[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6240375A - Hard carbon film - Google Patents

Hard carbon film

Info

Publication number
JPS6240375A
JPS6240375A JP60179025A JP17902585A JPS6240375A JP S6240375 A JPS6240375 A JP S6240375A JP 60179025 A JP60179025 A JP 60179025A JP 17902585 A JP17902585 A JP 17902585A JP S6240375 A JPS6240375 A JP S6240375A
Authority
JP
Japan
Prior art keywords
carbon film
hard carbon
film
plasma cvd
cvd method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60179025A
Other languages
Japanese (ja)
Other versions
JPH0510426B2 (en
Inventor
Kenji Yamamoto
憲治 山本
Takehisa Nakayama
中山 威久
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60179025A priority Critical patent/JPS6240375A/en
Publication of JPS6240375A publication Critical patent/JPS6240375A/en
Publication of JPH0510426B2 publication Critical patent/JPH0510426B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase deposition speed and to form a carbon film having high hardness by depositing the hard carbon film contg. a specific ratio of fluorine by a plasma CVD method on a substrate. CONSTITUTION:A gaseous mixture in which a hydrocarbon compd. such as CH4 or C2H4 and gaseous fluoring-contg. compd. such as CF4 or CF2H2 and if necessary, a diluting gas such as H2 are made to exist mixedly is used and the hard carbon film is deposited on the substrate. C:F in the gaseous mixture is required to be 100:1-3:8 and the DC plasma CVD method, RF plasma CVD method, etc. are used. The substrate is installed to a cathode and about -300--1kV voltage is impressed and DC of about 50mA-2A DC current density is discharged. The carbon film having 0.1-30atom% fluorine, about 50-98atom% carbon and about 0.1-30atom% hydrogen is obtd. The hardness thereof is >=500 surface Vickers hardness. This hard carbon film can contain <=20atom% silicon.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は硬質カーボン膜に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a hard carbon membrane.

[従来の技術] 最近、イオンビーム蒸着法、イオンビームスパッター法
、スパッター法、CVD法、プラズマCVD法などによ
り、ダイヤモンド状カーボン膜といわれる高硬度のカー
ボン膜が形成され、切削プレイドの表面硬化用材料、半
導体、赤外光学部材の反射防止膜、硬質保護膜、絶縁材
料、耐摩耗性材料などとして注目されている(たとえば
「エレクトロセラミックスJ 19B5年5月号48〜
54頁の「硬質カーボン膜」参照)。
[Prior Art] Recently, a highly hard carbon film called a diamond-like carbon film has been formed by ion beam evaporation, ion beam sputtering, sputtering, CVD, plasma CVD, etc., and is used for surface hardening of cutting blades. It is attracting attention as a material, semiconductor, antireflection film for infrared optical components, hard protective film, insulating material, wear-resistant material, etc. (For example, "Electro Ceramics J May 19B5 issue 48-
(See “Hard Carbon Film” on page 54).

たとえばプラズマCVD法により硬質カーボン膜を成膜
するばあい、通常CH4、C2H4、C2H2、C4H
IO、ベンゼンなどの炭化水素系の化合物とH2、Ar
、 t(eなどとの混合ガスがプラズマ分解せしめられ
、基板上に堆積せしめられ、成膜される。
For example, when forming a hard carbon film by plasma CVD method, usually CH4, C2H4, C2H2, C4H
Hydrocarbon compounds such as IO, benzene, H2, Ar
, t(e, etc.) is plasma decomposed and deposited on the substrate to form a film.

[発明が解決しようとする問題点1 従来の硬質カーボン膜を前記のごとき従来の方法で成膜
しようとすると、堆積速度は0.1〜5人/秒程度と小
さり、1「積速度をあげると硬度が低下し、さらに電極
部以外のチャンバー内に粉や膜が付着し、ピンホールな
どを生じる原因となり、生産性が低くなるという欠点が
ある。
[Problem to be Solved by the Invention 1] When attempting to form a conventional hard carbon film by the conventional method as described above, the deposition rate is as low as 0.1 to 5 persons/second, and the If the temperature is increased, the hardness decreases, and powder and film adhere to the interior of the chamber other than the electrode portion, causing pinholes and the like, resulting in a decrease in productivity.

本発明は堆積速度自体を向上させ、堆積速度を向上させ
ても膜の硬度低下がなく、かつ電極部以外のチャンバー
内に粉や膜を付着させることが少ない硬質カーボン膜を
うろことを目的とするものである。
The purpose of the present invention is to increase the deposition rate itself, and to form a hard carbon film that does not reduce the hardness of the film even if the deposition rate is increased, and that causes less powder or film to adhere to the inside of the chamber other than the electrode part. It is something to do.

