[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS624066B2 - - Google Patents

Info

Publication number
JPS624066B2
JPS624066B2 JP11235879A JP11235879A JPS624066B2 JP S624066 B2 JPS624066 B2 JP S624066B2 JP 11235879 A JP11235879 A JP 11235879A JP 11235879 A JP11235879 A JP 11235879A JP S624066 B2 JPS624066 B2 JP S624066B2
Authority
JP
Japan
Prior art keywords
bis
maleamic acid
blend
group
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11235879A
Other languages
Japanese (ja)
Other versions
JPS5536293A (en
Inventor
Marutsuora Roberuto
Garanyani Enea
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montedison SpA
Original Assignee
Montedison SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montedison SpA filed Critical Montedison SpA
Publication of JPS5536293A publication Critical patent/JPS5536293A/en
Publication of JPS624066B2 publication Critical patent/JPS624066B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された機械的特性を有するガラス
繊維で強化されたポリオレフインに関する。 より詳しくは、その目的のために本発明には加
工段階の間に重合体に対する繊維の付着を促進で
きる添加剤又は結合剤を含有するポリオレフイン
とガラス繊維とのブレンドが含まれる。 ポリオレフインはその無極特性のために無機繊
維で有効に強化するのに適しないことが公知であ
る。 そのような欠陥を克服するためにオレフイン重
合体を、極性基を有する炭化水素鎖単量体にグラ
フトさせることにより変性することが示唆されて
きた。 一般に極性単量体及び、例えば過酸化物のよう
な重合体鎖上に活性中心を形成できる薬剤又はイ
オン化放射線による重合体の予備的化学処理が予
知される技術により無機繊維で強化すべきオレフ
イン重合体を変性する例が公知である。 また変換装置にオレフイン重合体、ガラス繊
維、極性単量体及び過酸化物の混合物を供給し、
そして次に塊を成形温度にすることにより変換装
置中で直接グラフト反応を行なうことも可能であ
る。しかも、この場合には一般に有毒揮発性生成
物の形成に加えて、過酸化物の完全な分解が困難
であること、及びそのために、その残留物が殊に
複合材料の長期特性に対して負の影響を及ぼすこ
との欠陥が生ずる。 さらに、融解状態においてポリエチレン又はポ
リプロピレンを過酸化物で処理すると重合体にメ
ルトインデツクスの変化が生じ、その変化を制御
及び再現することが困難である。 今回意外にも結晶性ポリオレフイン(殊にポリ
エチレン、ポリプロピレン、ポリブデン及びポリ
4−メチルペンテン−1)、ガラス繊維及び一般
式: 〔式中Xは(CHR)n基(nは2〜18の整数
であり、Rは水素又は炭素原子1〜6個のアルキ
ル基である)であるか、あるいはXは複数の核を
有してもよい脂環式又は芳香族の二価の基、ある
いは複素環式基であり;R′は水素であり、Xが
(CHR)n基であるときに二つのR′が一緒にそれ
らもまた(CHR)n基を形成できる〕 で表わされるビス−マレアミド酸の混合物から出
発して優れた機械的特性の複合材料を得ることが
できることが見出され、これが本発明の対象を形
成する。 代表的な、そして好ましいビス−マレアミド酸
は N,N′−ヘキサメチレン−ビス−マレアミド
酸; N,N′−エチレン−ビス−マレアミド酸; N,N′−トリメチレン−ビス−マレアミド
酸; N,N′−ドデカメチレン−ビス−マレアミド
酸; N,N′−ピプラジン−ビス−マレアミド酸; N,N′−m−フエニレン−ビス−マレアミド
酸; N,N′−3,3′−(トランス−スチルベン−
5,5′−ナトリウムスルホナート)−ビス−マ
レアミド酸; N,N−4,4′−(ジフエニルエーテル)−ビス
−マレアミド酸; N,N′−4,4′−(ジフエニルメタン)−ビス−
マレアミド酸; N,N′−イソホロン−ビス−マレアミド酸
*; N,N′−2,5−ジメチレン−ノルボルナン
−ビス−マレアミド酸 * 表2脚註参照 である。 複合材料の製造は過酸化物又は遊離基を供給で
きる他の物質の使用を必要とすることなくポリオ
レフイン、ガラス繊維及びビス−マレアミド酸の
ブレンドを加熱することにより行なわれる。 ビス−マレアミド酸はポリオレフインに関して
0.5重量%から5重量%まで変動し得る量使用さ
れる。 結晶性ポリオレフインの語にはまたα−オレフ
インの相互又はエチレンとの結晶性共重合体が含
まれる。より詳しくは、この語にはプロピレンの
重合の初めに又は重合中に加えたエチレンの存在
下にプロピレンを重合することにより得られる重
合したエチレン約20重量%までを含有する生成物
が含まれる。 前記のように本発明の複合材料の製法は重合
体、ガラス繊維及びビス−マレアミド酸の混合物
を製造すること及び次に得られた「ドライブレン
ド」を一般に200℃と重合体の分解温度との間に
含まれ、実際には重合体の成形温度に一致する温
度で加熱することにある。 ポリプロピレンの場合には成形温度は200〜290
℃の間に含まれる。 実際には本発明の複合材料の製造又は相当する
製品の製造は重合体、ガラス繊維及びビス−マレ
アミド酸を含有する混合物又は前記混合物から公
知方法によつて造粒することにより得られる粒状
物質を公知技術により成形することにより行なわ
れる。 繊維は一般にポリオレフイン/繊維のブレンド
の10〜50重量%を構成する。ガラス繊維としては
シラン及び融解状態でポリオレフインマトリツク
スに近い表面張力を有する成膜形成剤で予め仕上
処理を行なつた繊維が使用される。 そのようなシランの例としてはγ−アミノプロ
ピル−トリエトキシシラン、アミノエチル−トリ
エトキシシラン、γ−アミノブチル−トリエトキ
シシラン及びγ−グリシドキシ−プロピルトリメ
トキシシランを挙げることができる。 上記皮膜形成剤はポリオレフイン性のものであ
り、例えばポリプロピレン、ポリエチレン、エチ
レン−プロピレンゴム及びエチレン−プロピレン
−ジエンゴムを用いても良い。 そのようなオレフインゴムは50000〜800000、
好ましくは70000〜500000の分子量を有し、エチ
レン20〜80モル%、及び不飽和のときにはブタジ
エン、イソプレン、1,3−ペンタジエン、1,
4−ペンタジエン、1,4−ヘキサジエン、1,
5−ヘキサジエン、1,9−デカジエン、5−メ
チレン−2−ノルボルネン及び5−ビニル−2−
ノルボルネンのようなアルケニル−ノルボルネ
ン、2−アルキル2,5−ノルボルナジエンのよ
うなノルボルナジエン、5−エチリデン−2−ノ
ルボルネンのようなアルキリデン−ノルボルネ
ン、シクロペンタジエンなどのような共役又は非
