JPS6241658B2 - - Google Patents
Info
- Publication number
- JPS6241658B2 JPS6241658B2 JP57183624A JP18362482A JPS6241658B2 JP S6241658 B2 JPS6241658 B2 JP S6241658B2 JP 57183624 A JP57183624 A JP 57183624A JP 18362482 A JP18362482 A JP 18362482A JP S6241658 B2 JPS6241658 B2 JP S6241658B2
- Authority
- JP
- Japan
- Prior art keywords
- fatty acid
- aqueous solution
- metal soap
- powder
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 58
- 239000002184 metal Substances 0.000 claims description 58
- 239000007864 aqueous solution Substances 0.000 claims description 44
- 239000000344 soap Substances 0.000 claims description 42
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 35
- 239000000194 fatty acid Substances 0.000 claims description 35
- 229930195729 fatty acid Natural products 0.000 claims description 35
- 239000000843 powder Substances 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 23
- 150000004665 fatty acids Chemical class 0.000 claims description 18
- -1 fatty acid alkali metal salt Chemical class 0.000 claims description 17
- 150000003839 salts Chemical class 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 238000000354 decomposition reaction Methods 0.000 claims description 13
- 239000010419 fine particle Substances 0.000 claims description 11
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000012266 salt solution Substances 0.000 claims 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- 235000021355 Stearic acid Nutrition 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 9
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 9
- 239000008117 stearic acid Substances 0.000 description 9
- 235000011121 sodium hydroxide Nutrition 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 235000011148 calcium chloride Nutrition 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は粒子の大きな水不溶性粉体金属石鹸の
製造方法に関する。
従来金属石鹸粉末の製造方法は大別すれば、直
接法と称せられている脂肪酸と金属酸化物又は金
属水酸化物との反応による製造方法と、複分解法
と称せられている脂肪酸アルカリ金属塩又は脂肪
酸アンモニウム塩の水溶液と金属塩(塩酸塩、硫
酸塩、硝酸塩、酢酸塩等)との反応による製造方
法がある。
複分解法による金属石鹸粉末は、脂肪酸の非存
在下で反応させるため遊離脂肪酸が少ないこと、
粒子が細かく分散が容易であること、異種金属
(Fe、Pb、Mn、Cd)の混入を低レベルにおさえ
ることができる等、直接法に比して種々の利点を
有している。しかしながら、通常の複分解法で製
造される金属石鹸粉末は、平均粒径が5μm程度
と著しく小さいために吸湿性が高く、付着性が強
く、流動性が悪いという欠点があつた。従つて、
製造時には十分乾燥された満足すべき状態であつ
