JPS6244547A - Composite aluminum alloy material - Google Patents
Composite aluminum alloy materialInfo
- Publication number
- JPS6244547A JPS6244547A JP18399285A JP18399285A JPS6244547A JP S6244547 A JPS6244547 A JP S6244547A JP 18399285 A JP18399285 A JP 18399285A JP 18399285 A JP18399285 A JP 18399285A JP S6244547 A JPS6244547 A JP S6244547A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- matrix
- aluminum alloy
- fibers
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
近年、アルミニウム及びアルミニウム合金をマトリック
スとし、その中に強化材として例えば炭化珪素の繊維、
ウィスカー、粒子などを分散させたアルミニウム系複合
材料がさまざまな分野、例えば内燃機関用部品などに、
鋼製品に代って比強度、比剛性の高いアルミニウム系複
合材料とじて注目を集めている。[Detailed Description of the Invention] [Technical Field] In recent years, aluminum and aluminum alloys are used as a matrix, and reinforcing materials such as silicon carbide fibers,
Aluminum composite materials with dispersed whiskers and particles are used in various fields, such as internal combustion engine parts.
It is attracting attention as an aluminum-based composite material with high specific strength and rigidity that can replace steel products.
本発明は該アルミニウム系複合材料の中で1耐熱性の高
いしかも加工性の良いアルミニウム合金複合材料に関す
るものである。The present invention relates to an aluminum alloy composite material which has high heat resistance and good workability among the aluminum-based composite materials.
金属をマ) IJラックスした繊維強化複合材料は、強
化材として長礒維を用も・たものと、長* H,il、
を細かく切断して作製したチョツプド繊維、ウィスカー
、粒子といった一種の短繊維型(以後短繊維と称す)を
用いたものに分けられる。前者は炭化珪素繊維、炭素繊
維、アルミナ繊維、ボロン繊維などの連続繊維を用いて
おり、溶浸法、高圧鋳造法、強化繊維の周囲にマトリッ
クス合金をかぶせたプリプレグをつ(リホットプレスで
成形する方法、または繊維とマトリックス金属板とを交
互に積層し真空中で加熱加圧する方法などでつくられる
。IJ-luxed fiber-reinforced composite materials include those that use long copper fibers as reinforcing materials, and long * H, il,
It can be divided into short fiber types (hereinafter referred to as short fibers) such as chopped fibers, whiskers, and particles made by cutting the fibers into small pieces. The former uses continuous fibers such as silicon carbide fibers, carbon fibers, alumina fibers, and boron fibers, and is produced by infiltration, high-pressure casting, and prepreg in which the reinforcing fibers are covered with a matrix alloy (formed by rehot pressing). It can be made by a method such as stacking fibers and matrix metal plates alternately and heating and pressing them in a vacuum.
しかし、このようにしてつくられた長牟威維強化複合材
料は比強度、比剛性、耐熱性に優れるが鍛造、押出、圧
延といった製品にするための成形加工は勿論のこと曲げ
加工を行うことも繊維の破断をおこすため難しい。即ち
加工性圧乏しい。従って製品の形に合わせてつくらねば
ならないから製作費が多(かかる。また強化繊維の方向
に対しては高強度であるが、繊維方向に90°の横方向
に対しては強化されないという強化繊維の方向性を持つ
欠点がある。However, although the Nagamui fiber-reinforced composite material made in this way has excellent specific strength, specific stiffness, and heat resistance, it can be used not only for forming processes such as forging, extrusion, and rolling to make products, but also for bending processes. It is difficult because it causes breakage. In other words, workability is poor. Therefore, the production cost is high because it has to be made to fit the shape of the product.Also, reinforcing fibers have high strength in the direction of the reinforcing fibers, but are not reinforced in the transverse direction at 90 degrees to the fiber direction. It has the disadvantage of having a directionality.
それに対して後者の短繊維強化複合材料は前者に比べて
強度面ではやや劣るも強化繊維の方向性の欠点はなく、
マトリックス合金のみの場合と比べると優れた強度、剛
性、耐摩耗性などを有して(・る。しかも鍛造、押出な
どによる成形加工が可能である。On the other hand, the latter short fiber-reinforced composite material is slightly inferior to the former in terms of strength, but it does not have the disadvantage of the directionality of the reinforcing fibers.