共役ジエン炭化水素0.1〜20モル%を含有する。 ガラス繊維はシラン及び皮膜形成剤で公知コー
テイング技術のいずれかにより処理される。 前記のように、本発明のブレンドは優秀な重合
体の繊維に対する付着、従つて、ビス−マレアミ
ド酸を使用しないで達成されるよりも著しく大き
い破壊荷重の達成を、そして重合体を予防的に変
性する必要なく又は過酸化物の使用に復帰するこ
となくこれを達成することができる。この方法で
は重合体の予防的変性のための費用のかかるプロ
セスを避けることに加えて、例えば橋かけ、質の
低下及び生成物の老化に対する貧弱な耐性のよう
な遊離基源の使用に関連するすべての欠陥もまた
回避される。 結晶性のポリプロピレン、ポリブデン、ポリ4
−メチルペンテン−1としてはアイソタクチツク
構造の重合体を高割合に有する重合体を用いるこ
とが好ましい。より好ましくはアイソタクチシテ
イ指数が90%より大きいポリプロピレンが用いら
れる。 単に例示のために、限定する目的でなく示され
る次の例において、それに用いたガラス繊維はγ
−アミノプロピル−トリエトキシシランとエチレ
ン67%、プロピレン30%及び5−エチリデン−2
−ノルボルネン3%(前記%は重量で示されてい
る)からなるターポリマーを基にしたコーテイン
グを有する。 例 1〜4 アイソタクチシテイ指数95、密度0.90g/c.c.及
びメルトインデツクスL=10g/10min (ASTM−1238)を有する粉末形態のポリプ
ロピレン1400gを、表1に示した量のN,N′−
ヘキサメチレン−ビス−マレアミド酸及び酸化防
止剤配合物と粉末ミキサー中で窒素雰囲気下に5
分間混合した。この酸化防止剤配合物はジラウリ
ルチオジプロピオナート0.2%、ペンタエリトリ
トールのテトラ〔3−(3,5−ジ−t−ブチル
−4−ヒドロキシフエニル)プロピオナート〕
0.1%、Caステアラート0.2%及び2,6−ジ−t
−ブチル−p−クレゾール0.1%(ポリプロピレ
ンに関する重量%)を含む。 比較のために4試験に最初にはビス−マレアミ
ド酸を用いなかつた。 4「ドライブレンド」をパスケツチ
(Pasquetti)二軸スクリユー押出機中で窒素雰囲
気下に205℃において押出し、それにより変性さ
れ安定化された粒状ポリプロピレンを得た。この
粒状生成物にチヨツプトストランド型の長さ6mm
のガラス繊維30%(合計に対し)を加え次に全塊
をパスケツチ二軸スクリユー押出機中で205℃に
おいて押出し、それにより強化ポリプロピレンを
得た。 物理的機械的特性のための試験片をBresso
(イタリー)のGBFにより製作されたV160/72型
射出成形機で下記条件下に運転して製造した: −押出機本体及びヘツドの温度 250℃ −ダイの温度 25℃ −引張試験用試験片に対する射出時間 20秒 −引張試験用試験片に対する完全サイクル 70秒 −曲げ試験、衝撃試験及びHDT用 試験片に対する射出時間 80秒 −曲げ試験、衝撃試験及びHDT用 試験片に対する完全サイクル 100秒 4試験において成形した試験片に対する引張破
壊荷重(ASTM D−638)、曲げ弾性率(ASTM
D−790)、−20℃におけるノツチ付アイゾツトレ
ジリエンス(ASTM D−256)、HDT(加熱ひず
み温度)(ASTM D−648)及び引張試験用試験
片の中心部に対して(支点間距離4cm)80℃及び
120℃で100Kg/cm2の荷重下に8時間行なつた曲げ
試験におけるクリープの値が表1に示される。
The present invention relates to glass fiber reinforced polyolefins with improved mechanical properties. More specifically, for that purpose, the present invention includes blends of polyolefins and glass fibers containing additives or binders capable of promoting adhesion of the fibers to the polymer during processing steps. It is known that polyolefins are not suitable for effective reinforcement with inorganic fibers due to their non-polar nature. In order to overcome such deficiencies, it has been suggested to modify olefin polymers by grafting them onto hydrocarbon chain monomers having polar groups. Olefin polymers to be reinforced with inorganic fibers by techniques that generally foresee polar monomers and a preliminary chemical treatment of the polymer with ionizing radiation or agents capable of forming active centers on the polymer chain, such as peroxides. Examples of modifying coalescence are known. and supplying the converter with a mixture of olefin polymer, glass fiber, polar monomer and peroxide;
It is then also possible to carry out the grafting reaction directly in the converter by bringing the mass to the forming temperature. Moreover, in addition to the formation of toxic volatile products, complete decomposition of the peroxide is generally difficult in this case, and its residues are therefore particularly detrimental to the long-term properties of the composite material. Defects occur due to the influence of Furthermore, treating polyethylene or polypropylene with peroxides in the molten state causes changes in the melt index of the polymer that are difficult to control and reproduce. This time, unexpectedly, crystalline polyolefins (especially polyethylene, polypropylene, polybutene and poly-4-methylpentene-1), glass fibers and general formula: [In the formula, X is a (CHR)n group (n is an integer from 2 to 18, and R is hydrogen