てもその後の水分吸着量が多く、合成樹脂に添加
した場合に発泡、白濁等を生じる原因となるな
ど、使用時に問題を起すことがあつた。また金属
石鹸粉末を大量に消費するプラスチツク業界にあ
つては、自動計量、空気輸送による自動化が進め
られているが、通常の複分解法により製造した小
粒径の金属石鹸粉末では付着性が強いために流動
性が悪く、配管中での詰り、ホツパー内でのブリ
ツヂ等のトラブルが発生し易かつた。
本発明者は鋭意研究した結果、これらの問題は
粒子径を大きくすることによつて解決すること、
更にあらかじめ目的とする脂肪酸金属石鹸を加え
るかあるいは生成させた後、撹拌して該脂肪酸金
属石鹸を微粒子状で均一に分散させた脂肪酸アル
カリ金属塩又は脂肪酸アンモニウム塩の水溶液を
用いて複分解反応を行わせると粒子の大きい脂肪
酸金属石鹸粉末が得られることを見出し、本発明
を完成するに至つた。
すなわち、本発明は、C8〜C22の脂肪酸金属石
鹸粉末を複分解法で製造するに際して、あらかじ
め目的とする脂肪酸金属石鹸を脂肪酸アルカリ金
属塩又は脂肪酸アンモニウム塩の水溶液中に加
え、撹拌して、該脂肪酸金属石鹸を微粒子状で均
一に分散させた後、あるいはあらかじめ金属塩水
溶液の一部を脂肪酸アルカリ金属塩又は脂肪酸ア
ンモニウム塩の水溶液中に添加して目的とする脂
肪酸金属石鹸を生成させ、次いで該金属塩水溶液
の添加を中断し、撹拌して、生成した脂肪酸金属
石鹸を微粒子状で均一に分散させた後、金属塩水
溶液を添加し、複分解反応を行なわせることを特
徴とする粒子の大きい脂肪酸金属石鹸粉末の製造
方法を提供するものである。
本発明で用いられる脂肪酸アルカリ金属塩又は
脂肪酸アンモニウム塩は、C8〜C22の脂肪酸、例
えばカプロン酸、カプリル酸、カプリン酸、ラウ
リン酸、ミリスチン酸、パルミチン酸、ステアリ
ン酸、アラキジン酸、ベヘン酸等のアルカリ金属
塩又はアンモニウム塩であり、金属塩は、水可溶
性金属塩、例えばバリウム、カルシウム、マグネ
シウム、ストロンチウム、亜鉛等の金属の塩酸
塩、硫酸塩、硝酸塩、酢酸塩等である。
本発明による脂肪酸金属石鹸(以下、金属石鹸
と略す)粉末は、従来からの複分解法を改良して
得られた方法であるため、複分解法による金属石
鹸粉末の利点はすべて具備するほか、欠点である
吸湿性、付着性を著しく改善したものであつて、
その平均粒子径は10μmを越え、従来品の約2倍
の粒子径であり、電子顕微鏡の観察では平滑な表
面を有する大きな板状結晶であつた。従来品は粒
径も小さく凝集していた。
本発明による製造方法は、例えば複分解反応の
際、通常60〜100℃、好ましくは80〜100℃の脂肪
酸アルカリ金属塩又は脂肪酸アンモニウム塩(以
下、アルカリ塩と記す)の水溶液中に、あらかじ
め目的とする金属石鹸を粉末状又はスラリー状で
最終的な理論収量に対して0.1〜50重量%、好ま
しくは5〜20重量%加え、撹拌して、該金属石鹸
を微粒子状で均一に分散させた後、金属塩を添加
して、あるいはあらかじめ理論収量に対して0.1
〜50重量%、好ましくは5〜20重量%の目的とす
る金属石鹸を生成させ得る量の金属水溶液を添加
して目的の金属石鹸を生成させ、次いで該金属塩
水溶液の添加を中断し、撹拌して、生成させた金
属石鹸を微粒子状で均一に分散させた後、残りの
金属塩水溶液を添加して、反応を完結させる方法
であり、反応温度は高い方が金属石鹸の結晶成長
には望ましく、80〜95℃が特に好ましい温度であ
る。この時あらかじめ微粒子状で均一に分散させ
る金属石鹸の量が0.1重量%未満では、結晶成長
に寄与が少なく、50重量%を越えると金属石鹸の
分散が不充分となり、生成する金属石鹸の結晶成
長は充分に行われない。ここで用いるアルカリ塩
水溶液の濃度は、通常3〜20重量%であるが、好
ましくは5〜15重量%、特に好ましくは10重量%
前後であり、また金属塩水溶液の濃度は、金属塩
が水に溶解すればよく、特に濃度範囲について制
限はないが、通常は10〜40重量%である。尚、金
属石鹸の溌水性を抑えるため複分解反応前あるい
は反応後のいずれかに少量のアニオン系あるいは
ノニオン系界面活性剤を添加してもよい。
本発明の方法による粒子の大きい金属石鹸粉末
は、常法に従つて濾過、洗浄、乾燥し、製品とな
るが、ウエツトケーキ含水率が40〜50重量%と従
来法(60〜70重量%)より大幅に低いため、可溶
性塩を除去するための洗浄水や乾燥熱量等のユー
テイリテイ費を著しく低減できる利点もある。
以下に実施例を挙げて本発明を更に詳細に説明
する。尚、例中の%はすべて重量%である。
実施例 1
撹拌機、加熱装置のついた2ステンレス反応
容器にステアリン酸104g、固型カセイソーダ
16.2g、水1000gを仕込み、撹拌しつつ80℃に加
温し、透明なステアリン酸ソーダ(以下、Na−
Stと記す)水溶液を調製した。このNa−St水溶
液に後記比較例1で得られた平均粒子径5.3μm
のステアリン酸カルシウム(以下、Ca−Stと記
す)粉末10gを添加し、30分間撹拌すると、Ca
−Stが微粒子状で均一に分散した半透明のNa−
St水溶液となつた。この水溶液に80℃で20%塩化
カルシウム(以下、CaCl2と記す)水溶液120g