It has superior strength, rigidity, and wear resistance compared to matrix alloys alone. Moreover, it can be formed by forging, extrusion, etc.
上述のように、短繊維強化複合材料は長繊維強化複合材
料よりも優れた点もあるが高温での強度低下が著るしい
。即ち耐熱性が劣ることである。As mentioned above, short fiber reinforced composite materials have some advantages over long fiber reinforced composite materials, but their strength decreases significantly at high temperatures. That is, heat resistance is poor.
これは短繊維強化型は長繊維強化型に比べてマトリック
ス金属の影響を受は易いためである。即ちアルミニウム
合金は200°C附近で強度低下をおこし、それに応じ
て複合材料の強度も低下する。耐熱性に彎れるといわれ
る高シリコンベースのアルミニウム合金をマトリックス
とした繊維強化複合材料でも短繊維型の場合は、常温で
約45 kVmm20強度が高温では約20kg/mm
2に低下する。この耐熱性の向上が短繊維強化複合材料
の開発上解決を要する問題点である。This is because the short fiber reinforced type is more easily affected by the matrix metal than the long fiber reinforced type. That is, the strength of aluminum alloys decreases around 200°C, and the strength of the composite material decreases accordingly. Even fiber-reinforced composite materials with a matrix of silicon-based aluminum alloy, which is said to have good heat resistance, have a short fiber type with a strength of about 45 kVmm20 at room temperature but about 20 kg/mm at high temperatures.
It drops to 2. This improvement in heat resistance is a problem that needs to be solved in the development of short fiber reinforced composite materials.
短繊維強化アルミニウム系複合材料の問題点である高温
で高強度を維持させるため、即ち耐熱性を上げるために
マトリックスとしてFeを強制固溶させたAl −Fe
系合金を用いる。該合金はFe量が固溶限を越えている
ために一般に行われている鋳造法や溶浸法ではマトリッ
クスにすることはできないので、急冷凝固によってつく
った合金粉末を用いた粉末冶金法によった。合金の成分
は、Fe量を′5%以上としたのは耐熱性を合金に与え
るのに必要量で、12%未満としたのはFe量を増しす
ぎると合金粉末中に初晶化合物を生じるためと、マトリ
ックス合金の比重が増加し、複合材料の比強度が低下す
るためである。Co 、 Cr 、 Ni 、 Mn
、 La 、 Zr 。In order to maintain high strength at high temperatures, which is a problem with short fiber-reinforced aluminum composite materials, in other words to increase heat resistance, Al-Fe is a matrix in which Fe is forcibly dissolved.
Uses a series alloy. Because the amount of Fe in this alloy exceeds the solid solubility limit, it cannot be made into a matrix by the commonly used casting or infiltration methods, so it can be made into a matrix by powder metallurgy using alloy powder made by rapid solidification. Ta. Regarding the alloy components, the amount of Fe is set at 5% or more because it is necessary to provide heat resistance to the alloy, and the amount of Fe is set at less than 12% because if the amount of Fe is increased too much, primary crystal compounds will occur in the alloy powder. This is because the specific gravity of the matrix alloy increases and the specific strength of the composite material decreases. Co, Cr, Ni, Mn
, La, Zr.
V 、 Ce、Cu、Si 、Mo、Ti (D添加は
耐熱性を更に向上させ、これら添加量を全体で10%未
満としたのはFe量の制限と同じ理由で比強度の低下を
おそれたためである。V, Ce, Cu, Si, Mo, Ti (The addition of D further improves the heat resistance, and the reason why the amount of these additions was set to less than 10% in total was because it was feared that the specific strength would decrease for the same reason as the restriction on the amount of Fe. It is.