or an alkyl group having 1 to 6 carbon atoms), or X has multiple nuclei is an optional alicyclic or aromatic divalent group, or a heterocyclic group; when R′ is hydrogen and X is a (CHR)n group, the two R′ together It has now been found that starting from mixtures of bis-maleamic acids of the form (CHR)n groups can be obtained, composite materials with excellent mechanical properties can be obtained, which form the subject of the present invention. Representative and preferred bis-mareamic acids are N,N'-hexamethylene-bis-mareamic acid; N,N'-ethylene-bis-mareamic acid; N,N'-trimethylene-bis-mareamic acid; N'-dodecamethylene-bis-maleamic acid; N,N'-piprazine-bis-maleamic acid; N,N'-m-phenylene-bis-maleamic acid; N,N'-3,3'-(trans- Stilbene
N,N-4,4'-(diphenyl ether)-bis-maleamic acid; N,N'-4,4'-(diphenylmethane)-bis −
Maleamic acid; N,N'-isophorone-bis-maleamic acid
* ; N,N'-2,5-dimethylene-norbornane-bis-maleamic acid *See footnote to Table 2. The composite material is produced by heating a blend of polyolefin, glass fibers and bis-maleamic acid without requiring the use of peroxides or other substances capable of supplying free radicals. Bis-maleamic acid is related to polyolefins.
Amounts are used which can vary from 0.5% to 5% by weight. The term crystalline polyolefin also includes crystalline copolymers of alpha-olefins with each other or with ethylene. More specifically, the term includes products containing up to about 20% by weight of polymerized ethylene obtained by polymerizing propylene in the presence of ethylene added at the beginning of or during the polymerization of propylene. As mentioned above, the process for making the composite material of the present invention involves producing a mixture of polymer, glass fiber and bis-maleamic acid and then subjecting the resulting "dry blend" to a temperature generally equal to 200°C and the decomposition temperature of the polymer. In fact, it consists in heating at a temperature that corresponds to the forming temperature of the polymer. In the case of polypropylene, the molding temperature is 200-290
Included between ℃. In practice, the production of the composite material of the invention or the production of a corresponding product consists of a mixture containing a polymer, glass fibers and bis-maleamic acid, or a granular material obtained by granulation from said mixture by known methods. This is done by molding using known techniques. Fibers generally constitute 10-50% by weight of the polyolefin/fiber blend. The glass fibers used are those which have been previously treated with silane and a film-forming agent which has a surface tension close to that of the polyolefin matrix in the molten state. Examples of such silanes include γ-aminopropyl-triethoxysilane, aminoethyl-triethoxysilane, γ-aminobutyl-triethoxysilane and γ-glycidoxy-propyltrimethoxysilane. The above-mentioned film forming agent is a polyolefinic material, and for example, polypropylene, polyethylene, ethylene-propylene rubber, and ethylene-propylene-diene rubber may be used. Such olefin rubber is 50000~800000,
Preferably has a molecular weight of 70,000 to 500,000, 20 to 80 mol% of ethylene, and when unsaturated, butadiene, isoprene, 1,3-pentadiene, 1,
4-pentadiene, 1,4-hexadiene, 1,
5-hexadiene, 1,9-decadiene, 5-methylene-2-norbornene and 5-vinyl-2-
