JPS6244696A - Electrolytic processing method of waste water - Google Patents
Electrolytic processing method of waste waterInfo
- Publication number
- JPS6244696A JPS6244696A JP60184202A JP18420285A JPS6244696A JP S6244696 A JPS6244696 A JP S6244696A JP 60184202 A JP60184202 A JP 60184202A JP 18420285 A JP18420285 A JP 18420285A JP S6244696 A JPS6244696 A JP S6244696A
- Authority
- JP
- Japan
- Prior art keywords
- ions
- electrolytic
- iron oxides
- waste
- processing method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、発電用原子力プラント冷却水、放射性液体廃
棄物及び一般産業廃水等の浄化に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the purification of nuclear power plant cooling water, radioactive liquid waste, general industrial wastewater, and the like.
発電用原子力プラント冷却水中には、復水器、ヒータ等
の機器、或いは配管の腐食性成物がわずかに存在する。There are small amounts of corrosive substances in equipment such as condensers and heaters, or in piping, in the cooling water of nuclear power plants.
この腐食生成物は鉄酸化物、水酸化鉄等が主成分があり
、クラッドと称されている。This corrosion product is mainly composed of iron oxide, iron hydroxide, etc., and is called cladding.
このクラッドは原子炉に持ち込まれると燃料棒表面に付
着し中性子照射を受けてクラッド中のコバルト、ニッケ
ル等が放射化される。後にこれら放射性化クラッドは機
器、配管等に付着、蓄積され作業員の被曝防止上問題と
なる。また、冷却水中の放射化クラッドは1機器ブロー
水、処理装置の再生、逆洗廃液として、放射性廃棄物処
理設備へ収集される。従って、これらクラッドを極力原
子炉へ持ち込まない様、復水系統、原子炉浄化系統波射
性液体廃棄物処理系統等で除去している。When this cladding is brought into a nuclear reactor, it adheres to the surface of the fuel rod and is irradiated with neutrons to activate cobalt, nickel, etc. in the cladding. Later, these radioactive cruds adhere to and accumulate on equipment, piping, etc., posing a problem in preventing radiation exposure for workers. In addition, the radioactive crud in the cooling water is collected as blow water from one equipment, treatment equipment regeneration, and backwash waste liquid to the radioactive waste treatment facility. Therefore, in order to prevent these cruds from entering the reactor as much as possible, they are removed by the condensate system, reactor purification system, radioactive liquid waste treatment system, etc.
従来より、クラッド除去法として、ろ過脱塩器脱塩器を
必要に応じ組み合わせ用いられてきているが、そのろ過
動剤、及び樹脂等が廃棄物として多量に発生する。また
、非助剤型フィルターにおいては、目詰まりによる逆洗
回復性の低下、及び高価等の問題をかかえており、現在
、二次廃棄物発生量の少い、かつ目すまりを防止出来る
新フィルターの開発が望まれている。Hitherto, as a crud removal method, a filtration demineralizer and a demineralizer have been used in combination as necessary, but a large amount of filtration agent, resin, etc. is generated as waste. In addition, non-auxiliary filters have problems such as reduced backwash recovery performance due to clogging and high cost.Currently, a new type of filter that generates less secondary waste and prevents clogging is being developed. The development of filters is desired.
なお、関連する技術として、例えば、特開昭54−27
259号、実公昭56−46874号等がある。In addition, as a related technique, for example, Japanese Patent Application Laid-Open No. 54-27
No. 259, Utility Model Publication No. 56-46874, etc.
本発明の目的は、発電用原子力プラント冷却水、放射性
液体廃棄物及び一般産業廃水等の浄化において、絶縁性
フィルタ、あるいは疎水性絶縁質材料等を介して多孔質
導電性材料を充填した電解槽で通電することにより、鉄
酸化物懸濁固形物及びイオン等を除去する方法を提供す
ることにある。The purpose of the present invention is to provide an electrolytic cell filled with a porous conductive material via an insulating filter or a hydrophobic insulating material, etc. in the purification of nuclear power plant cooling water, radioactive liquid waste, general industrial wastewater, etc. An object of the present invention is to provide a method for removing iron oxide suspended solids, ions, etc. by applying electricity to the iron oxide.