強化材としては炭化珪素繊維、炭素繊維、アルミナ繊維
、ボロン繊維などの短繊維および炭化珪素、窒化珪素、
アルミナなどのウィスカー、および炭化珪素、窒化珪素
、アルミナなどの粒子を1種又は2種以上を、強度や耐
摩耗性などの所望性能に応じ、且つ経済面も考慮して、
これらの含有量をきめることができる。As reinforcing materials, short fibers such as silicon carbide fiber, carbon fiber, alumina fiber, and boron fiber, as well as silicon carbide, silicon nitride,
Whiskers such as alumina, and one or more types of particles such as silicon carbide, silicon nitride, alumina, etc. are added depending on desired performance such as strength and wear resistance, and also considering economic aspects.
These contents can be determined.
表の近1〜10の10種類の本発明による実施例の試料
をつくった。即ちマトリックスとしては:FeとCe
、 Cr 、 Mo 、 Co 、 Ni 、 La
、 S’i 、 Mn 、などを本発明の制限量内にし
たアルミニウム合金をガスアトマイズ法により急冷凝固
してつ(つた粒径105μη以下の合金粉末を用い、強
化材としては表に示す各種の短繊維、ウィスカー、粒子
を用い、マトリックス合金粉末と混合後、冷間成形、脱
ガス、熱間成形の順序の工程を経て80mm0 、10
0nmlの本発層
「
※ioo時間保持
明実施例による複合材をつくった。Ten types of samples according to the present invention, numbered 1 to 10 in the table, were prepared. That is, as a matrix: Fe and Ce
, Cr, Mo, Co, Ni, La
, S'i, Mn, etc. are within the limits of the present invention, and are rapidly solidified by gas atomization (alloy powder with a grain size of 105μη or less is used, and the reinforcing material is made of various short metals shown in the table). Using fibers, whiskers, and particles, after mixing with matrix alloy powder, the process of cold forming, degassing, and hot forming is performed to form a 80mm0,10mm
A composite material of 0nml of this layer was prepared according to the *ioo time retention example.
又比較例としては表に示すように、マトリックス合金と
しては本発明によらないもの即ち気11゜述14.遅1
6.述17の4種類と、マトリックス合金は本発明によ
るも強化材を用いないもの即ちNQ 12 + N[l
15の2種類と、マトリックス合金も本発明によらず
しかも強化材も用いない単なるアルミニウム合金1種類
即ち一1斗と、これら7種類の比較例の合金材を上記実
施例の複合材に準じてつくった。In addition, as a comparative example, as shown in the table, the matrix alloy was not according to the present invention, that is, 11° and 14. late 1
6. In addition to the four types mentioned above, the matrix alloy is one according to the present invention that does not use reinforcing material, that is, NQ 12 + N[l
Two types of No. 15, one type of simple aluminum alloy that does not use a matrix alloy according to the present invention and no reinforcing material, that is, No. 11, and these seven types of comparative example alloy materials were prepared according to the composite material of the above example. I made it.
次に一ヒ記10種類の本発明実施例の複合材料と7種類
の比較例合金材を押出を行った後250 ’Cと300
’Cとの試験温度で100時間保持した後、その温度で
引張試験を行った。なお製造中の加熱温度は固溶してい
るFeが粗大な析出物にならない様に400°Cを越え
ないようにした。これらの結果を表に併記した。Next, after extruding the 10 types of composite materials according to the embodiments of the present invention and the 7 types of comparative alloy materials, the
After holding at the test temperature of 'C for 100 hours, a tensile test was conducted at that temperature. The heating temperature during production was set not to exceed 400°C so that Fe dissolved in solid solution would not form coarse precipitates. These results are also listed in the table.