[問題点を解決するための手段] 本発明は、従来の硬質カーボン膜を成膜する際に、原料
ガス中にフッ素を構成成分とする化合物を混在せしめ、
プラズマCVD法により成膜すると、大きな堆積速度で
生産性よく、しかも大きな堆積速度で成膜しても硬度の
低下をおこさないばかりかさらに硬度が大きくなるとい
う特徴を有する硬質カーボン膜が成膜されることが見出
されたことによりなされたものであり、基板上にプラズ
マCVD法により堆積せしめられたフッ素を0.1〜3
0atll1%含有する硬質カーボン膜に関する。
[Means for Solving the Problems] The present invention involves mixing a compound containing fluorine as a constituent in the raw material gas when forming a conventional hard carbon film,
When a film is formed by the plasma CVD method, a hard carbon film can be formed with high productivity at a high deposition rate, and which has the characteristics that not only does the hardness not decrease even when the film is formed at a high deposition rate, but the hardness even increases. This was done based on the discovery that fluorine deposited on a substrate by plasma CVD method was
The present invention relates to a hard carbon film containing 0atll1%.

[実施例] 本発明に用いる基板にはとくに限定はなく、プラズマC
VD法により硬質カーボン膜が成膜する基板であればい
ずれの基板をも使用しつる。
[Example] There are no particular limitations on the substrate used in the present invention, and plasma C
Any substrate on which a hard carbon film can be formed by the VD method can be used.

このような基板の具体例としては、たとえばNo。A specific example of such a substrate is, for example, No.

Cu、賛、M、 1nSSUSなどの金属や合金製の基
板、単結晶シリコン、単結晶ゲルマニウム、GaAs、
 GaPなどの半導体基板、S iCz M 203.
5i07などのセラミック基板、あるいはA(1、■、
HOlN、Cuなどの金属で表面処理された金属基板、
半導体基板、セラミック基板などがあげられる。
Substrates made of metals and alloys such as Cu, 1n, M, 1nSSUS, single crystal silicon, single crystal germanium, GaAs,
Semiconductor substrate such as GaP, SiCz M 203.
Ceramic substrate such as 5i07 or A(1, ■,
Metal substrates surface-treated with metals such as HOIN and Cu,
Examples include semiconductor substrates and ceramic substrates.

本発明の硬質カーボン膜にはフッ素が0.1〜30at
ln%、好ましくは1〜15atm%、さらに好ましく
は1〜7atI11%、炭素が50〜98atIO%、
好ましくは80〜95atm%、水素が0.1〜30a
tm%、好ましくは1〜15atm%含有されており、
要すればシリコンを20atm%以下、好ましくは0.
01〜5atm%の範囲で含有していてもよい。
The hard carbon film of the present invention contains 0.1 to 30 at of fluorine.
ln%, preferably 1 to 15 atm%, more preferably 1 to 7 atm%, carbon 50 to 98 atIO%,
Preferably 80-95 atm%, hydrogen 0.1-30a
tm%, preferably 1 to 15 atm%,
If necessary, the silicon content is 20 atm % or less, preferably 0.
It may be contained in a range of 0.01 to 5 atm%.

前記フッ素含量がO,Iatll1%未満になると、フ
ッ素を含まない炭素、水素のみを含む膜と堆積速度、硬
度、堆積速度と硬度との関係などがほとんどかわらなく
なり、30atm%をこえると、膜の剥離が生じるよう
になる。
When the fluorine content is less than 1% O, Iatll, the deposition rate, hardness, and the relationship between deposition rate and hardness are almost the same as those of a film containing only carbon or hydrogen without fluorine, and when it exceeds 30 atm%, the film's Peeling begins to occur.

また炭素含量が50atm%未満になると、ポリマー的
になり、膜の硬度が小さくなる傾向が生じ、98%をこ
えると、基板に対する膜の付着力が低下しやすくなる傾
向が生じる。
When the carbon content is less than 50 atm %, the film tends to become polymeric and the hardness of the film becomes low, and when it exceeds 98%, the adhesion of the film to the substrate tends to decrease.

なお水素含量は炭素含量、フッ素含量、成膜条件などに
より変化し、上記範囲であれば本発明の硬質カーボン膜
の高硬度、耐摩耗性などの点で問題はない。
Note that the hydrogen content varies depending on the carbon content, fluorine content, film forming conditions, etc., and as long as it is within the above range, there is no problem in terms of high hardness, wear resistance, etc. of the hard carbon film of the present invention.