Conjugated or non-conjugated diene hydrocarbons such as alkenyl-norbornene such as norbornene, norbornadiene such as 2-alkyl-2,5-norbornadiene, alkylidene-norbornene such as 5-ethylidene-2-norbornene, cyclopentadiene, etc. Contains 20 mol%. The glass fibers are treated with silanes and film formers by any of the known coating techniques. As mentioned above, the blends of the present invention provide excellent polymer adhesion to the fibers, thus achieving significantly higher failure loads than would be achieved without the use of bis-maleamic acid, and preventive polymerization. This can be accomplished without the need for modification or reversion to the use of peroxides. In addition to avoiding expensive processes for preventive modification of polymers, this method also avoids problems associated with the use of free radical sources, such as cross-linking, quality loss and poor resistance to aging of the product. All defects are also avoided. Crystalline polypropylene, polybutene, poly4
- As methylpentene-1, it is preferable to use a polymer having a high proportion of isotactic structure polymer. More preferably, polypropylene having an isotacticity index of greater than 90% is used. In the following example, given merely by way of illustration and not by way of limitation, the glass fibers used therein were γ
-aminopropyl-triethoxysilane with 67% ethylene, 30% propylene and 5-ethylidene-2
- with a coating based on a terpolymer consisting of 3% of norbornene (the percentages are indicated by weight). Examples 1 to 4 1400 g of polypropylene in powder form having an isotacticity index of 95, a density of 0.90 g/cc and a melt index L = 10 g/10 min (ASTM-1238) were mixed with N, N'-
Hexamethylene-bis-maleamic acid and antioxidant formulation in a powder mixer under a nitrogen atmosphere for 5 minutes.
Mixed for a minute. This antioxidant formulation consists of 0.2% dilaurylthiodipropionate, pentaerythritol tetra[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]
0.1%, Ca stearate 0.2% and 2,6-di-t
-butyl-p-cresol 0.1% (% by weight relative to polypropylene). For comparison, four tests did not initially use bis-maleamic acid. 4 "dry blend" was extruded in a Pasquetti twin screw extruder at 205° C. under a nitrogen atmosphere, thereby obtaining a modified and stabilized granular polypropylene. This granular product has a tipped strand shape with a length of 6 mm.
30% (based on the total) of glass fibers were added and the entire mass was then extruded at 205° C. in a Pasketch twin screw extruder, thereby obtaining reinforced polypropylene. Bresso specimens for physical and mechanical properties
The extruder was manufactured using a V160/72 injection molding machine manufactured by GBF (Italy) operating under the following conditions: - extruder body and head temperature 250°C - die temperature 25°C - tensile test specimens Injection time 20 seconds - complete cycle for tensile test specimens 70 seconds - for bending, impact and HDT specimens Injection time 80 seconds - for bending, impact and HDT specimens Complete cycle 100 seconds in 4 tests Tensile failure load (ASTM D-638), flexural modulus (ASTM
D-790), Notched Izot Resilience at -20℃ (ASTM D-256), HDT (Heat Strain Temperature) (ASTM D-648), and Center of Tensile Test Specimen (Distance Between Supports) 4cm) 80℃ and
Table 1 shows the creep values in a bending test conducted at 120° C. for 8 hours under a load of 100 kg/cm 2 .

