JPS6238610B2 - - Google Patents
Info
- Publication number
- JPS6238610B2 JPS6238610B2 JP12384479A JP12384479A JPS6238610B2 JP S6238610 B2 JPS6238610 B2 JP S6238610B2 JP 12384479 A JP12384479 A JP 12384479A JP 12384479 A JP12384479 A JP 12384479A JP S6238610 B2 JPS6238610 B2 JP S6238610B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- amount
- sox
- value
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 100
- 229910052717 sulfur Inorganic materials 0.000 claims description 65
- 239000011593 sulfur Substances 0.000 claims description 65
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 14
- 230000007613 environmental effect Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims 4
- 238000011156 evaluation Methods 0.000 claims 4
- 230000010354 integration Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 35
- 230000001186 cumulative effect Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/003—Systems for controlling combustion using detectors sensitive to combustion gas properties
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
Description
【発明の詳細な説明】
本発明はボイラからの排ガス中のSOx排出量の
制御に係わり、特に複数の燃料を使用するボイラ
において、各燃料の使用比率を制御して燃料中の
硫黄量を制御することにより排ガス中のSOx排出
量の制御に関する。[Detailed Description of the Invention] The present invention relates to the control of SOx emissions in exhaust gas from a boiler, and in particular, in a boiler that uses multiple fuels, the amount of sulfur in the fuel is controlled by controlling the usage ratio of each fuel. This is related to the control of SOx emissions in exhaust gas.
発電プラントの運用においては、環境汚染に対
する社会的な規制がきびしくなり、特にボイラか
らの排ガス中のSOxに対しては、K値規制の他に
SOx排出量の規制が行われる様になつてきてい
る。 In the operation of power plants, social regulations regarding environmental pollution have become stricter, and in addition to K-value regulations, especially regarding SOx in exhaust gas from boilers,
SOx emissions are being regulated.
これに対処するため、発電プラントにおいては
排煙脱硫装置により排ガス中からSOxを除去する
方法や、硫黄分の少い燃料を使用する方法が採用
されている。 To deal with this, power plants have adopted methods such as removing SOx from exhaust gas using flue gas desulfurization equipment and using fuel with low sulfur content.
後者の方式の場合、硫黄分の少い燃料は硫黄分
の多い燃料に比較し高価であるため、硫黄分の少
い燃料と硫黄分の多い燃料をブレンドし、燃料中
の硫黄分を適切な値にすることにより、高価な低
硫黄分燃料の使用量をおさえながら、ボイラから
の排ガス中のSOx排出量が規制値以内となる様に
調整し、環境規制の制約内で最も経済的な運用を
行う様にしている。 In the latter method, since low-sulfur fuel is more expensive than high-sulfur fuel, low-sulfur fuel and high-sulfur fuel are blended, and the sulfur content in the fuel is adjusted to an appropriate level. By adjusting the value, we can control the amount of expensive low-sulfur fuel used and adjust SOx emissions in the exhaust gas from the boiler to be within the regulated value, resulting in the most economical operation within the constraints of environmental regulations. I try to do this.
従来この様な場合には、ボイラからの排ガス中
のSOx濃度および排ガス流量を計測し、これより
排ガス中のSOx排出量を算出したり、燃料中の硫
黄分および燃料流量を計測し、これより排ガス中
のSOx排出量を算出し、時々刻々この値と規制値
を比較し、SOx排出量が規制値より大きい場合は
硫黄分の少い燃料のブレンド比率を増加し、SOx
排出量が規制値より小さい場合は硫黄分の多い燃
料のブレンド比率を増加して調整している。 Conventionally, in such cases, the SOx concentration and exhaust gas flow rate in the exhaust gas from the boiler are measured, and from this the SOx emissions in the exhaust gas are calculated, and the sulfur content in the fuel and the fuel flow rate are measured. Calculate the amount of SOx emissions in the exhaust gas, compare this value with the regulation value from time to time, and if the SOx emission amount is greater than the regulation value, increase the blend ratio of fuel with a low sulfur content, and
If emissions are lower than the regulation value, adjustments are made by increasing the blending ratio of fuel with a high sulfur content.