さらにシリコンが前記範囲で含有されているばあいには
、本発明の硬質カーボン膜の高硬度、耐摩耗性などの点
で問題はなく、とくにSUS、#、Cuなどの金属基板
を用いたばあい、基板と硬質カーボン躾との付着性が向
上する。フッ素を含まない硬質カーボン膜についてシリ
コンを加えると付着性が良好になることに関してはすで
に出願流(特願昭60−83137号)であるが、フッ
素を含むばあいにもフッ素を含まないばあいと同様の効
果かえられる。
Furthermore, when silicon is contained within the above range, there is no problem in terms of high hardness, wear resistance, etc. of the hard carbon film of the present invention, especially when a metal substrate such as SUS, #, Cu, etc. is used. This improves the adhesion between the substrate and the hard carbon layer. It has already been proposed (Japanese Patent Application No. 83137/1983) that adding silicon to a hard carbon film that does not contain fluorine improves its adhesion; The same effect can be obtained.

本発明の硬質カーボン膜の膜厚、硬度などにはとくに限
定はないが、プラズマCVD法により・成膜されるため
、通常10人〜50μm程度の膜厚であり、硬度として
は一般に硬質膜の範囲とされる表面ビッカース硬度で5
00以上、好ましくは1000以上程度のものである。
The thickness and hardness of the hard carbon film of the present invention are not particularly limited, but since it is formed by plasma CVD, the film thickness is usually about 10 to 50 μm, and the hardness is generally that of a hard film. The surface Vickers hardness is considered to be within the range of 5.
00 or more, preferably about 1000 or more.

硬度の上限についてはとくに限定はないが、実際に製造
しろる硬度としてはダイヤモンドと同程度〜少し低めの
値である7000〜8000である。
Although there is no particular limitation on the upper limit of hardness, the hardness that can actually be manufactured is 7000 to 8000, which is about the same level to slightly lower than that of diamond.

本発明の硬質カーボン膜は前記のようにプラズマCVD
法により成膜される。プラズマCVD法の具体例として
は、通常のDCプラズマCVD法、RFプラズマCVD
法、マイクロウェーブプラズマCVD法、DCおよびR
F両者混合のプラズマCVD法などがあげられる。これ
らのうちでは基板をカソードに設置し、基板に約−20
0V〜−2KV、好まL < Lt −300V 〜−
IKM)電圧全印加し、ocl流50mA〜2八程度、
好ましくは1〜2Aで原料ガスを直流放電させてえられ
る膜は、通常のRFプラズマCVD法でえられる膜より
も硬度も大きく、電気抵抗率も大きい。ざらに上記DC
放電に0.001〜101II10d1好ましくは15
〜10100O/ crlのRFを加え両者の混合放電
により絶縁物を形成するばあいには、安定した放電かえ
られ、堆積速度も増加し、より優れた手法となる。
The hard carbon film of the present invention is produced by plasma CVD as described above.
The film is formed by the method. Specific examples of plasma CVD methods include normal DC plasma CVD method and RF plasma CVD method.
method, microwave plasma CVD method, DC and R
Examples include a plasma CVD method using a mixture of both F and F. Among these, the substrate is installed at the cathode, and the substrate has a
0V ~ -2KV, preferably L < Lt -300V ~-
IKM) Full voltage is applied, OCL current is about 50mA to 28,
Preferably, a film obtained by direct current discharge of a raw material gas at 1 to 2 A has higher hardness and higher electrical resistivity than a film obtained by a normal RF plasma CVD method. Zarani above DC
0.001 to 101II10d1 preferably 15 for discharge
When RF of ~10,100 O/crl is applied and an insulator is formed by a mixed discharge of both, a stable discharge can be obtained and the deposition rate can be increased, making it a more excellent method.

前記原料ガスの具体例としては、プラズマCVD法によ
り硬質カーボン膜を成膜するばあいに一般に使用するC
H4、C2H4、C2H2、C4H1o、ベンセンなど
の炭化水素系化合物と、要すれば使用されるH2、Ar
、 Heなどの希釈ガスとの混合ガスに、さらにCF4
 、CF2 H2、C2Fa 、  C2Fs、C6F
6、C,F3H3などのフッ素含有化合物ガスを混在せ
しめたものがあげられる。
A specific example of the raw material gas is C, which is generally used when forming a hard carbon film by plasma CVD method.
Hydrocarbon compounds such as H4, C2H4, C2H2, C4H1o, benzene, and H2, Ar used if necessary
, CF4 is added to the mixed gas with diluent gas such as He.
, CF2 H2, C2Fa, C2Fs, C6F
Examples include those in which fluorine-containing compound gases such as 6, C, and F3H3 are mixed.