を20分間で滴下し、反応を完結させるため、更に
1時間撹拌した。得られたCa−Stを遠心分離機
で脱水すると、ウエツトケーキの含水率は45%で
あつた。このウエツトケーキを更に水洗し、110
℃の熱風乾燥器中で乾燥するとCa−St粉末117g
(水分:0.5%)が得られた。平均粒子径は13.4μ
mであつた。
比較例 1
撹拌機、加熱装置のついた2ステンレス反応
容器にステアリン酸104g、固型カセイソーダ
16.2g、水1000gを仕込み、撹拌しつつ80℃に加
温し透明なNa−St水溶液をつくる。このNa−St
水溶液に80℃で20%CaCl2水溶液120gを20分間
で滴下し、反応を完結させるため更に1時間撹拌
した。得られたCa−Stスラリーを遠心分離機で
脱水するとウエツトケーキ含水率は65%であつ
た。このウエツトケーキを更に水洗し、熱風乾燥
するとCa−St粉末110g(水分:1.9%)が得れ
た。平均粒子径は5.3μmであつた。
実施例 2
撹拌器、加熱装置のついた10反応容器に水6
、ステアリン酸556g、固型カセイソーダ86.4
gを仕込み撹拌しつつ90℃に加温し、均一なNa
−Stの水溶液を調製した。この水溶液に90℃で35
%CaCl2水溶液50gを5分間で添加した後、これ
以後のCaCl2水溶液の添加を一時中断して30分間
撹拌、加熱をつづけ、生成したCa−Stを微粒子
状で均一に分散させた半透明のNa−St水溶液を
得た。次いでこの水溶液に90℃で35%CaCl2水溶
液320gを20分間で加えた後、更に30分間撹拌を
続けて熟成させ、生成物を加圧濾過機に入れて脱
水した。このウエツトケーキ含水率は40%であつ
た。このウエツトケーキを更に水洗し、110℃の
熱風乾燥機中で乾燥すると、Ca−St粉末580g
(水分:0.7%)が得られた。このCa−St粉末の
平均粒子径は12.3μmであつた。
比較例 2
撹拌機、加熱装置のついた10反応容器に水6
、ステアリン酸556g、固型カセイソーダ86.4
gを仕込み撹拌しつつ90℃に加温し、均一なNa
−Stの水溶液を調製した。この水溶液に90℃で35
%CaCl2水溶液370gを55分間で加えた後、更に
30分間撹拌を続けて熟成させ、生成物を加圧濾過
機に入れて脱水した。このウエツトケーキ含水率
は60%であつた。このウエツトケーキを更に水洗
し、110℃の熱風乾燥機中で乾燥すると、Ca−St
粉末575g(水分:1.4%)が得られた。このCa
−St粉末の平均粒子径は6.3μmであつた。
実施例 3
撹拌機、加熱装置のついた2m3反応槽に、10%
Ca−Stを含むスラリー100Kg、水1m3、ステアリ
ン酸140Kg、20%カセイソーダ101Kgを仕込み、95
℃に加熱しながら1時間撹拌して、Ca−Stが微
粒子状で均一に分散した半透明のNa−St水溶液
を得た。この水溶液中に90℃で20%CaCl2水溶液
150Kgを30分間で滴下した後、更に1時間撹拌加
熱を続けて反応を完結させた。生成したCa−St
スラリーを遠心分離機で脱水するとウエツトケー
キ含水率は45%であつた。このウエツトケーキを
更に水洗、貯水乾燥するとCa−St粉末146.5Kg
(水分:0.9%)が得られた。平均粒子径は10.4μ
mであつた。
比較例 3
撹拌機、加熱装置のついた2m3反応槽に、水1
m3、ステアリン酸140Kg、20%カセイソーダ101Kg
を仕込み、95℃に加熱しながら1時間撹拌して均
一なNa−St水溶液を得た。この水溶液中に90℃
で20%CaCl2水溶液150Kgを1時間50分かけて滴
下した後、更に1時間撹拌加熱を続けて反応を完
結させた。生成したCa−Stスラリーを遠心分離
機で脱水するとウエツトケーキ含水率は63%であ
つた。このウエツトケーキを更に水洗、脱水乾燥
するとCa−St粉末135.8Kg(水分:1.7%)が得ら
れた。平均粒子径は6.7μmであつた。
実施例 4
撹拌機、加熱装置のついた2m3反応槽にステア
リン酸100Kg、48%カセイソーダ31.3Kg、水1m3
を仕込み、80℃で加熱し、1時間撹拌後、80℃で
20%硫酸亜鉛(以下、ZnSO4と記す)水溶液41.3
Kgを10分間で滴下し、更に30分間撹拌してステア
リン酸亜鉛(以下、Zn−Stと記す)を微粒子状
で均一に分散させた半透明のNa−St水溶液を得
た。さらに80℃で20%ZnSO4240Kgを20分間で滴
下した後30分間撹拌し、反応を完結させた。生成
したZn−Stスラリーを遠心濾過したウエツトケ
ーキの含水率は43%であつた。このウエツトケー
キを更に水洗、脱水乾燥すると110Kg、水分0.3%
Zn−St粉末が得られた。平均粒子径は11μmで
あつた。
比較例 4
撹拌機、加熱装置のついた2m2ステンレス反応
槽にステアリン酸104Kg、48%カセイソーダ32.6
Kg、水1m3を仕込み、80℃に加熱しながら1時間
撹拌し、透明なNa−St水溶液を調製した。80℃
で20%ZnSO4水溶液293Kgを滴下し、更に30分間
撹拌し、反応を完結させた。生成したZn−Stス
ラリーを遠心濾過したウエツトケーキの含水率は
