difference from the embodiment shown in FIG. to bypass conduit 13 via valve 12.
The point is that The only way to do this is to burn and remove the 00 minutes in the exhaust gas 10, so the first catalytic reactor 1
In order to further reduce the amount of 00 min in the gas that exits, the exhaust gas 10 containing oxygen is supplied to the second catalytic reactor 2 in a small bypass manner, and the 00 min is further combusted in the second catalytic reactor 2. This is to make it happen.

第3図は本発明の雰囲気ガス製造装置を組み込んだN2
ガス製造装置の一実施例を示す線図である。N2を主成
分として酸素4%程度含む排ガス10はガスボンベ21
からプロパンガス(C3H8)を0.8%程度混合され
た後、第1の触媒反応器1および第2の触媒反応器2内
で接触燃焼して、02約10ppHl 、 C○約11
00pp程度のN2を主成分とする雰囲気ガス11を得
る。反応後の雰囲気ガス11は700m程度の高温であ
るため、水冷式冷却器22を通して冷却された復サージ
タンク23に供給される。サージタンク23に供給され
た雰囲気ガス11は約1分間その中に滞留して温度1絹
成を均一にした後、雰囲気ガス11内の水分と2酸化炭
素を除去するためUオライド吸着塔24を通して所望の
N2が99.89%程度のN2ガスを得ることができる
Figure 3 shows an N2 system incorporating the atmospheric gas production device of the present invention.
FIG. 1 is a diagram showing an example of a gas production device. The exhaust gas 10 containing N2 as a main component and about 4% oxygen is contained in a gas cylinder 21.
After about 0.8% of propane gas (C3H8) is mixed with the mixture, it is catalytically burned in the first catalytic reactor 1 and the second catalytic reactor 2 to produce about 10 ppHl of 02, about 11% of C○.
An atmospheric gas 11 containing approximately 00 pp of N2 as a main component is obtained. Since the atmospheric gas 11 after the reaction has a high temperature of about 700 m, it is supplied to the resurge tank 23 where it is cooled through a water-cooled cooler 22. The atmospheric gas 11 supplied to the surge tank 23 stays there for about 1 minute to make the temperature uniform. After that, the atmospheric gas 11 is passed through the U-olide adsorption tower 24 to remove moisture and carbon dioxide from the atmospheric gas 11. A desired N2 gas containing approximately 99.89% N2 can be obtained.

実施例1 第1図に示す装置により酸素を含んだ燃焼排ガスから酸
素濃度の低い雰囲気ガスを製造した。導入した燃焼排ガ
スとしては、酸素濃度平均値が4vo1%、酸素濃度変
動範囲3.5〜4.5v、o1%のプロパンガスの燃焼
排ガスを使用しで、これを毎時1ONm3の割合で流し
た。第1の触媒反応器1には、−1,7mmピッチのハ
ニカム状で直径8・Omm、高さ50mm、担持量2Q
 /12.のパラジウム触媒を4段充填した。また、第
2の触媒反応器2には、1.7mmピッチのハニカム状
で直径80m+a、高さ50mm、担持m2g/f2の
白金触媒を2段充填した。酸素分圧検出器6としてはジ
ルコニア式酸素検出器を使用し、この検出器の出力電圧
が690mVになるように第1の触媒反応器1の上流側
に流量調節バルブ8を介してプロパンガスを注入した。
Example 1 An atmospheric gas with a low oxygen concentration was produced from combustion exhaust gas containing oxygen using the apparatus shown in FIG. The introduced combustion exhaust gas was propane gas with an average oxygen concentration of 4 vol%, an oxygen concentration variation range of 3.5 to 4.5 volts, and an o 1%, and was flowed at a rate of 1 ONm3 per hour. The first catalytic reactor 1 has a honeycomb shape with a pitch of -1.7 mm, a diameter of 8 Omm, a height of 50 mm, and a supported amount of 2Q.
/12. The palladium catalyst was packed in four stages. In addition, the second catalytic reactor 2 was filled with two stages of platinum catalysts having a honeycomb shape with a pitch of 1.7 mm, a diameter of 80 m+a, a height of 50 mm, and a supported m2g/f2. A zirconia type oxygen detector is used as the oxygen partial pressure detector 6, and propane gas is supplied to the upstream side of the first catalytic reactor 1 via a flow control valve 8 so that the output voltage of this detector is 690 mV. Injected.