つぎに原料ガスにおける炭化水素系化合物、フッ素含有
化合物ガスおよび要すれば使用されるガスの使用割合に
ついて説明する。
Next, the proportions of the hydrocarbon compound, fluorine-containing compound gas, and any gas used in the raw material gas will be explained.

炭化水素系化合物およびフッ素含有化合物ガス中のC:
Fは100:1〜3:8であることが、成膜速度を10
〜20人/秒と大きくし、形成された膜中のフッ素含量
を0.1〜30atll1%にするために必要であり、
20:1〜1:2であることが好ましい。必要により使
用されるガスは希釈、圧力調整などを主目的として用い
られる成分であり、適宜適用すればよい。
C in hydrocarbon compounds and fluorine-containing compound gases:
F is 100:1 to 3:8, which increases the deposition rate by 10
It is necessary to increase the fluorine content to 0.1 to 30 atll1% in the formed film, and
The ratio is preferably 20:1 to 1:2. The gas used as necessary is a component used mainly for dilution, pressure adjustment, etc., and may be applied as appropriate.

たとえばCH4、CF4.82を用いて硬質カーボン膜
を成膜する際に、H2を50SCCH1CH4+ CF
aを40SCCHとし、その比率を変化させ、I To
rrでDC電圧−600V  (DC電流800mA 
) 、RF約50W (100IIIW/cffl)な
る条件で約50分間成膜すると、第1図に示すような堆
積速度で成膜され、第2図に示すような硬度の膜がえら
れる。なお容量比でCFa / (CH4+ CF4)
が0.′3で前記条件のばあいにえられる膜の組成は、
およそHがB atm%、Fが4 atm%、Cが88
atm%で、ビッカース硬度は約6500である。
For example, when forming a hard carbon film using CH4 and CF4.82, H2 is 50SCCH1CH4+ CF
Let a be 40SCCH, change the ratio, I To
DC voltage -600V (DC current 800mA)
) and RF of about 50 W (100 III W/cffl) for about 50 minutes, the film is formed at a deposition rate as shown in FIG. 1, and a film with hardness as shown in FIG. 2 is obtained. In addition, the capacity ratio is CFa / (CH4 + CF4)
is 0. The composition of the film obtained under the above conditions in '3 is:
Approximately H is B atm%, F is 4 atm%, and C is 88
Atm%, the Vickers hardness is approximately 6500.

前記説明においてはC114、CF4 、H2を原料ガ
スとして用いたばあいについて説明したが、CHa  
10〜50SCCH,C2Fs  5〜40SCCH,
H2100〜500SCCHなどの組合わせでもよく、
またその成膜条件もDC電圧 −400V〜−1にV(
電流200mA〜1八) 、RFパワー 50〜200
W(100〜400mW/ca! ) 、圧力0.1〜
10Torr程度の条件であれば本発明の硬質カーボン
膜を成膜しうる。
In the above explanation, the case where C114, CF4, and H2 were used as raw material gases was explained, but CHa
10~50SCCH, C2Fs 5~40SCCH,
A combination such as H2100~500SCCH may also be used,
In addition, the film forming conditions are DC voltage -400V to -1 to V(
Current 200mA~18), RF power 50~200
W (100~400mW/ca!), pressure 0.1~
The hard carbon film of the present invention can be formed under conditions of about 10 Torr.

本発明の硬質カーボン膜中のフッ素含量はより正確には
、ESCAなとの方法により測定しつるが、IR吸収ス
ペクトラムによっても測定しつる。
More precisely, the fluorine content in the hard carbon film of the present invention can be measured by a method such as ESCA, but it can also be measured by an IR absorption spectrum.