62%であつた。このウエツトケーキを更に水洗、
脱水乾燥すると115KgのZn−St粉末(水分:0.6
%)が得られた。平均粒子径は6.2μmであつ
た。
実施例1〜4および比較例1〜4で得られた金
属石鹸粉末のウエツトケーキ含水率、平均粒子
径、粉体粒子の流動性の指標としての動的安息角
を第1表に、実施例1および比較例1で得られた
金属石鹸粉末の含水率経時変化を第1図に、5000
倍の走査型電子顕微鏡写真を第2〜3図に示す。
尚、平均粒子径は光透過式粒度分布測定機を、
動的安息角は三輪式動的安息角測定器を用いてそ
れぞれ測定したものであり、含水率の経時変化は
完全に乾燥した金属石鹸粉末を25℃、90%RHの
恒温恒湿槽内に放置して測定したものである。
The present invention relates to a method for producing water-insoluble powder metal soap having large particles. Conventional methods for producing metal soap powder can be roughly divided into two methods: direct method, which involves the reaction of fatty acids with metal oxides or metal hydroxides, and double decomposition method, which involves reacting fatty acid alkali metal salts or metal hydroxides. There is a production method by reacting an aqueous solution of fatty acid ammonium salt with a metal salt (hydrochloride, sulfate, nitrate, acetate, etc.). Metal soap powder produced by the double decomposition method contains less free fatty acids because the reaction is carried out in the absence of fatty acids.
It has various advantages over the direct method, such as the fact that the particles are fine and easy to disperse, and the contamination of different metals (Fe, Pb, Mn, Cd) can be kept to a low level. However, the metal soap powder produced by the usual double decomposition method has the drawbacks of high hygroscopicity, strong adhesion, and poor fluidity because the average particle size is extremely small, about 5 μm. Therefore,
Even if it is sufficiently dried and in a satisfactory state at the time of manufacture, it adsorbs a large amount of water afterwards, causing problems during use, such as foaming and clouding when added to synthetic resins. In addition, in the plastics industry, which consumes large amounts of metal soap powder, automation through automatic weighing and pneumatic transportation is progressing, but metal soap powder with a small particle size produced by the ordinary double decomposition method has strong adhesion. The fluidity was poor, and troubles such as clogging in the piping and bridging in the hopper were likely to occur. As a result of intensive research, the present inventor found that these problems can be solved by increasing the particle size.