第1図はこの従来技術によるボイラからの排ガ
ス中のSOx排出量の制御方式の実施例を示したも
のである。図において1は排ガス中のSOx濃度お
よび排ガス流量の計測信号により排ガス中のSOx
排出量の算出する演算器、2は排ガス中のSOx排
出量の目標値を設定する設定器、3は設定器2か
らの信号(排ガス中のSOx排出量の目標値)と演
算器1からの信号(排ガス中のSOx排出量実測
値)の偏差を算出する減算器、4はSOx排出量の
偏差より燃料中の硫黄量の操作量を算出する演算
器、5は硫黄分の多い一般燃料中の硫黄分濃度お
よび硫黄分の少い低硫黄分燃料中の硫黄分濃度の
計測信号よりその差を算出し燃料を単位量変更し
た時の燃料中の硫黄量の変化量を算出する演算
器、6は演算器4からの信号(燃料中の硫黄量の
操作量)と演算器5からの信号(燃料を単位量変
更した時の燃料中の硫黄量の変化器)をもとに燃
料の修正操作量を算出する演算器、7は修正操作
量を制限するリミツタ、8は燃料量指令値発信
器、9は8からの信号(燃料量指令値)と7から
の信号(燃料修正操作量)より一般燃料の燃料量
指令値を算出する加算器、10は8からの信号
(燃料量指令値)と7からの信号(燃料修正操作
量)より低硫黄分燃料の燃料量指令値を算出する
減算器である。図に示す制御系においては排ガス
中のSOx排出量の目標値と実測値の偏差が生じる
と、偏差量に応じて一般燃料および低硫黄分燃料
の燃料量指令値が修正され、SOx排出量が目標値
に合う様に制御される。 FIG. 1 shows an example of a method for controlling the amount of SOx discharged from the exhaust gas from a boiler according to this prior art. In the figure, 1 indicates the amount of SOx in the exhaust gas based on the measurement signals of the SOx concentration in the exhaust gas and the exhaust gas flow rate.
2 is a setting device that sets the target value of SOx emissions in exhaust gas; 3 is a signal from setting device 2 (target value of SOx emissions in exhaust gas) and a signal from calculator 1. A subtractor that calculates the deviation of the signal (measured value of SOx emissions in exhaust gas), 4 is a calculator that calculates the manipulated variable of the amount of sulfur in the fuel from the deviation of SOx emissions, 5 is a general fuel with a high sulfur content. a calculator that calculates the difference between the sulfur concentration and the sulfur concentration in the low sulfur fuel based on the measurement signals, and calculates the amount of change in the sulfur content in the fuel when the unit amount of fuel is changed; 6 corrects the fuel based on the signal from the calculator 4 (manipulated amount of sulfur in the fuel) and the signal from the calculator 5 (changer for changing the amount of sulfur in the fuel when the unit amount of fuel is changed) A calculator that calculates the manipulated variable, 7 a limiter that limits the modified manipulated variable, 8 a fuel quantity command value transmitter, and 9 a signal from 8 (fuel quantity command value) and a signal from 7 (fuel modified manipulated variable). Adder 10 calculates the fuel quantity command value for more general fuel, and 10 calculates the fuel quantity command value for low sulfur content fuel from the signal from 8 (fuel quantity command value) and the signal from 7 (fuel correction operation amount). It is a subtractor. In the control system shown in the figure, when a deviation occurs between the target value and the measured value of SOx emissions in exhaust gas, the fuel amount command values for general fuel and low-sulfur fuel are revised according to the amount of deviation, and the SOx emissions are reduced. It is controlled to match the target value.
上述した従来の制御方式ではボイラからの排ガ
ス中のSOx排出量の偏差に対応して時々刻々の制
御が行われている。これに対し環境規制は規定時
間(通常1時間)におけるSOx排出量の積算値で
規制されており、従来の制御方式では環境規制に
対し完全には対応していない欠点があつた。 In the conventional control method described above, control is performed from time to time in response to deviations in the amount of SOx discharged from the exhaust gas from the boiler. On the other hand, environmental regulations are regulated based on the cumulative value of SOx emissions over a specified period of time (usually one hour), and conventional control methods have the drawback of not being able to fully comply with environmental regulations.