すなわち膜中にC−F結合が存在するばあいには、1o
oo〜1350cm”にストレッチングモードによる吸
収があられれるため、この大きさを測定すればよい。こ
の測定はIR吸収スペクトラムからC−Fストレッチン
グモードの振動子強度をAとスルト、A X / = 
d ω (式中、ωはC−Fの結合が存在する波数、α(C−F
)はC−F結合が存在する波数での吸収係数)にて絶対
含量として測定しうるが、硬質カーボン膜中のC−Hス
トレッチングモードによる吸収が2800〜3100c
m−’にあられれるため、それらの積分強度(f−7;
7 dω)の比f座カーdω /fa(0−H) dω
ω                     ω(ω
は波数、α(C−■およびα(C−F)はそれぞれ28
00〜3100cm+−1およrj 1000〜135
0cn+−’ ニ存在するそれぞれのストレッチングモ
ードによる吸収)を算出して行なうのがより簡単で、吸
収係数を求める際の正確な膜厚を必要としないなどの点
から好ましい。
In other words, if a C-F bond exists in the membrane, 1o
oo ~ 1350cm'', absorption due to the stretching mode occurs, so it is only necessary to measure this magnitude.This measurement is performed by calculating the oscillator strength of the C-F stretching mode from the IR absorption spectrum as A and Sult, A X / =
d ω (where ω is the wave number where the C-F bond exists, α(C-F
) can be measured as an absolute content using the absorption coefficient at the wave number where the C-F bond exists.
m-', their integrated intensity (f-7;
7 dω) ratio f cos dω /fa(0-H) dω
ω ω(ω
is the wave number, α(C-■ and α(C-F) are each 28
00~3100cm+-1 and rj 1000~135
It is preferable to calculate the absorption due to each existing stretching mode) because it is easier and does not require accurate film thickness when determining the absorption coefficient.

経験的に前記積分強度の比が0.001〜100のばあ
いに本発明の硬質カーボン膜中のフッ素含量が0.1〜
30ati%になることが知られており、0.01〜5
0であることがフッ素含量が1〜20atm%になるた
め好ましい。
Empirically, when the ratio of the integrated intensities is 0.001 to 100, the fluorine content in the hard carbon film of the present invention is 0.1 to 100.
It is known that it is 30 ati%, and 0.01 to 5
It is preferable that it is 0 because the fluorine content will be 1 to 20 atm%.

なお前記f鍬げムdωおよヒ/凹ビムdωは、ω   
                   ωそれぞれC
−F 、 C−Hのストレッチングモードの存在する波
数(C−Fは1000〜1350cm−’、C−Hは2
800〜3100cl−’)に対する吸収係数の積分に
より求められる。
Note that the f-hoeing beam dω and the concave beam dω are ω
ωeach C
-F, the wave number at which the C-H stretching mode exists (C-F is 1000 to 1350 cm-', C-H is 2
800 to 3100 cl-').

本発明の硬質カーボン膜中のIR吸収スペクトラムによ
る水素自虐、フッ素含量は、第1図におけるCFa /
 (CH4+ CF4)の割合が大きくなるにしたがっ
て、2800〜3100cm−1付近のC−Hストレッ
チングによる吸収が当然のことながら減少し、1000
〜1350cm−1付近のC−Fストレッチングによる
吸収が増加し、CF4 / (CH4+ CF4)の割
合が06ではC−Hの吸収が非常に小さくなり、C−F
上述のごとく、本発明の硬質カーボン躾は堆積速度が速
く、堆積速度が速いにもかかわらず硬度が大きく、フッ
素を含む化合物を用いているので、とくにチャンバー壁
ではエツチングの効果がありチャンバー内に粉や膜が付
着しにくいという特徴を有するものであり、該膜は炭化
水素系化合物、フッ素含有化合物ガスおよび必要により
使用されるH2、Ar、 Heなどからなる原料ガスを
プラズマCVD法により1O−20A/秒という成膜速
度で形成しうるちのである。
The hydrogen content and fluorine content according to the IR absorption spectrum in the hard carbon film of the present invention are CFa /
As the ratio of (CH4 + CF4) increases, absorption due to C-H stretching in the vicinity of 2800 to 3100 cm-1 naturally decreases, and
The absorption due to C-F stretching near ~1350 cm-1 increases, and when the ratio of CF4/(CH4+CF4) is 06, the absorption of C-H becomes very small, and the C-F
As mentioned above, the hard carbon layer of the present invention has a high deposition rate, and has a high hardness despite the high deposition rate.Since it uses a compound containing fluorine, it has an etching effect, especially on the chamber wall, and has a high hardness. It is characterized by the fact that it is difficult for powders and films to adhere to it, and the film is made by converting raw material gases consisting of hydrocarbon compounds, fluorine-containing compound gases, and H2, Ar, He, etc. used as necessary into 1O- The film can be formed at a film formation rate of 20 A/sec.

つぎに本発明の硬質カーボン膜を実施例にもとづき説明
する。
Next, the hard carbon film of the present invention will be explained based on examples.