Furthermore, after adding or generating the desired fatty acid metal soap in advance, double decomposition reaction is carried out using an aqueous solution of fatty acid alkali metal salt or fatty acid ammonium salt in which the fatty acid metal soap is uniformly dispersed in the form of fine particles by stirring. They discovered that a fatty acid metal soap powder with large particles can be obtained by drying the soap powder, and completed the present invention. That is, in the present invention, when producing a C 8 - C 22 fatty acid metal soap powder by the double decomposition method, the target fatty acid metal soap is added in advance to an aqueous solution of a fatty acid alkali metal salt or a fatty acid ammonium salt, and the mixture is stirred. After uniformly dispersing the fatty acid metal soap in the form of fine particles, or by adding a portion of the metal salt aqueous solution in advance to an aqueous solution of fatty acid alkali metal salt or fatty acid ammonium salt, the desired fatty acid metal soap is produced, and then The process of discontinuing the addition of the metal salt aqueous solution and stirring to uniformly disperse the produced fatty acid metal soap in the form of fine particles, and then adding the metal salt aqueous solution to cause a double decomposition reaction. A method for producing fatty acid metal soap powder is provided. The fatty acid alkali metal salt or fatty acid ammonium salt used in the present invention is a C8 to C22 fatty acid, such as caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid. The metal salts include water-soluble metal salts such as hydrochlorides, sulfates, nitrates, acetates, etc. of metals such as barium, calcium, magnesium, strontium, and zinc. The fatty acid metal soap (hereinafter abbreviated as metal soap) powder according to the present invention is obtained by improving the conventional double decomposition method, so it has all the advantages of metal soap powder produced by the double decomposition method, and has no disadvantages. It has significantly improved hygroscopicity and adhesion,
The average particle size was over 10 μm, about twice the particle size of conventional products, and when observed with an electron microscope, it was found to be large plate-shaped crystals with a smooth surface. Conventional products had small particle sizes and agglomerated. In the production method according to the present invention, for example, during the double decomposition reaction, the target substance is added in advance to an aqueous solution of fatty acid alkali metal salt or fatty acid ammonium salt (hereinafter referred to as alkali salt) at a temperature of usually 60 to 100°C, preferably 80 to 100°C. After adding 0.1 to 50% by weight, preferably 5 to 20% by weight of the final theoretical yield of the metal soap in powder or slurry form and stirring to uniformly disperse the metal soap in the form of fine particles. , by adding metal salts or by adding 0.1 to the theoretical yield in advance.
Add an amount of the metal aqueous solution to produce the desired metal soap of ~50% by weight, preferably 5 to 20% by weight to form the desired metal soap, then interrupt the addition of the metal salt aqueous solution and stir. After the generated metal soap is uniformly dispersed in the form of fine particles, the remaining metal salt aqueous solution is added to complete the reaction.The higher the reaction temperature is, the better the crystal growth of the metal soap will be. Desirably, a temperature of 80 to 95°C is particularly preferred. At this time, if the amount of metal soap that is uniformly dispersed in the form of fine particles is less than 0.1% by weight, it will have little contribution to crystal growth, and if it exceeds 50% by weight, the metal soap will not be sufficiently dispersed and the resulting metal soap will grow in crystal growth. is not done enough. The concentration of the alkaline salt aqueous solution used here is usually 3 to 20% by weight, preferably 5 to 15% by weight, particularly preferably 10% by weight.
The concentration of the metal salt aqueous solution is generally 10 to 40% by weight, although there is no particular restriction on the concentration range as long as the metal salt is dissolved in water. In order to suppress the water repellency of the metal soap, a small amount of anionic or nonionic surfactant may be added either before or after the double decomposition reaction. The large-particle metal soap powder obtained by the method of the present invention is filtered, washed, and dried according to conventional methods to become a product, but the wet cake moisture content is 40 to 50% by weight, which is higher than that of the conventional method (60 to 70% by weight). Since it is significantly lower, there is also the advantage that utility costs such as washing water and drying heat required for removing soluble salts can be significantly reduced. The present invention will be explained in more detail with reference to Examples below. Note that all percentages in the examples are percentages by weight. Example 1 104 g of stearic acid and solid caustic soda were placed in a stainless steel reaction vessel equipped with a stirrer and a heating device.
16.2g of sodium stearate (hereinafter referred to as Na-
An aqueous solution (denoted as St) was prepared. This Na-St aqueous solution was added with an average particle size of 5.3 μm obtained in Comparative Example 1 described later.