【表】 例 5〜8 アイソタクチシテイ指数95、密度0.90g/c.c.及
びメルトインデツクスL=10g/10min(ASTM
D−1238)を有するポリプロピレン粉末1400gを
粉末ミキサー中で窒素雰囲気下に、長さ6mmのチ
ヨツプトストランド型のガラス繊維600g及び表
2に示す量のビス−マレアミド酸並びに例1〜4
に用いたと同じ酸化防止剤配合物と5分間混合し
た。 得られた4「ドライブレンド」を例1〜4のよ
うに射出成形し特性を決定した。結果は表2に示
した。
[Table] Examples 5 to 8 Isotacticity index 95, density 0.90g/cc and melt index L = 10g/10min (ASTM
1400 g of polypropylene powder having the following properties (D-1238) were added in a powder mixer under a nitrogen atmosphere to 600 g of chopped strand type glass fibers of 6 mm length and bis-maleamic acid in the amounts shown in Table 2 and Examples 1 to 4.
and the same antioxidant formulation used for 5 minutes. The resulting 4 "dry blend" was injection molded as in Examples 1-4 and its properties determined. The results are shown in Table 2.

【表】 例 9 密度0.962g/c.c.及びメルトインデツクスE=
5.5g/10min(ASTM D−1238)を有する高密
度ポリエチレン粉末1400gを粉末ミキサー中窒素
雰囲気において長さ6mmのチヨツプトストランド
型のガラス繊維600g、N,N′−ヘキサメチレン
−ビス−マレアミド酸7g並びにn−オクタデシ
ル3−(4−ヒドロキシ−3,5−ジ−t−ブチ
ルフエニル)プロピオナート0.03%、2,6−ジ
−t−ブチル−p−クレゾール0.02%、グリセリ
ルモノステアラート0.04%及びCaステアラート
0.1%(ポリエチレンに関する%)を含む酸化防
止剤配合物と5分間混合する。 得られたドライブレンドは例1〜4のように射
出成形し特性を決定した。 引張破壊荷重(ASTM D−638)は950Kg/cm2
であり曲げ弾性率(ASTM D−790)は63650
Kg/cm2であつた。 −20℃におけるノツチ付アイゾツトレジリエン
ス(ASTM D−256)は30Kg cm/cm(試験片
一部破壊)であり、HDT(ASTM D−648)は
123℃であつた。
[Table] Example 9 Density 0.962g/cc and melt index E=
1,400 g of high-density polyethylene powder with 5.5 g/10 min (ASTM D-1238) was mixed with 600 g of chopped strand type glass fiber of 6 mm length in a powder mixer in a nitrogen atmosphere, and N,N'-hexamethylene-bis-maleamic acid. 7g and n-octadecyl 3-(4-hydroxy-3,5-di-t-butylphenyl)propionate 0.03%, 2,6-di-t-butyl-p-cresol 0.02%, glyceryl monostearate 0.04% and Ca stearart
Mix for 5 minutes with an antioxidant formulation containing 0.1% (% on polyethylene). The resulting dry blends were injection molded and characterized as in Examples 1-4. Tensile breaking load (ASTM D-638) is 950Kg/cm 2
The flexural modulus (ASTM D-790) is 63650.
It was Kg/ cm2 . Notched Izots resilience (ASTM D-256) at -20℃ is 30Kg cm/cm (partial destruction of test piece), HDT (ASTM D-648) is
It was 123℃.