実施例1 第3図に示すようなプラズマCVD装置の電極(カソー
ド) [2)上にステンレス類の基板(1)をセットし
、基板温度を300℃に調節し、H250SCCH,C
H432SCCH,CF4 8SCCHの混合ガスを流
し、反応室圧力1 丁orrで基板に一600vの電圧
をRFチョークコイル(3)を介して印加し、DC電流
800mAなる直流放電をおこした。この際同時に約5
0W  (100mW/ d )のRFを印加し、DC
およびRF両者混合の放電をおこした。このRFを印加
することで絶縁物が堆積したばあいに生じる帯電の問題
が解決された。
Example 1 A stainless steel substrate (1) was set on the electrode (cathode) [2) of a plasma CVD apparatus as shown in Fig. 3, the substrate temperature was adjusted to 300°C, and H250SCCH,C
A mixed gas of H432 SCCH and CF4 8 SCCH was flowed, and a voltage of 1600 V was applied to the substrate via the RF choke coil (3) at a reaction chamber pressure of 1 orr to generate a DC discharge with a DC current of 800 mA. At this time, about 5
Apply 0W (100mW/d) RF and DC
and RF discharge was generated. By applying this RF, the problem of charging that occurs when an insulator is deposited can be solved.

約60分間放電をつづけ、厚さ約2,9μmの膜をうる
ことができた。堆積速度は約8人/秒であった。
The discharge continued for about 60 minutes, and a film with a thickness of about 2.9 μm was obtained. The deposition rate was approximately 8 persons/second.

えられた躾の組成はESCAによるとおよそH10at
m%、l”  3atll1%、C87atm%で、ビ
ッカースra度は5200であった。また電極部以外の
チャンバー壁への膜、粉の付着はみとめられなかった。
According to ESCA, the composition of the discipline obtained is approximately H10at.
m%, l''3atll1%, C87atm%, and the Vickers Ra degree was 5200.Furthermore, no film or powder was observed to adhere to the chamber wall other than the electrode portion.

実施例2および比較例1 H250SCCH,Cl14トCFaとの合計流量を4
゜5CCHとし、C)IsとCFa との合計流量に対
するCFJ (7)流1(7)割合、ツマり容量比(C
F4 / (CH4+ CFa) )を変化させて膜を
作製したばあいの容量比と膜中のフッ素含fit(ES
CAによる)、膜の堆積速度、とツカース硬度との関係
を測定した。
Example 2 and Comparative Example 1 The total flow rate of H250SCCH, Cl14 and CFa was 4
゜5CCH, C) CFJ to the total flow rate of Is and CFa (7) Flow 1 (7) ratio, clogged capacity ratio (C
The capacitance ratio and the fluorine content in the film (ES
CA), the relationship between film deposition rate and Tsukaas hardness was measured.

た。これらの結果を第1表にあわせて示す。さらに容量
比と堆積速度との関係および容量比と躾の硬度との関係
をそれぞれ第1図および第2図に示す。
Ta. These results are also shown in Table 1. Furthermore, the relationship between the capacity ratio and the deposition rate and the relationship between the capacity ratio and the hardness of the grain are shown in FIGS. 1 and 2, respectively.

なお圧力、RF電力、基板温度、oc雷電圧どは実施例
1と同じであった。
Note that the pressure, RF power, substrate temperature, OC lightning voltage, etc. were the same as in Example 1.

[以下余白] 第1表および第1図の結果から、容量比が増加するにし
たがい堆積速度が大きくなり、とくに0.1をこえると
急激に大きくなり、約06をこえると堆積速度が減少し
、約085以上では膜が堆積しなくなることがわかる。
[Margin below] From the results in Table 1 and Figure 1, the deposition rate increases as the capacity ratio increases, especially when it exceeds 0.1, it increases rapidly, and when it exceeds about 0.6, the deposition rate decreases. , about 085 or more, the film is no longer deposited.

実施例3および比較例2 実施例1ならびにガスの容量比(CF4 / (CH4
+ CF4) )を変えた実施例2および比較例1と同
様にして結晶シリコン、SO3、Cu、 N 、 No
製の基板上に形成した膜の付着強度を張っばり試験によ
り測定した。
Example 3 and Comparative Example 2 Example 1 and gas volume ratio (CF4 / (CH4
Crystalline silicon, SO3, Cu, N, No.
The adhesion strength of the film formed on the substrate was measured by a tensile test.

測定の結果、SO8、Cu、結晶シリコン製の基板のば
あいにはCF4 / (CH4+ CF4)が0.35
  ()〜40に(J/cdと良好であったが、0.4
をこえると付着強度が低下したり、膜の剥離が生じたり
した。またNo製の基板のばあいでもO,SS  (フ
ッ/−5059−dω≠40)以下では付着強度30〜
40KO/ aaと良好であったが、0.6をこえると
膜の剥離が生じた。
As a result of measurement, CF4 / (CH4 + CF4) is 0.35 in the case of substrates made of SO8, Cu, and crystalline silicon.
() to 40 (J/cd, which was good, but 0.4
When the adhesive strength exceeded the above range, the adhesion strength decreased and the film peeled off. In addition, even in the case of a substrate made of No, the adhesion strength is 30 to
It was good at 40 KO/aa, but when it exceeded 0.6, peeling of the film occurred.