When 10g of calcium stearate (hereinafter referred to as Ca-St) powder was added and stirred for 30 minutes, Ca
-Semi-transparent Na with finely dispersed St uniformly dispersed-
It became an aqueous St solution. Add 120 g of a 20% calcium chloride (hereinafter referred to as CaCl 2 ) aqueous solution to this aqueous solution at 80°C.
was added dropwise over 20 minutes, and the mixture was further stirred for 1 hour to complete the reaction. When the obtained Ca-St was dehydrated using a centrifuge, the moisture content of the wet cake was 45%. Wash this wet cake with water again, and
117g of Ca-St powder when dried in a hot air dryer at ℃
(Moisture: 0.5%) was obtained. Average particle size is 13.4μ
It was m. Comparative Example 1 104 g of stearic acid and solid caustic soda were placed in a stainless steel reaction vessel equipped with a stirrer and a heating device.
Add 16.2g and 1000g of water and heat to 80℃ while stirring to make a transparent Na-St aqueous solution. This Na−St
120 g of a 20% CaCl 2 aqueous solution was added dropwise to the aqueous solution at 80° C. over 20 minutes, and the mixture was further stirred for 1 hour to complete the reaction. When the resulting Ca-St slurry was dehydrated using a centrifuge, the moisture content of the wet cake was 65%. This wet cake was further washed with water and dried with hot air to obtain 110 g of Ca-St powder (water content: 1.9%). The average particle diameter was 5.3 μm. Example 2 6 pieces of water in 10 reaction vessels equipped with a stirrer and a heating device
, stearic acid 556g, solid caustic soda 86.4g
g and heated to 90℃ while stirring to form a uniform Na
An aqueous solution of -St was prepared. 35 at 90℃ in this aqueous solution.
After adding 50 g of %CaCl 2 aqueous solution over 5 minutes, the addition of further CaCl 2 aqueous solution was temporarily suspended and stirring and heating were continued for 30 minutes, resulting in a semi-transparent mixture in which the Ca-St was uniformly dispersed in the form of fine particles. An aqueous solution of Na-St was obtained. Next, 320 g of a 35% CaCl 2 aqueous solution was added to this aqueous solution at 90° C. over 20 minutes, and stirring was continued for an additional 30 minutes to ripen the product, and the product was placed in a pressure filter to dehydrate. The moisture content of this wet cake was 40%. This wet cake was further washed with water and dried in a hot air dryer at 110°C, resulting in 580g of Ca-St powder.
(Moisture: 0.7%) was obtained. The average particle size of this Ca-St powder was 12.3 μm. Comparative example 2 6 pieces of water in 10 reaction vessels equipped with a stirrer and heating device
, stearic acid 556g, solid caustic soda 86.4g
g and heated to 90℃ while stirring to form a uniform Na
An aqueous solution of -St was prepared. 35 at 90℃ in this aqueous solution.
After adding 370 g of % CaCl2 aqueous solution over 55 minutes,
Stirring was continued for 30 minutes to age, and the product was dehydrated in a pressure filter. The moisture content of this wet cake was 60%. When this wet cake is further washed with water and dried in a hot air dryer at 110℃, Ca-St
575 g of powder (moisture: 1.4%) was obtained. This Ca
The average particle size of the -St powder was 6.3 μm. Example 3 In a 2 m 3 reaction tank equipped with a stirrer and a heating device, 10%
Prepared 100 kg of slurry containing Ca-St, 1 m 3 of water, 140 kg of stearic acid, and 101 kg of 20% caustic soda, 95
The mixture was stirred for 1 hour while being heated to .degree. C. to obtain a translucent Na-St aqueous solution in which Ca-St was uniformly dispersed in the form of fine particles. 20% CaCl2 aqueous solution at 90 °C in this aqueous solution.
After dropping 150 kg over 30 minutes, stirring and heating were continued for an additional hour to complete the reaction. Generated Ca-St
When the slurry was dehydrated using a centrifuge, the wet cake moisture content was 45%. When this wet cake was further washed with water, stored and dried, 146.5 kg of Ca-St powder was obtained.