Claims (1)

【特許請求の範囲】 1 (a)結晶性ポリオレフイン50〜90重量%と(b)ガ
ラス繊維50〜10重量%とからなるブレンドにおい
て、前記ブレンドが一般式: 〔式中Xは(CHR)n基(nは2〜18の整数
であり、Rは水素又は炭素原子1〜6個のアルキ
ル基である)であるか、あるいはXは複数の核を
有してもよい脂環式又は芳香族の二価の基、ある
いは複素環式基であり;R′は水素であり、Xが
(CHR)o基であるときに二つのR′が一緒にそれら
もまた(CHR)o基を形成できる〕 で表わされるビス−マレアミド酸をポリオレフ
インに関して0.5〜5重量%含有することを特徴
とするブレンド。 2 ビス−マレアミド酸としてN,N′−ヘキサ
メチレン−ビス−マレアミド酸を含有する特許請
求の範囲第1項記載のブレンド。 3 ビス−マレアミド酸としてN,N′−ドデカ
メチレン−ビス−マレアミド酸を含有する特許請
求の範囲第1項記載のブレンド。 4 ビス−マレアミド酸としてN,N′−イソホ
ロン−ビス−マレアミド酸を含有する特許請求の
範囲第1項記載のブレンド。 5 結晶性ポリオレフインがポリプロピレンであ
る特許請求の範囲第1項ないし第4項のいずれか
に記載のブレンド。 6 結晶性ポリオレフインがポリエチレンである
特許請求の範囲第1項ないし第4項のいずれかに
記載のブレンド。
[Scope of Claims] 1. A blend comprising (a) 50 to 90% by weight of crystalline polyolefin and (b) 50 to 10% by weight of glass fiber, wherein the blend has the general formula: [In the formula, X is a (CHR)n group (n is an integer from 2 to 18, and R is hydrogen or an alkyl group having 1 to 6 carbon atoms), or X has multiple nuclei is an optional alicyclic or aromatic divalent group, or a heterocyclic group; when R′ is hydrogen and X is a (CHR) o group, the two R′ together A blend characterized in that it contains 0.5 to 5% by weight of bis-maleamic acid represented by (CHR) o group-forming with respect to the polyolefin. 2. The blend according to claim 1, which contains N,N'-hexamethylene-bis-maleamic acid as the bis-maleamic acid. 3. A blend according to claim 1, which contains N,N'-dodecamethylene-bis-maleamic acid as the bis-maleamic acid. 4. The blend according to claim 1, which contains N,N'-isophorone-bis-maleamic acid as the bis-maleamic acid. 5. The blend according to any one of claims 1 to 4, wherein the crystalline polyolefin is polypropylene. 6. The blend according to any one of claims 1 to 4, wherein the crystalline polyolefin is polyethylene.
JP11235879A 1978-09-01 1979-09-01 Glass fiber reinforced polyolefin Granted JPS5536293A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT27243/78A IT1098828B (en) 1978-09-01 1978-09-01 POLYOLEFINS REINFORCED WITH GLASS FIBERS