とくにSO3、Cu、 Mなどの金属基板のばあい、C
,!l:Hとからなる硬質カーボン膜あるいはCとHと
Fとからなる硬質カーボン膜のばあい、硬度が3006
以上の膜では膜の内部応力が大きく剥離しやすいが、上
記膜にシリコンを208tm%以下の範囲で含ませるこ
とにより内部応力が緩和され剥離しなくなった。とくに
o、 oi〜5 at+n%のときに効果が著しかった
。この膜の付着強度は、30〜70Kg/cdであった
Especially in the case of metal substrates such as SO3, Cu, and M, C
,! In the case of a hard carbon film consisting of l:H or a hard carbon film consisting of C, H and F, the hardness is 3006.
In the above film, the internal stress of the film is large and it is easy to peel off, but by including silicon in the above film in a range of 208 tm % or less, the internal stress is relaxed and the film does not peel off. In particular, the effect was remarkable when o, oi to 5 at+n%. The adhesion strength of this film was 30 to 70 Kg/cd.

[発明の効果] フッ素含有化合物を含むガスを混入せしめてグロー放電
分解して本発明の硬質カーボン膜を形成すると、上述の
ように膜の堆積速度が向上し、かつ硬度の大きい膜が形
成される。またチャンバー内への粉や膜の付着も少なく
生産性が向上する。
[Effects of the Invention] When the hard carbon film of the present invention is formed by mixing a gas containing a fluorine-containing compound and performing glow discharge decomposition, the film deposition rate increases as described above, and a highly hard film is formed. Ru. In addition, there is less adhesion of powder and film inside the chamber, and productivity is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硬質カーボン膜を成膜する際の特定の原料ガス
の割合と堆積速度との関係を示すグラフ、第2図は硬質
カーボン膿を成膜する際の特定の原料ガスの割合とえら
れた膜のビッカース硬度との関係を示すグラフ、第3図
は本発明の硬質カーボン膜の製造に用いる装置の一例に
関する説明図である。 (図面の主要符号) (1)二基 板
Figure 1 is a graph showing the relationship between the ratio of a specific raw material gas and deposition rate when forming a hard carbon film, and Figure 2 is a graph showing the relationship between the ratio of a specific raw material gas and the deposition rate when forming a hard carbon film. FIG. 3 is an explanatory diagram of an example of the apparatus used for manufacturing the hard carbon film of the present invention. (Main symbols on drawings) (1) Two boards

Claims (1)

【特許請求の範囲】 1 基板上にプラズマCVD法により堆積せしめられた
フッ素を0.1〜30atm%含有する硬質カーボン膜
。 2 表面ビッカース硬度が500以上である特許請求の
範囲第1項記載の硬質カーボン膜。 3 プラズマCVD法がRFプラズマCVD法、DCプ
ラズマCVD法またはRFおよびDC両者混合のプラズ
マCVD法である特許請求の範囲第1項記載の硬質カー
ボン膜。 4 シリコンを20atm%以下の範囲で含有する特許
請求の範囲第1項記載の硬質カーボン膜。 5 IR吸収スペクトラムの積分強度 (▲数式、化学式、表等があります▼)の比 ▲数式、化学式、表等があります▼ (ωは波数、α(C−H)およびα(C−F)はそれぞ
れ2800〜3100cm^−^1および1000〜1
350cm^−^1に存在するそれぞれのストレッチン
グモードによる吸収を表わす)が0.001〜100で
ある特許請求の範囲第1項記載の硬質カーボン膜。
[Scope of Claims] 1. A hard carbon film containing 0.1 to 30 atm % of fluorine deposited on a substrate by plasma CVD method. 2. The hard carbon film according to claim 1, which has a surface Vickers hardness of 500 or more. 3. The hard carbon film according to claim 1, wherein the plasma CVD method is an RF plasma CVD method, a DC plasma CVD method, or a plasma CVD method in which both RF and DC are mixed. 4. The hard carbon film according to claim 1, which contains silicon in a range of 20 atm% or less. 5 Ratio of integrated intensity of IR absorption spectrum (▲ There are mathematical formulas, chemical formulas, tables, etc. ▼) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (ω is the wave number, α (C-H) and α (C-F) are 2800~3100cm^-^1 and 1000~1 respectively
2. The hard carbon film according to claim 1, wherein the absorption amount (representing absorption due to each stretching mode existing at 350 cm^-^1) is from 0.001 to 100.
JP60179025A 1985-08-14 1985-08-14 Hard carbon film Granted JPS6240375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179025A JPS6240375A (en) 1985-08-14 1985-08-14 Hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179025A JPS6240375A (en) 1985-08-14 1985-08-14 Hard carbon film