本発明の目的は上記した従来方式の欠点をなく
し、環境規制に合致した積算値をベースとする
SOx排出量の制御装置を提供するに有る。 The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional method, and to create a system based on integrated values that comply with environmental regulations.
The purpose is to provide a control device for SOx emissions.
積算値をベースとするSOx排出量の制御を行う
には排ガス中のSOx排出量の変化状況を予測し、
規定時間におけるSOx排出量の積算値の予測値を
求め、これと規制値を比較し、修正操作量を算出
する必要がある。 To control SOx emissions based on integrated values, it is necessary to predict changes in SOx emissions in exhaust gas,
It is necessary to find the predicted value of the cumulative value of SOx emissions over the specified time, compare this with the regulation value, and calculate the corrected operation amount.
排ガス中のSOxは燃料中の硫黄が燃焼して発生
するものであり、燃料中の硫黄量の変動に対する
排ガス中のSOx排出量の変動は第2図に示す対応
がある。 SOx in exhaust gas is generated by the combustion of sulfur in fuel, and the fluctuations in the amount of SOx emissions in exhaust gas respond to fluctuations in the amount of sulfur in fuel as shown in Figure 2.
第2図aは燃料中の硫黄量の変動を、同図bは
排ガス中のSOx排出量の変動を示している。 Figure 2a shows the fluctuations in the amount of sulfur in the fuel, and Figure 2b shows the fluctuations in the amount of SOx emissions in the exhaust gas.
図より現在時刻よりt1前に燃料中の硫黄量がΔ
S(t1)変動した時の、現在時刻におけるこれに
よる排ガス中のSOx排出量の変動は下記式により
表らわされる。 From the figure, the amount of sulfur in the fuel is Δ before t 1 from the current time.
When S(t 1 ) fluctuates, the resulting fluctuation in the amount of SOx discharged in the exhaust gas at the current time is expressed by the following equation.
また現在時刻よりt1前に燃料中の硫黄量がΔS
(t1)変動した時の、現在時刻よりt2後におけるこ
とによる排ガス中のSOx排出量の変動は下記式に
より表らわされる。 Also, t 1 before the current time, the amount of sulfur in the fuel is ΔS
The variation in the amount of SOx emissions in the exhaust gas due to the change in SOx (t 1 ) after t 2 from the current time is expressed by the following formula.
これより現在時刻よりt1前に燃料中の硫黄量が
ΔS(t1)変動した時の、現在時刻よりt2後におけ
るSOx排出量の現在以後の変動は下記式により表
らわされる。 From this, when the amount of sulfur in the fuel fluctuates by ΔS(t 1 ) before t 1 from the current time, the fluctuation in the amount of SOx emissions after t 2 from the current time is expressed by the following equation.
ΔSOxF(t1、t2)=ΔSOx(t1、t2)
−ΔSOx(t0、0)
燃料中の硫黄量の変動によるSOx排出量の今後
の変動は、現在時刻までの各時点における燃料中
の硫黄量の変動によるSOx排出量の今後の変動の
総和であるから、現在時刻よりt2後におけるSOx
排出量の予測値は下記式で表らわされる。 ΔSOxF (t 1 , t 2 ) = ΔSOx (t 1 , t 2 ) −ΔSOx (t 0 , 0) Future fluctuations in SOx emissions due to changes in the amount of sulfur in the fuel will be Since it is the sum of future changes in SOx emissions due to changes in the amount of sulfur in the
The predicted value of emissions is expressed by the following formula.