また比較例として第5図に示す装置を使用して、触媒反
応器53内にパラジウム触媒4段と白金触媒2段を設り
、実施例と同様に酸素分圧検出器55の出力電圧が69
0m Vになるようにプロパン流入量を制御した。
Further, as a comparative example, the apparatus shown in FIG. 5 was used, and four stages of palladium catalysts and two stages of platinum catalyst were installed in the catalytic reactor 53, and the output voltage of the oxygen partial pressure detector 55 was 69.
The propane inflow rate was controlled to be 0 mV.

その結果、得られた雰囲気ガス中のco濃度及び02濃
度を第1表に示すと共に、第4図にそれらの値の時間に
対する変動を示す。
Table 1 shows the co concentration and 02 concentration in the atmospheric gas obtained as a result, and FIG. 4 shows the variation of these values over time.

第1表 第1表から本発明の実施例では比較例に比べて低02、
’CO濃度を達成できると共に、濃度変動幅も小さくす
ることができることがわかる。
Table 1 From Table 1, the examples of the present invention have lower 02,
It can be seen that the CO concentration can be achieved and the range of concentration fluctuation can be reduced.

実施例2 第2図に承りバイパス導管13を有づ−る装置で、実施
例1と同じ条件で酸素を含んだ燃焼排ガスから酸素濃度
の低い雰囲気ガスを製造した。このとき、バイパス導管
13を通して0.2β/分で排ガスを第2の触媒反応器
2に供給するようにバルブ12を調節した。その結果得
られたガス中のCOf!度及び02m度を第2表に示ず
。なお、比較例としては実施例1と同様な試験を行なっ
た。
Example 2 An atmospheric gas with a low oxygen concentration was produced from combustion exhaust gas containing oxygen under the same conditions as in Example 1 using an apparatus having a bypass conduit 13 as shown in FIG. At this time, the valve 12 was adjusted to supply exhaust gas to the second catalytic reactor 2 through the bypass conduit 13 at a rate of 0.2β/min. COf in the resulting gas! degrees and 02m degrees are not shown in Table 2. In addition, as a comparative example, a test similar to Example 1 was conducted.

第2表 第2表から本実施例では比較例に比べて低02゜特に低
CO濃度を達成できることがわかる。
Table 2 It can be seen from Table 2 that in this example, a lower 02° and especially lower CO concentration can be achieved than in the comparative example.

本発明は上述した実茄例にのみ限定されるものではなく
、幾多の変形、変更が可能である。例えば、上述した実
施例では第1の触媒反応器に4段の触媒をまた第2の触
媒反応器に2段の触媒を使用したが、この段数は何段で
もよく必要に応じて選択できると共に、触媒の種類も酸
化触媒であれば何でも使用可能である。さらに、第2の
触媒反応器として複数の触媒反応器を使用することもで
きる。
The present invention is not limited to the above-mentioned actual examples, but can be modified and changed in many ways. For example, in the above embodiment, four stages of catalyst were used in the first catalytic reactor and two stages of catalyst were used in the second catalytic reactor, but the number of stages may be any number and can be selected as needed. Any type of catalyst can be used as long as it is an oxidation catalyst. Furthermore, it is also possible to use a plurality of catalytic reactors as the second catalytic reactor.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
の雰囲気ガス製造装置によれば、第1の触媒反応器から
出た排ガスを更に第2の触媒反応器で接触燃焼させてい
るので、燃焼排ガスより低02および低CO濃度のN2
を主成分とする雰囲気ガスを容易かつ安価に得ることが
できる。また、iqられたガスの濃度変動幅を小さくす
ることができる。
(Effects of the Invention) As is clear from the detailed explanation above, according to the atmospheric gas production device of the present invention, the exhaust gas discharged from the first catalytic reactor is further catalytically combusted in the second catalytic reactor. N2 with lower 02 and CO concentration than combustion exhaust gas.
An atmospheric gas containing as a main component can be obtained easily and inexpensively. Furthermore, the range of concentration fluctuation of the iqed gas can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の雰囲気ガス製造
装置の一実施例を示す線図、 第3図は本発明の雰囲気ガス製造装置を組み込んだN2
ガス製造菰首の一実施例を示す線図、第4図は本発明の
装置にJ3りる02およびCO淵度の時間に対する変動
を示すグラフ、第5図は従来の雰囲気ガス製造装置の一
実施例を承り線図、 第6図はジルコニア式酸素分圧検出器の出力を示寸グラ
フ、 第7図は従来の装置における02およびCO溌度の時間
に対する変動を示すグラフである。 1・・・第1の触媒反応器 2・・・第2の触媒反応器 3.4・・・触媒    5・・・管路6・・・酸素分
圧検出器 6a・・・入口管路6b・・・出口管路  
  7・・・調節器8・・・流量調節バルブ 9・・・
炭化水素系燃料10・・・排ガス    、11・・・
雰囲気ガス12・・・バルブ     13・・・バイ
パス導管21・・・ガスボンベ   22・・・水冷式
冷却器23・・・サージタンク  24・・・ゼオライ
1〜吸着塔第1図 廿 f(H4Fがス 第2図 廿 IOP仔がス 第4図 時間 54gにll!l気がス 廿 51犬区an功”°ズ
1 and 2 are diagrams each showing an embodiment of the atmospheric gas production device of the present invention, and FIG. 3 is an N2 diagram incorporating the atmospheric gas production device of the present invention.
A line diagram showing an example of a gas production head; FIG. 4 is a graph showing changes in J3 RI 02 and CO depth over time in the apparatus of the present invention; and FIG. 5 is a graph showing one example of a conventional atmospheric gas production apparatus. FIG. 6 is a graph showing the output of a zirconia oxygen partial pressure detector, and FIG. 7 is a graph showing changes in O2 and CO intensity over time in a conventional device. 1... First catalytic reactor 2... Second catalytic reactor 3.4... Catalyst 5... Pipe line 6... Oxygen partial pressure detector 6a... Inlet pipe line 6b ...Outlet pipe
7...Adjuster 8...Flow rate adjustment valve 9...
Hydrocarbon fuel 10...exhaust gas, 11...
Atmospheric gas 12...Valve 13...Bypass conduit 21...Gas cylinder 22...Water-cooled cooler 23...Surge tank 24...Zeolyte 1 to adsorption tower Fig. Figure 2 - IOP pup is running Figure 4 Time 54g