(Moisture: 0.9%) was obtained. Average particle size is 10.4μ
It was m. Comparative Example 3 In a 2 m 3 reaction tank equipped with a stirrer and a heating device, 1 part of water was added.
m3 , stearic acid 140Kg, 20% caustic soda 101Kg
was charged and stirred for 1 hour while heating to 95°C to obtain a uniform Na-St aqueous solution. 90℃ in this aqueous solution
After 150 kg of a 20% CaCl 2 aqueous solution was added dropwise over 1 hour and 50 minutes, stirring and heating were continued for another 1 hour to complete the reaction. When the resulting Ca-St slurry was dehydrated using a centrifuge, the moisture content of the wet cake was 63%. This wet cake was further washed with water, dehydrated and dried to obtain 135.8 kg of Ca-St powder (water content: 1.7%). The average particle diameter was 6.7 μm. Example 4 100 kg of stearic acid, 31.3 kg of 48% caustic soda, and 1 m 3 of water in a 2 m 3 reaction tank equipped with a stirrer and heating device.
was heated at 80℃, stirred for 1 hour, and then heated at 80℃.
20% zinc sulfate (hereinafter referred to as ZnSO 4 ) aqueous solution 41.3
Kg was added dropwise over 10 minutes, and the mixture was further stirred for 30 minutes to obtain a translucent Na-St aqueous solution in which zinc stearate (hereinafter referred to as Zn-St) was uniformly dispersed in the form of fine particles. Further, 240 kg of 20% ZnSO 4 was added dropwise at 80° C. over 20 minutes, followed by stirring for 30 minutes to complete the reaction. The wet cake produced by centrifugally filtering the Zn-St slurry had a moisture content of 43%. When this wet cake is further washed with water and dehydrated and dried, it weighs 110 kg and has a moisture content of 0.3%.
Zn-St powder was obtained. The average particle size was 11 μm. Comparative Example 4 104 kg of stearic acid and 32.6 kg of 48% caustic soda in a 2 m 2 stainless steel reaction tank equipped with a stirrer and heating device.
Kg and 1 m 3 of water were charged and stirred for 1 hour while heating to 80°C to prepare a transparent Na-St aqueous solution. 80℃
Then, 293 kg of a 20% ZnSO 4 aqueous solution was added dropwise, and the mixture was further stirred for 30 minutes to complete the reaction. The moisture content of the wet cake obtained by centrifugally filtering the generated Zn-St slurry is
It was 62%. Wash this wet cake with water again,
When dehydrated and dried, 115 kg of Zn-St powder (moisture: 0.6
%)was gotten. The average particle diameter was 6.2 μm. The wet cake moisture content, average particle diameter, and dynamic repose angle as an index of the fluidity of powder particles of the metal soap powders obtained in Examples 1 to 4 and Comparative Examples 1 to 4 are shown in Table 1. Figure 1 shows the change in water content over time of the metal soap powder obtained in Comparative Example 1.
Double scanning electron micrographs are shown in Figures 2-3. In addition, the average particle diameter was determined using a light transmission particle size distribution analyzer.
The dynamic angle of repose was measured using a three-ring dynamic angle of repose measuring device, and the change in moisture content over time was measured by placing completely dry metal soap powder in a constant temperature and humidity chamber at 25°C and 90% RH. Measurements were taken after leaving it as it was.
【表】【table】
第1図は実施例1および比較例1で得られた金
属石鹸粉末の含水率経時変化(25℃、90%RH)
を示す図面、第2図は実施例1で得られた金属石
鹸粉末の走査型電子顕微鏡写真、第3図は比較例
1で得られた金属石鹸粉末の走査型電子顕微鏡写
真である。尚、写真左下の白い線は5μmの長さ
を示すものである。
Figure 1 shows the change over time in the water content of the metal soap powders obtained in Example 1 and Comparative Example 1 (25°C, 90%RH).
FIG. 2 is a scanning electron micrograph of the metal soap powder obtained in Example 1, and FIG. 3 is a scanning electron micrograph of the metal soap powder obtained in Comparative Example 1. Note that the white line at the bottom left of the photo indicates a length of 5 μm.