SOx(t2)
=SOx(0)+∫ΔSOx×F(t1、t2)dt1
ここでSOx(0):現時点におけるSOx排出量
瞬時値
上記式は過去の実測値およびボイラでの燃料中
の硫黄量の変動に対する排ガス中のSOx排出量の
変動の応答特性(無駄時間t2および1次おくれの
時定数T1)の関数であるため、現在時刻までの燃
料中の硫黄量の変動経過を記憶しておけば、容易
に計算することができる。 SOx (t 2 ) = SOx (0) + ∫ΔSOx × F (t 1 , t 2 ) dt 1 where SOx (0): instantaneous value of SOx emissions at present The above formula is based on past actual measurements and boiler fuel Because it is a function of the response characteristics of the fluctuations in SOx emissions in the exhaust gas (dead time t 2 and first-order lag time constant T 1 ) to fluctuations in the amount of sulfur in the fuel, the fluctuation in the amount of sulfur in the fuel up to the current time If you memorize the progress, you can easily calculate it.
なお、t1が充分大きくなるとΔSOxF(t1、t2)
は0に近くなるため、現時点を起点として、一定
期間のt1についてのみ考慮すれば良い。またt2が
充分大きくなればSOx(t2)は一定値に近づくの
で一定期間のt2について求めればそれ以後は一定
のSOx排出量が継続するとして近似できる。 Note that when t 1 becomes sufficiently large, ΔSOxF(t 1 , t 2 )
is close to 0, so it is only necessary to consider a certain period of time t 1 starting from the present moment. Also, if t 2 becomes sufficiently large, SOx (t 2 ) approaches a constant value, so if t 2 is calculated for a certain period, it can be approximated by assuming that a constant SOx emission continues after that.
上記により算出したSOx排出量(瞬時値)の予
測値をもとに規定時間におけるSOx排出量の積算
値の予測値を求める。 Based on the predicted value of the SOx emission amount (instantaneous value) calculated above, a predicted value of the integrated value of the SOx emission amount for a specified time is determined.
第3図はSOx排出量の積算値の予測値の算出方
法の概要を示したものである。図において横軸は
時間軸を示し、t0は現在時刻、Tは規定時間を示
す。また縦軸SOx(t)は各時刻におけるSOx排
出量の瞬時値を示す。(SOx排出量の瞬時値をな
す曲線の下部の面積が積算値に相当する。)そし
てST(t)は時刻tまでSOx排出量の積算値を
示す。図において現在時刻t0までのSOx排出量の
積算値は下記式で表らわされ、既知データとして
得られる。 Figure 3 shows an overview of the method for calculating the predicted value of the cumulative value of SOx emissions. In the figure, the horizontal axis indicates the time axis, t 0 indicates the current time, and T indicates the specified time. Further, the vertical axis SOx (t) indicates the instantaneous value of the SOx emission amount at each time. (The area under the curve representing the instantaneous value of the SOx emission amount corresponds to the integrated value.) Then, S T (t) indicates the integrated value of the SOx emission amount up to time t. In the figure, the cumulative value of SOx emissions up to the current time t 0 is expressed by the following formula and obtained as known data.
ST(t0)=∫t0 0SOx(t)dt
一方現在時刻以後のSOx排出量(瞬時値)の予
測値は、現在時刻t0におけるSOx排出量および、
現在時刻までの燃料中の硫黄量の変動経過より上
記考察にもとづき下記式で算出できる。 S T (t 0 ) = ∫ t0 0 SOx (t) dt On the other hand, the predicted value of the SOx emission amount (instantaneous value) after the current time is the SOx emission amount at the current time t 0 and,
Based on the above considerations, it can be calculated using the following formula from the fluctuation history of the amount of sulfur in the fuel up to the current time.
SOx(t)=SOx(t0)+
∫t0 t0―TxΔSOxF(t1、t)dt1
ここでTx:ΔSOxF(t1、t)が無視できるt1
上記式の右辺は全て現在時刻t0までの実測値よ
り求める事ができる。SOx (t) = SOx (t 0 ) + ∫ t0 t0 - Tx ΔSOxF (t 1 , t) dt 1 where T x : ΔSOxF (t 1 , t) can be ignored t 1 The right-hand side of the above equation is all the current time It can be obtained from the actual measured values up to t 0 .
これより規定時間経過後のSOx排出量の積算値
の予測値は下記式により算出できる。 From this, the predicted value of the cumulative amount of SOx emissions after the specified time has elapsed can be calculated using the following formula.