表によれば、本発明による実施例のトh 1〜猶10は
本発明によらないアルミニウム合金をマトリックスに用
いた比」咬例気11.猶142Nn16r述17とは口
00°CX100時間後における高温引張り強度を比較
してみろと、本発明実施例は2 ”、、 5 kgf/
mm2以上を示しているのに比較例は13.5 kgf
/mm2以下を示している。又マトリックスには本発明
によるアルミニウム合金を用いても強化材を用いない単
なる耐熱アルミニウム合金N[112とマトリックス合
金は述12と同じだが強化材を用いた本発明による実施
例の複合材料Nn1.Nch2との高温引張り強度を比
べてみるに本発明実施例の方が高い値を示している。こ
のことは遅7と遅15を比べ一ζも同じようなことが云
える。本発明の実施例の中で寛6、遅69M7がやや高
温強度が他の実施1fljに比して低いのし気運6はマ
トリックス合金にFe以外の強化金属が添加されてない
ためで、隘6および\(L7はFefrが本発明のFe
量の下限に近(なっているためである。比較例へ1へ1
6はマトリックス合金も本発明合金でもなく又強化材も
用いてない単なる6061アルミニウム合金であって、
本試験において最低の試験結果を示している。これは反
面本発明の効果を如実に表わしているものと思われろ。According to the table, 1 to 10 of the examples according to the present invention are 11. Comparing the high temperature tensile strength after 100 hours at 00°C with 142Nn16r described in 17, the example of the present invention has a tensile strength of 2'', 5 kgf/
Although it shows more than mm2, the comparative example is 13.5 kgf
/mm2 or less. In addition, a simple heat-resistant aluminum alloy N[112, which uses the aluminum alloy according to the present invention in the matrix but does not use a reinforcing material, and a composite material Nn1. Comparing the high temperature tensile strength with Nch2, the example of the present invention shows a higher value. Comparing slow 7 and slow 15, the same can be said for 1ζ. Among the examples of the present invention, Kan6 and Sho69M7 have slightly lower high temperature strength than other examples 1flj. and \(L7 is Fefr of the present invention)
This is because it is close to the lower limit of the amount. To comparative example 1 to 1
6 is a mere 6061 aluminum alloy that is neither a matrix alloy nor an alloy of the present invention, and does not use any reinforcing material,
It shows the lowest test result in this test. On the other hand, this seems to clearly represent the effects of the present invention.
上述したように、比強度、比剛性に優れた性能を有する
繊維強化アルミニウム系複合材料において強化材として
短繊維型を撰びマトリックスのアルミニウム合金に耐熱
性のあるAl −Fe系合金を撰び更に耐熱性を向上さ
せろ添加元素を加えたことにより、繊維強化アルミニウ
ム系複合材料としての欠点である加工性および耐熱性の
劣る欠点を改善し得て、用途の拡大て寄与するところ大
である。As mentioned above, in the fiber-reinforced aluminum composite material, which has excellent performance in specific strength and specific stiffness, short fiber type is selected as the reinforcing material, and a heat-resistant Al-Fe alloy is selected as the matrix aluminum alloy. By adding an additive element that improves heat resistance, it is possible to improve the disadvantages of poor workability and heat resistance as a fiber-reinforced aluminum composite material, which greatly contributes to expanding the range of uses.
Claims (1)
種以上を、マトリックスとしてのアルミニウム合金中に
分散させた複合材料において、該アルミニウム合金は、
Feを3〜12wt%含み、Co、Cr、Ni、Mn、
La、Zr、V、Ce、Cu、Si、Mo、Tiの1種
又は2種以上を10wt%未満含み、残部をAlと不純
分からなることを特徴とするアルミニウム合金複合材料
。One or two of particles, whiskers, and short fibers as reinforcing materials
In a composite material in which at least one species is dispersed in an aluminum alloy as a matrix, the aluminum alloy comprises:
Contains 3 to 12 wt% of Fe, Co, Cr, Ni, Mn,
An aluminum alloy composite material comprising less than 10 wt% of one or more of La, Zr, V, Ce, Cu, Si, Mo, and Ti, with the remainder consisting of Al and impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18399285A JPS6244547A (en) | 1985-08-23 | 1985-08-23 | Composite aluminum alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18399285A JPS6244547A (en) | 1985-08-23 | 1985-08-23 | Composite aluminum alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6244547A true JPS6244547A (en) | 1987-02-26 |
JPH0581654B2 JPH0581654B2 (en) | 1993-11-15 |
Family
ID=16145421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18399285A Granted JPS6244547A (en) | 1985-08-23 | 1985-08-23 | Composite aluminum alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6244547A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01252741A (en) * | 1988-04-01 | 1989-10-09 | Ube Ind Ltd | Fiber-reinforced composite material |