本発明は1発電用原子力プラント冷却水放射性液体廃棄
物、及び一般産業廃水中に含まれる鉄酸化物、懸濁固形
物及びイオンを除去する方法、並びに装置に関し、絶縁
性フィルタ、あるいは疎水性絶縁質物質を介して、多孔
質導電性物質を充填する多角柱型電解構造体に直流通電
して、充填物を絶縁体を介しそれぞれ正、負に帯電させ
る。それにより、鉄酸化物を荷電中和、あるいは電気法
、 ’Jb#:14ニー=に’J15. *f:
に7′10”18゜すなわち、複極化した充填物の負の
帯電域に、はぼ中性では正の表面電位を持つ鉄酸化物を
荷電中和により除去する。また、正の帯電域では、負の
表面電位を持つ鉄酸化物を同様に除去すると共に、正の
表面電位を持つ鉄酸化物を電気泳動効果により絶縁性フ
ィルタ等側へ移動させ捕捉除去する。The present invention relates to a method and apparatus for removing iron oxides, suspended solids, and ions contained in nuclear power plant cooling water radioactive liquid waste and general industrial wastewater, and relates to an insulating filter or a hydrophobic insulating filter. A direct current is applied to the polygonal column electrolytic structure filled with the porous conductive material through the porous conductive material, and the filling is positively and negatively charged through the insulator. This neutralizes the charge on the iron oxide or uses the electrical method to 'Jb#:14k='J15. *f:
In other words, in the negatively charged region of the bipolar filling, iron oxide, which has a positive surface potential in the neutral state, is removed by charge neutralization. Then, iron oxides having a negative surface potential are removed in the same manner, and iron oxides having a positive surface potential are moved to the insulating filter or the like side by the electrophoretic effect and captured and removed.
また、絶縁性フィルタ等両端では、正負それぞれに電極
となっている為に、イオンを吸蔵電析により除去する。In addition, since the insulating filter and the like have positive and negative electrodes at both ends, ions are removed by occlusion electrodeposition.
構造体は、多角柱状外殻に充填物を流出しない程度の孔
径を有する陰極材を、ユニット中央には、直流通電して
も溶出しないフェライト棒、白金メッキ棒等の不溶性陽
極を用い、その間に絶縁性フィルタ、あるいは、疎水性
絶縁質物質を介し、多孔質導電性物質を層状に充臀する
。The structure uses a cathode material with a pore size that does not allow the filling to flow out in the polygonal columnar outer shell, and an insoluble anode such as a ferrite rod or platinum plated rod that does not elute even when DC current is applied to the center of the unit. A porous conductive material is filled in a layer through an insulating filter or a hydrophobic insulating material.
操作は、電解槽下部より上部へ上昇流にて通水し、通電
法は、直流を水の電気分解を起す範囲内に設定する。In operation, water is passed in an upward flow from the bottom to the top of the electrolytic cell, and the energization method is set to a direct current within a range that causes water electrolysis.
発電用原子力プラントにおける一般的な放射性液体廃棄
物処理設備の概略系統を第1図に示す。Figure 1 shows a schematic diagram of a typical radioactive liquid waste treatment facility in a nuclear power plant.
本系統は、廃液受タンク1、廃液移送ポンプ2゜ろ過説
塩器3、説液器4、及び処理水タンク5で構成される。This system is composed of a waste liquid receiving tank 1, a waste liquid transfer pump 2, a filtration device 3, a solution device 4, and a treated water tank 5.
廃液受タンク1に収集された鉄酸化物、イオンを含む廃
液は、廃液移送ポンプ2によってろ過説塩器3へ流通さ
れ、ここで鉄酸化物を除去し、その後脱塩器4にてイオ
ンを除去した後廃液収集タンク5へ移送される。The waste liquid containing iron oxides and ions collected in the waste liquid receiving tank 1 is distributed by the waste liquid transfer pump 2 to the filtration chlorinator 3, where the iron oxides are removed, and then the ions are removed by the demineralizer 4. After removal, it is transferred to the waste liquid collection tank 5.
次に、本発明を適用した設備の一例として放射性液体廃
棄物処理設備の概略系統を第2図に示す。Next, FIG. 2 shows a schematic system of radioactive liquid waste processing equipment as an example of equipment to which the present invention is applied.