Claims (1)

【特許請求の範囲】 1、酸素を含む燃焼排ガスと炭化水素系燃料との混合ガ
スを接触燃焼させる第1の触媒反応器と、該第1の触媒
反応器より排出される接触燃焼排ガス中の酸素分圧を検
出する酸素分圧検出器と、該酸素分圧検出器より検出さ
れた酸素分圧に応じて、前記第1の触媒反応器の上流部
に導入する燃焼排ガス中に加える炭化水素系燃料の量を
制御する燃料調節器とを具える雰囲気ガス製造装置にお
いて、前記酸素分圧検出器の下流側に前記第1の触媒反
応器より排出される接触燃焼排ガスを流通させてガス中
の酸素をより減少するための第2の触媒反応器を設ける
ことを特徴とする雰囲気ガス製造装置。 2、前記第1の触媒反応器の上流部と前記酸素分圧検出
器の下流側であって前記第2の触媒反応器の上流部との
間にバイパス導管を接続して、酸素を含む燃焼排ガスの
一部をバイパスして供給する特許請求の範囲第1項記載
の雰囲気ガス製造装置。 3、前記第1および第2の触媒反応器が、セラミックハ
ニカム触媒担体に酸化触媒を担持したものである特許請
求の範囲第1項又は第2項記載の雰囲気ガス製造装置。 4、前記第1の触媒反応器の酸化触媒がPdで、前記第
2の触媒反応器の酸化触媒がPtである特許請求の範囲
第3項記載の雰囲気ガス製造装置。
[Claims] 1. A first catalytic reactor for catalytically combusting a mixed gas of a combustion exhaust gas containing oxygen and a hydrocarbon fuel; an oxygen partial pressure detector that detects an oxygen partial pressure; and a hydrocarbon to be added to the combustion exhaust gas introduced into the upstream portion of the first catalytic reactor according to the oxygen partial pressure detected by the oxygen partial pressure detector. In an atmospheric gas production device comprising a fuel regulator that controls the amount of fuel in the system, the catalytic combustion exhaust gas discharged from the first catalytic reactor is passed downstream of the oxygen partial pressure detector to generate a gas atmosphere. 1. An atmospheric gas production device comprising a second catalytic reactor for further reducing oxygen. 2. A bypass conduit is connected between the upstream part of the first catalytic reactor and the upstream part of the second catalytic reactor that is downstream of the oxygen partial pressure detector, and the oxygen-containing combustion is performed. The atmospheric gas production device according to claim 1, which bypasses and supplies a part of the exhaust gas. 3. The atmospheric gas production apparatus according to claim 1 or 2, wherein the first and second catalytic reactors each have an oxidation catalyst supported on a ceramic honeycomb catalyst carrier. 4. The atmospheric gas production apparatus according to claim 3, wherein the oxidation catalyst in the first catalytic reactor is Pd, and the oxidation catalyst in the second catalytic reactor is Pt.
JP60142427A 1985-07-01 1985-07-01 Apparatus for producing atmospheric gas Granted JPS624439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142427A JPS624439A (en) 1985-07-01 1985-07-01 Apparatus for producing atmospheric gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142427A JPS624439A (en) 1985-07-01 1985-07-01 Apparatus for producing atmospheric gas