JPH0230726A (en) * | 1988-04-19 | 1990-02-01 | Ube Ind Ltd | Fiber-reinforced metallic composite material |
US4963439A (en) * | 1988-04-19 | 1990-10-16 | Ube Industries, Ltd. | Continuous fiber-reinforced Al-Co alloy matrix composite |
US5449421A (en) * | 1988-03-09 | 1995-09-12 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements |
CN104498750A (en) * | 2014-12-17 | 2015-04-08 | 南京九致信息科技有限公司 | High-damping high-strength aluminum-based composite material and preparation method thereof |
CN108359830A (en) * | 2018-02-28 | 2018-08-03 | 江苏大学 | Al3Co coats Al2O3Nanoparticle reinforced aluminum-based composite and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4943490A (en) * | 1989-08-07 | 1990-07-24 | Dural Aluminum Composites Corp. | Cast composite material having a matrix containing a stable oxide-forming element |
-
1985
- 1985-08-23 JP JP18399285A patent/JPS6244547A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5449421A (en) * | 1988-03-09 | 1995-09-12 | Toyota Jidosha Kabushiki Kaisha | Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements |
JPH01252741A (en) * | 1988-04-01 | 1989-10-09 | Ube Ind Ltd | Fiber-reinforced composite material |
US4980242A (en) * | 1988-04-01 | 1990-12-25 | Ube Industries, Ltd. | Fiber-reinforced metal composite |
JPH0230726A (en) * | 1988-04-19 | 1990-02-01 | Ube Ind Ltd | Fiber-reinforced metallic composite material |
US4963439A (en) * | 1988-04-19 | 1990-10-16 | Ube Industries, Ltd. | Continuous fiber-reinforced Al-Co alloy matrix composite |
CN104498750A (en) * | 2014-12-17 | 2015-04-08 | 南京九致信息科技有限公司 | High-damping high-strength aluminum-based composite material and preparation method thereof |
CN108359830A (en) * | 2018-02-28 | 2018-08-03 | 江苏大学 | Al3Co coats Al2O3Nanoparticle reinforced aluminum-based composite and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0581654B2 (en) | 1993-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2653578B1 (en) | Aluminum die casting alloy | |
JPS63157831A (en) | Heat-resisting aluminum alloy | |
CN111411268B (en) | High-strength-toughness heat-resistant Al-RE-Y-Zr alloy suitable for pressure casting and preparation method thereof | |
US3765877A (en) | High strength aluminum base alloy | |
JPH1112674A (en) | Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy | |
JPS63140059A (en) | High-strength aluminum alloy | |
JPS6244547A (en) | Composite aluminum alloy material | |
JPS63312901A (en) | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder | |
JPS6342344A (en) | Al alloy for powder metallurgy excellent in high temperature strength characteristic | |
JPH01147039A (en) | Wear-resistant aluminum alloy and its manufacture | |
JPH08144003A (en) | High strength aluminum alloy excellent in heat resistance | |
JPS60204857A (en) | Aluminum alloy and article using same | |
JPH0218374B2 (en) | ||
JP2711296B2 (en) | Heat resistant aluminum alloy | |
CN109868397B (en) | High-toughness high-modulus aluminum alloy material and die casting process thereof | |
JPH0762199B2 (en) | A1-based alloy | |
JPS6223952A (en) | Al-fe-ni heat-resisting alloy having high toughness and its production | |
JPH06212320A (en) | High perfrmance al alloy material and its prduction | |
JPH08144002A (en) | High strenght aluminum alloy excellent in heat resistance | |
JP2003096524A (en) | Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy | |
JP2752971B2 (en) | High strength and heat resistant aluminum alloy member and method of manufacturing the same | |
JPH04297542A (en) | Lightweight mg matrix composite alloy excellent in corrosion resistance and workability and having high toughness and its production | |
JPS6360251A (en) | Aluminum-silicon alloy and its production | |
JPS62149840A (en) | High strength, heat and wear resistant al alloy | |
JPH01100234A (en) | Heat-resistant aluminum alloy and its manufacture |