ろ過説塩器、脱塩器に代え1本発明の電解式浄化装Wt
6を組み込むことにより、鉄酸化物、及びイオンの除去
ができ、また、設備費の低減、及び大幅な廃棄物量低減
が可能となる。An electrolytic purification system of the present invention instead of a filtration system and a desalination system Wt
By incorporating 6, iron oxides and ions can be removed, equipment costs can be reduced, and the amount of waste can be significantly reduced.
次に本発明の概略構造の一例を第3図に示す。Next, an example of the schematic structure of the present invention is shown in FIG.
装置7は耐圧容器の形をなし、この中に多角柱状の電解
構造体8を充填物を流出しない程度の孔径を有する支持
体9で固定している。The device 7 is in the form of a pressure-resistant container, into which a polygonal columnar electrolytic structure 8 is fixed with a support 9 having a pore size large enough to prevent the filling material from flowing out.
廃液は下部より通水されて電解構造体8を通過して、上
部より回収され電解構造体内8で浄化される。これに必
要な直流通電は電解構造体8の陽極と陰極を並列に接続
して、外部電源10で操作される。The waste liquid is passed through the electrolytic structure 8 from the lower part, collected from the upper part, and purified in the electrolytic structure 8. The direct current required for this is operated by an external power source 10 by connecting the anode and cathode of the electrolytic structure 8 in parallel.
次に、電解構造体の詳細を第4図に示す。Next, the details of the electrolytic structure are shown in FIG.
多角柱状電解構造体の外殻(陰極)11は、支持体9に
より固定され、その中央には不溶性陽極12が挿入され
ている。両者の間は、多孔質導電性物質13で形成され
、その間には1発生ガス抜き用スペーサ14を両端に介
し、絶縁性フィルタ、あるいは疎水性絶縁質物質15が
挿入されている。The outer shell (cathode) 11 of the polygonal columnar electrolytic structure is fixed by a support 9, and an insoluble anode 12 is inserted in the center thereof. A porous conductive material 13 is formed between the two, and an insulating filter or a hydrophobic insulating material 15 is inserted between them with spacers 14 for venting gas being interposed at both ends.
なお、陽極部16陰極部17と支持体9の接続は、電気
的絶縁材を設けるか、あるいは陽極部だけ絶縁する。Note that for the connection between the anode part 16 and the cathode part 17 and the support body 9, an electrical insulating material is provided, or only the anode part is insulated.
構造体の機能は、直流通電により充填材が陽極と陰極と
複極化、及び帯電する。陰極部ではコバルトイオン等の
陽イオンを、陽極部で塩素イオン等の陰イオンを、それ
ぞれ電気的に吸蔵する。さらに、鉄酸化物は、おのおの
の表面電位と逆の極性を有する帯電域にて荷電中和によ
り付着する。The function of the structure is that the filling material becomes bipolarized as an anode and a cathode and is charged by direct current. The cathode part electrically stores cations such as cobalt ions, and the anode part electrically stores anions such as chlorine ions. Further, iron oxides are deposited by charge neutralization in charged regions having a polarity opposite to the respective surface potentials.
また、同極性の表面電位をもつ鉄酸化物は、電気泳動効
果により移動し、絶縁性フィルタ等により捕捉保持され
る。このようにしてそれぞれ不純物質を除去することが
できる。Further, iron oxides having surface potentials of the same polarity move due to the electrophoretic effect and are captured and held by an insulating filter or the like. In this way, each impurity can be removed.
本発明の効果を実証する実験にもいて述べる。An experiment to demonstrate the effects of the present invention will also be described.
実際の原子力プラントの冷却水及び放射性液体廃棄物を
模擬することは困難であり、実験は、Coイオン、及び
α−Fe203の除去効果を示す。尚、実験方式は実機
適用性を考慮し、通水方式とした。It is difficult to simulate the cooling water and radioactive liquid waste of a real nuclear power plant, and experiments show the effectiveness of removing Co ions and α-Fe203. In addition, the experimental method was a water flow method in consideration of applicability to actual equipment.