Publications (2)

Publication Number Publication Date
JPS6240375A true JPS6240375A (en) 1987-02-21
JPH0510426B2 JPH0510426B2 (en) 1993-02-09

Family

ID=16058796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179025A Granted JPS6240375A (en) 1985-08-14 1985-08-14 Hard carbon film

Country Status (1)

Country Link
JP (1) JPS6240375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275850A (en) * 1988-04-20 1994-01-04 Hitachi, Ltd. Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
JPH0649645A (en) * 1992-07-31 1994-02-22 Yoshida Kogyo Kk <Ykk> Hard multilayered film formed body and its production
GB2338716A (en) * 1998-06-26 1999-12-29 Mclaughlin James A RF plasma enhanced CVD where the substrate acts as a cathode
JP2007320142A (en) * 2006-05-31 2007-12-13 Meisho Kiko Kk Mold for nanoimprinting
JP2022023933A (en) * 2017-06-08 2022-02-08 アプライド マテリアルズ インコーポレイテッド Hard mask and high density low temperature carbon film for other patterning application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145375A (en) * 1984-01-09 1985-07-31 Nippon Telegr & Teleph Corp <Ntt> Method for passivating surface of nb film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145375A (en) * 1984-01-09 1985-07-31 Nippon Telegr & Teleph Corp <Ntt> Method for passivating surface of nb film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275850A (en) * 1988-04-20 1994-01-04 Hitachi, Ltd. Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
JPH0649645A (en) * 1992-07-31 1994-02-22 Yoshida Kogyo Kk <Ykk> Hard multilayered film formed body and its production
GB2338716A (en) * 1998-06-26 1999-12-29 Mclaughlin James A RF plasma enhanced CVD where the substrate acts as a cathode
GB2338716B (en) * 1998-06-26 2003-04-02 Mclaughlin James A An apparatus and a method for coating diamond like carbon (DLC) or other vacuum depositable coatings onto a substrate
JP2007320142A (en) * 2006-05-31 2007-12-13 Meisho Kiko Kk Mold for nanoimprinting
JP2022023933A (en) * 2017-06-08 2022-02-08 アプライド マテリアルズ インコーポレイテッド Hard mask and high density low temperature carbon film for other patterning application

Also Published As

Publication number Publication date
JPH0510426B2 (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US5227196A (en) Method of forming a carbon film on a substrate made of an oxide material
US5275850A (en) Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
US4783368A (en) High heat conductive insulated substrate and method of manufacturing the same
US5645900A (en) Diamond composite films for protective coatings on metals and method of formation
JPS6171626A (en) Method of accumulating hard carbonaceous film by glow discharge and semiconductor device having accumulated film by same method
Kuo et al. Plasma-enhanced chemical vapor deposition of silicon carbonitride using hexamethyldisilazane and nitrogen
JPS63239103A (en) Cubic boron nitride coated body and production thereof
WO1982003636A1 (en) Process for dry-etching aluminum or its alloy
US5431963A (en) Method for adhering diamondlike carbon to a substrate
US5176791A (en) Method for forming carbonaceous films
JPS6240375A (en) Hard carbon film
Wendel et al. Thin zirconium nitride films prepared by plasma-enhanced CVD
JPH02239622A (en) Protective layer for stabilizing layer and its manufacture
JPH06952B2 (en) Hard carbon film
JPH0643243B2 (en) Method for manufacturing tungsten carbide
JPH02149673A (en) Member coated with rigid carbon film
JP2775278B2 (en) Preparation method of carbon-based coating
Biederman et al. Carbon and composite carbon-metal films deposited in an rf glow discharge operated in organic gases
Aubry et al. Molecular beam mass spectrometry analysis of gaseous species responsible for diamond deposition in microwave plasmas
JPH0361369A (en) Manufacture of diamond like carbon film
JPS62116767A (en) Metallic member coated with hard carbon film
Matsumura et al. Structure and electric conductivity of vapor deposition polymerization products of cyanoacetylene
EP0635871A2 (en) High heat conductive insulated substrate and method of manufacturing the same
JPH0610135A (en) Production of carbon film
JP3634460B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film