Claims (1)
製造するに際して、あらかじめ目的とする脂肪酸
金属石鹸を脂肪酸アルカリ金属塩又は脂肪酸アン
モニウム塩の水溶液中に加え、撹拌して、該脂肪
酸金属石鹸を微粒子状で均一に分散させた後、あ
るいはあらかじめ金属塩水溶液の一部を脂肪酸ア
ルカリ金属塩又は脂肪酸アンモニウム塩の水溶液
中に添加して目的とする脂肪酸金属石鹸を生成さ
せ、次いで該金属塩水溶液の添加を中断し、撹拌
して、生成した脂肪酸金属石鹸を微粒子状で均一
に分散させた後、金属塩水溶液を添加し、複分解
反応を行なわせることを特徴とする粒子の大きい
脂肪酸金属石鹸粉末の製造方法。1. When producing C 8 - C 22 fatty acid metal soap powder by double decomposition method, the desired fatty acid metal soap is added in advance to an aqueous solution of fatty acid alkali metal salt or fatty acid ammonium salt, and stirred to dissolve the fatty acid metal soap. After uniformly dispersing the metal salt in the form of fine particles, or by adding a portion of the metal salt aqueous solution in advance to an aqueous solution of a fatty acid alkali metal salt or fatty acid ammonium salt, the desired fatty acid metal soap is produced, and then the metal salt aqueous solution is The method of producing fatty acid metal soap powder with large particles is characterized in that the addition is interrupted and stirred to uniformly disperse the produced fatty acid metal soap in the form of fine particles, and then an aqueous metal salt solution is added to cause a double decomposition reaction. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18362482A JPS5974200A (en) | 1982-10-21 | 1982-10-21 | Manufacture of large granule metal soap |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18362482A JPS5974200A (en) | 1982-10-21 | 1982-10-21 | Manufacture of large granule metal soap |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5974200A JPS5974200A (en) | 1984-04-26 |
JPS6241658B2 true JPS6241658B2 (en) | 1987-09-03 |
Family
ID=16139024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18362482A Granted JPS5974200A (en) | 1982-10-21 | 1982-10-21 | Manufacture of large granule metal soap |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5974200A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026042A (en) * | 1983-07-20 | 1985-02-08 | Sekisui Plastics Co Ltd | Expandable thermoplastic resin particle composition |
JP5034682B2 (en) * | 2007-05-30 | 2012-09-26 | 堺化学工業株式会社 | Method for producing particulate metal soap |
JP7623119B2 (en) * | 2020-09-30 | 2025-01-28 | 株式会社 資生堂 | Fatty acid magnesium salt particles and cosmetics |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52138505A (en) * | 1975-12-29 | 1977-11-18 | Sakai Chem Ind Co Ltd | Preparation of granurated metallic soap |
-
1982
- 1982-10-21 JP JP18362482A patent/JPS5974200A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52138505A (en) * | 1975-12-29 | 1977-11-18 | Sakai Chem Ind Co Ltd | Preparation of granurated metallic soap |
Also Published As
Publication number | Publication date |
---|---|
JPS5974200A (en) | 1984-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1133937A (en) | Method for the production of metal soaps | |
US2447064A (en) | Preparation of aluminum salts | |
US2114123A (en) | Amorphous precipitated silica and method of preparation thereof | |
US3971631A (en) | Pelletizing alkali metal polysilicates | |
US3441511A (en) | Alkali metal hydroxide-containing agglomerates | |
JPH06340403A (en) | Sodium percarbonate particle coated with coating material and preparation thereof | |
US3311448A (en) | Continuous crystallization of alkali metal aluminum acid orthophosphates | |
JPS6241658B2 (en) | ||
US1992547A (en) | Diatomaceous product and method of making the same | |
US2990246A (en) | Prevention of caking of common salt | |
US2587552A (en) | Process for obtaining chromic oxide from a chromate ore | |
GB2273495A (en) | Process for the production of coarse-grained, anhydrous dicalcium phosphate anhydride | |
US3615189A (en) | Process for preparing gypsum hemihydrate | |
US4211759A (en) | High-density sodium perborate and method of preparation | |
US4755367A (en) | Process for the preparation of coarse-particle dicalcium phosphate dihydrate | |
US2869985A (en) | Process for producing alkali metal silicates | |
US2153872A (en) | Method of making alkali metal silicates | |
US2429531A (en) | Process for producing calcium hypochlorite | |
US3975500A (en) | Process for producing high active oxygen, low bulk density sodium perborate | |
US2350575A (en) | Manufacture of aluminum sulphate products | |
US3082064A (en) | Production of aluminium sulphate | |
EP0295950B1 (en) | Process for the manufacture of granular monohydrated sodium perborate | |
US3523764A (en) | Process for the manufacture of magnesium aluminosilicate for medical uses | |
US2560338A (en) | Chromic oxide production particularly for pigment purposes | |
US4289739A (en) | Method of producing crystalline sodium aluminum phosphate |