Publications (2)

Publication Number Publication Date
JPS624439A true JPS624439A (en) 1987-01-10
JPH0472576B2 JPH0472576B2 (en) 1992-11-18

Family

ID=15315070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142427A Granted JPS624439A (en) 1985-07-01 1985-07-01 Apparatus for producing atmospheric gas

Country Status (1)

Country Link
JP (1) JPS624439A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747594A1 (en) * 1996-04-23 1997-10-24 Air Liquide METHOD AND INSTALLATION FOR DEVELOPING A THERMAL PROCESSING ATMOSPHERE
FR2747593A1 (en) * 1996-04-23 1997-10-24 Air Liquide METHOD OF PRODUCING A THERMAL PROCESSING ATMOSPHERE AND METHOD OF CONTROLLING SUCH A METHOD
JP2011106999A (en) * 2009-11-18 2011-06-02 Horiba Ltd Dilution air refining method and dilution air refining device
JP2011111369A (en) * 2009-11-27 2011-06-09 Bridgestone Corp Method for producing inert gas, and method for manufacturing tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747594A1 (en) * 1996-04-23 1997-10-24 Air Liquide METHOD AND INSTALLATION FOR DEVELOPING A THERMAL PROCESSING ATMOSPHERE
FR2747593A1 (en) * 1996-04-23 1997-10-24 Air Liquide METHOD OF PRODUCING A THERMAL PROCESSING ATMOSPHERE AND METHOD OF CONTROLLING SUCH A METHOD
EP0803580A1 (en) * 1996-04-23 1997-10-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing a heat treatment atmosphere
EP0803581A1 (en) * 1996-04-23 1997-10-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing a heat treatment atmosphere and method for controlling this process
AU720078B2 (en) * 1996-04-23 2000-05-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for preparing a heat treatment atmosphere and method for regulating said process
CN1078253C (en) * 1996-04-23 2002-01-23 液体空气乔治洛德方法利用和研究有限公司 Process for preparing heat treatment atmosphere and method for regulating said process
JP2011106999A (en) * 2009-11-18 2011-06-02 Horiba Ltd Dilution air refining method and dilution air refining device
JP2011111369A (en) * 2009-11-27 2011-06-09 Bridgestone Corp Method for producing inert gas, and method for manufacturing tire

Also Published As

Publication number Publication date
JPH0472576B2 (en) 1992-11-18

Similar Documents

Publication Publication Date Title
US3928961A (en) Catalytically-supported thermal combustion
US5047220A (en) Catalytic denitrification control process and system for combustion flue gases
EP3489491B1 (en) Method and system for controlling the products of combustion
US6968678B2 (en) High efficiency, reduced emissions internal combustion engine system, especially suitable for gaseous fuels
CN101678274B (en) System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases
ATE47705T1 (en) GENERATOR FOR CATALYTIC PRODUCTION OF HYDROGEN STARTING FROM METHANOL.
JPS6225927B2 (en)
NO972632D0 (en) Power generation process comprising a combustion process
EP0521949B1 (en) IMPROVED LOW NOx COGENERATION PROCESS AND SYSTEM
KR850004259A (en) Method for producing syngas from hydrocarbon fuel
US3860697A (en) Method for recovery of elemental sulfur from low hydrogen sulfide sulfur plant feed gas
US7152394B2 (en) System and method for reducing nitrogen oxides in the exhaust of an internal combustion engine
JPS624439A (en) Apparatus for producing atmospheric gas
EP0549191A1 (en) Gas turbine combustors
US11459926B2 (en) Apparatus, system, and method for oxidizing methane in a lean-burn engine exhaust
US3832443A (en) Exhaust gas conversion process
Clark et al. Bench scale testing of low-NOx LBG combustors
KR20200130261A (en) Method for producing heat in the plant
EP2376754B1 (en) Method and apparatus for testing a catalyst material
US3808323A (en) Purification of waste gases containing oxides of nitrogen and oxygen
CA1175211A (en) Method for catalytic purification of combustion exhaust gases
JPH0733401A (en) Apparatus for producing gas
Jin et al. Treatment Technology of N 2 O by using Bunsen Premixed Flame
US20240309790A1 (en) Purification system
US9987612B1 (en) Reactor assembly