まず、実験に用いた電解槽を第5図に示す。電解槽の大
きさは40X40X150mで、中間部に電解部を設け
ている。電解部は、充填材として、活性炭素繊維18、
(Log−DRy)その中央にガス抜き用スペーサとし
てナイロンあみ19を両端に介し、絶縁性フィルタとし
てナイロン繊維Ig−DRy20を挿入した。支持電極
は陽極、陰極とも40X100mmの白金メッキ板21
を用いた。実験は、所定濃度の塩化コバルト液と平均粒
径1μmの酸化鉄(Ill)含有液を用い、一定電流の
下でそれぞれの鉄とイオン濃度の変化を測定した。濃度
分析は両者とも原子吸光分析装置を用いた。First, FIG. 5 shows the electrolytic cell used in the experiment. The size of the electrolytic cell is 40 x 40 x 150 m, and an electrolytic section is provided in the middle. The electrolytic part contains activated carbon fiber 18 as a filler,
(Log-DRy) Nylon fiber Ig-DRy 20 was inserted as an insulating filter in the center with nylon thread 19 interposed at both ends as a spacer for degassing. The supporting electrode is a platinum plated plate 21 of 40 x 100 mm for both the anode and cathode.
was used. In the experiment, a cobalt chloride solution with a predetermined concentration and a solution containing iron oxide (Ill) with an average particle size of 1 μm were used, and changes in the respective iron and ion concentrations were measured under a constant current. For concentration analysis, an atomic absorption spectrometer was used in both cases.
) よf、 M(7)□6イ□□6つ9oオオ。) Yo f, M(7)□6i□□69ooh.
□、よ、14 、3 m g / Aのa−Fe、03
含有液を40ff用いて、通水時間に対する鉄濃度変化
を見ている。□, Yo, 14, 3 mg/A of a-Fe, 03
Using 40ff of the containing liquid, changes in iron concentration with respect to water flow time are observed.
これより無通電状態では、鉄酸化物が全んど除去出来な
いが、0.05A通電すると急激に除去されるのがわか
る。この様に蒸留水中の鉄酸化物粒子の表面電位は正に
帯電しているので、充填材の負の帯電域に保持されてお
り、また、正の帯電域側の絶縁性フィルタにも多くの鉄
酸化物が捕捉されているのを確認している。It can be seen from this that in the non-current state, the iron oxide cannot be completely removed, but when 0.05 A of current is applied, it is rapidly removed. In this way, the surface potential of iron oxide particles in distilled water is positively charged, so the filler is kept in the negatively charged region, and the insulating filter in the positively charged region also has many It has been confirmed that iron oxides are captured.
次に、Coイオンの除去特性を第7図に示す。Next, the removal characteristics of Co ions are shown in FIG.
原液は、11■/Qの塩化コバルト液を4011用い1
通電状態は鉄酸化物と同様である。通電により活性炭素
繊維が絶縁性フィルタを介して複極イヒし、それぞれの
電極部と逆荷電のイオンを細孔に吸蔵するものと考えら
れる。The stock solution is 11/Q using 4011 cobalt chloride solution.
The energization state is similar to that of iron oxide. It is thought that when electricity is applied, the activated carbon fiber becomes bipolar through the insulating filter, and the pores occlude ions that are oppositely charged to the respective electrodes.
以上の実験結果から、鉄酸化物、及びイオンを高除去率
で除去できることがわかる。The above experimental results show that iron oxides and ions can be removed at a high removal rate.
第1図は、本発明の一実施例の発電用原子力プラントに
おける放射性液体廃棄物処理設備の概略系統図、第2図
は本発明の放射性液体廃棄物処理設備の概略系統図、第
3図は本発明の浄化装置の概略構造図、第4図は本発明
の浄化装置の電解構造体の構造図、第5図は本発明を実
証する実験の実験装置の断面図、第6図、第7図は本発
明を実証する実験結果を示す説明図である。
1・・・廃液受タンク、2・・・廃液移送ポンプ、3・
・・ろ過脱塩器、4・・・脱塩器、5・・・処理水タン
ク、8・・・電解構造体、10・・・外部電源、11・
・・電解構造体の外殻、18・・・活性炭素繊維、21
・・・白金メッキ板。FIG. 1 is a schematic system diagram of a radioactive liquid waste treatment facility in a power generation nuclear power plant according to an embodiment of the present invention, FIG. 2 is a schematic system diagram of a radioactive liquid waste treatment facility of the present invention, and FIG. 4 is a schematic structural diagram of the purification device of the present invention, FIG. 4 is a structural diagram of the electrolytic structure of the purification device of the present invention, FIG. The figure is an explanatory diagram showing experimental results demonstrating the present invention. 1... Waste liquid receiving tank, 2... Waste liquid transfer pump, 3...