Publications (2)

Publication Number Publication Date
JPS5536293A JPS5536293A (en) 1980-03-13
JPS624066B2 true JPS624066B2 (en) 1987-01-28

Family

ID=11221263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11235879A Granted JPS5536293A (en) 1978-09-01 1979-09-01 Glass fiber reinforced polyolefin

Country Status (2)

Country Link
JP (1) JPS5536293A (en)
IT (1) IT1098828B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512819B2 (en) * 1987-01-27 1993-02-19 Sony Corp
JPH0512820B2 (en) * 1990-04-13 1993-02-19 Sony Corp
US10756318B2 (en) 2001-07-24 2020-08-25 Sony Corporation Method for preventing erroneous loading of component-to-be-loaded on main body side apparatus, component-to-be-loaded and battery pack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1137192B (en) * 1981-07-03 1986-09-03 Montedison Spa POLYOLEFINIC COMPOSITIONS REINFORCED WITH MICA

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512819B2 (en) * 1987-01-27 1993-02-19 Sony Corp
JPH0512820B2 (en) * 1990-04-13 1993-02-19 Sony Corp
US10756318B2 (en) 2001-07-24 2020-08-25 Sony Corporation Method for preventing erroneous loading of component-to-be-loaded on main body side apparatus, component-to-be-loaded and battery pack

Also Published As

Publication number Publication date
JPS5536293A (en) 1980-03-13
IT1098828B (en) 1985-09-18
IT7827243A0 (en) 1978-09-01

Similar Documents

Publication Publication Date Title
JP3248138B2 (en) Propylene polymers and copolymers grafted with vinyl polybutadiene and their preparation
US4278586A (en) Glass fiber-reinforced polyolefins
JP5503290B2 (en) Filler-added polyolefin compositions
RU2113446C1 (en) Polyolefin composition
RU2091411C1 (en) Thermoplastic composition
EP1391482B1 (en) Polypropylene composition
EP0346840B1 (en) High-melt-flow fiber-reinforced polypropylene compositions
DE69819631T2 (en) Process for the preparation of graft polymers containing anhydride groups
US4426469A (en) Glass fibers for the reinforcement of polyolefins and reinforced polyolefin compositions obtained therefrom
DE69502778T2 (en) Impact modified graft copolymers of propylene polymer with a heterophasic polyolefin
EP0822223B1 (en) A process for preparing reinforced polyolefins and reinforced polyolefin composition
JP4755808B2 (en) Impact resistant polypropylene
CA2091533C (en) Thermoplastic blends containing graft copolymers of polyacrylates as impact modifiers
US6020437A (en) Propylene polymer and process for obtaining it
WO2018220024A1 (en) A crosslinkable propylene polymer composition
JPS624066B2 (en)
AU736590B2 (en) Morphology control in polypropylene graft copolymers
DE68924618T2 (en) Process for grafting stereoregular polymers of branched higher olefins and compositions therewith.
DE60125940T2 (en) USE OF MODIFIED OLEFIN POLYMERS FOR THE PREPARATION OF POLYOLEFIN PRODUCTS WITH IMPROVED TENNIS, STRENGTH AND HEAT RESISTANCE
EP0953597B1 (en) Improving heat aging of grafted polyolefins using zinc mercapto compounds
JPH08311269A (en) Propylene polymer composition and its production
JP3414490B2 (en) Method for producing propylene polymers grafted with polyalkenylenes
US11117995B2 (en) Process for preparing high melt strength polypropylene
JPH06172460A (en) Production of reactive polypropylene
KR890003005B1 (en) Preparation of olefin resin composition