... Filtration demineralizer, 4 ... Demineralizer, 5 ... Treated water tank, 8 ... Electrolytic structure, 10 ... External power supply, 11.
... Outer shell of electrolytic structure, 18 ... Activated carbon fiber, 21
...Platinum plated plate.
Claims (1)
、及び一般産業廃水等に含まれる鉄酸化物、懸濁固形物
及びイオンの電解処理法において、支持陽極と陰極の間
に絶縁材料と多孔質導電性材料を交互に配し、帯電部と
捕捉部を有して鉄酸化物並びにイオンを分離除去するこ
とを特徴とする廃水の電解処理方法。1. In the electrolytic treatment method for iron oxides, suspended solids, and ions contained in cooling water of nuclear power plants, radioactive liquid waste, general industrial wastewater, etc., an insulating material and porous material are used between the supporting anode and the cathode. 1. An electrolytic treatment method for wastewater, which comprises alternating conductive materials and having a charged part and a trapping part to separate and remove iron oxides and ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184202A JPS6244696A (en) | 1985-08-23 | 1985-08-23 | Electrolytic processing method of waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60184202A JPS6244696A (en) | 1985-08-23 | 1985-08-23 | Electrolytic processing method of waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6244696A true JPS6244696A (en) | 1987-02-26 |
Family
ID=16149141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60184202A Pending JPS6244696A (en) | 1985-08-23 | 1985-08-23 | Electrolytic processing method of waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6244696A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01150899A (en) * | 1987-11-03 | 1989-06-13 | Westinghouse Electric Corp <We> | Method and apparatus for removing radioactive metal ion from pollution removing solution |
-
1985
- 1985-08-23 JP JP60184202A patent/JPS6244696A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01150899A (en) * | 1987-11-03 | 1989-06-13 | Westinghouse Electric Corp <We> | Method and apparatus for removing radioactive metal ion from pollution removing solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007326100A (en) | Electrochemical system and method for removal of charged chemical species from contaminated liquid and solid waste | |
EP1487748B1 (en) | Electrochemical process for decontamination of radioactive materials | |
US4879006A (en) | Liquid treatment process | |
KR100934929B1 (en) | Regenerative Electrochemical Polishing Decontamination of metallic Radioactive Wastes and Decontamination Liquid Waste Treatment by Electro-sorption and Electro-deposition | |
JP3227921B2 (en) | Apparatus and method for treating wastewater containing oil composed of ester | |
CN103249485A (en) | Ion exchange deionization apparatus with electrical regeneration | |
US8143471B2 (en) | Electrochemical capacitive concentration and deactivation of actinide nuclear materials | |
JPS6244696A (en) | Electrolytic processing method of waste water | |
JP2923108B2 (en) | Method for removing impurities from printed circuit board washing wastewater | |
KR101624453B1 (en) | Equipment for decontamination of waste ionexchange resin and activated carbon polluted radioactive substance and method therefor | |
JPS59224598A (en) | Electrolytic regenerating method of used ion-exchange resin | |
KR100454324B1 (en) | Electrosorption Equipments for Selective Removal of Inorganic Ions in Liquid Waste | |
CN112340917B (en) | Method and system for treating radioactive wastewater | |
JPS59162493A (en) | Method of removing iron oxide adhering to ion exchange resin | |
JPS59154398A (en) | Method of recovering radioactive deconamination liquid waste | |
JPH0557560B2 (en) | ||
JPS6195295A (en) | Water treatment device for nuclear power plant | |
JPH031634B2 (en) | ||
Guiragossian et al. | The extraction of heavy metals by means of a new electrolytic method | |
KR0148088B1 (en) | Process and apparatus for regeneration of reagent for decontamination using waste water treatment by electrodialysis | |
KR820001652B1 (en) | Combination ion exchange and electrodialysis fluid purification apparatus | |
JPH0664188B2 (en) | Radionuclide electrodeposition removal device | |
Elaziz et al. | Electrochemistry and Radioactive Wastes: A Scientific Overview | |
JPS62183865A (en) | Multipolar packed electrolytic type filter and its operation | |
JPS61241700A (en) | Decontamination method using fixed-bed electrolytic cell |