ST(T)=∫t0 0SOx(t)dt+∫T0 t0SOx(
t)
dt
=ST(t0)+SOx(t0)(T―t0)
+∫T0 T0∫t0 t0−TxΔSOxF(t1、t)dt
1dt
上記により算出したSOx排出量の積算値の予測
値は現在時刻t0において修正操作を行わなかつた
場合の予測値であり、この値と規定時間における
SOx排出量の積算値の規制値の偏差を無くする様
に燃料中の硫黄量の修正操作を行えば良い。 S T (T)=∫ t0 0 SOx(t)dt+∫ T0 t0 SOx(
t)
dt = S T (t 0 ) + SOx (t 0 ) (T-t 0 ) +∫ T0 T0 ∫ t0 t0-Tx ΔSOxF (t 1 , t) dt
1 dt The predicted value of the cumulative value of SOx emissions calculated above is the predicted value when no correction operation is performed at the current time t 0 , and this value and the predicted value at the specified time
The amount of sulfur in the fuel may be corrected so as to eliminate the deviation of the regulation value of the integrated value of SOx emissions.
この修正操作量をΔSとすれば、現在時刻以後
の時刻tにおけるSOx排出量の変動量は下記式で
示される。 If this correction operation amount is ΔS, the amount of variation in the amount of SOx emissions at time t after the current time is expressed by the following formula.
この修正操作を行つた時SOx排出量の積算値の
予測値が、規制値に等しくなることより下記等式
が成り立つ。 When this correction operation is performed, the predicted value of the integrated value of SOx emissions becomes equal to the regulation value, so the following equation holds true.
これより修正操作量は下記式により求められ
る。 From this, the corrected operation amount can be determined by the following formula.
ここで一般燃料の硫黄分をSa、低硫黄分燃料
の硫黄分をSbとすると一般燃料を単位量減少し
等量だけ低硫黄分燃料を増加してブレンド比率を
変更した時の燃料中の硫黄量の変動は下記式で示
される。 Here, if the sulfur content of the general fuel is S a and the sulfur content of the low sulfur fuel is S b , then in the fuel when the blend ratio is changed by decreasing the unit amount of the general fuel and increasing the low sulfur fuel by the same amount. The variation in the amount of sulfur in is shown by the following formula.
Sa-b=Sa―Sb
これによりSOx排出量の積算値を規制値に等し
くするブレンド比率変更のための燃料操作量は下
記式により算出される。 S ab = S a −S b Accordingly, the fuel operation amount for changing the blend ratio to make the integrated value of SOx emissions equal to the regulation value is calculated by the following formula.
ΔF=ΔS/Sa―Sb
以上述べたように、本発明によれば、規定時間
の開始時刻より現在時刻までのSOx排出量の積算
値および現在時刻におけるSOx排出量の瞬時値お
よび、現在時刻までの燃料中の硫黄量の変動経過
をもとに、規定時間におけるSOx排出量の積算値
の予測値を算出し、これにもとづき燃料のブレン
ド比率の修正操作量を求めて制御を行うため、
SOx排出量の積算値を環境規制値に合わせる制御
が実現できる。 ΔF=ΔS/S a −S b As described above, according to the present invention, the cumulative value of SOx emissions from the start time of the specified time to the current time, the instantaneous value of SOx emissions at the current time, and the current Based on the changes in the amount of sulfur in the fuel up to that point in time, a predicted value of the cumulative SOx emissions over a specified period of time is calculated, and based on this, a corrective operation amount for the fuel blend ratio is determined and controlled. ,
It is possible to control the cumulative value of SOx emissions to match environmental regulation values.
上記においてはボイラからの排ガス中のSOx濃
度および排ガス流量より排ガス中のSOx排出量を
算出する場合を例として述べたが、排ガス中の
SOx排出量の計測値を使用するかわりに、燃料中
の硫黄分および燃料流量より燃料中の硫黄量を算
出し、これより排ガス中のSOx排出量を等価換算
により近似して監視制御する場合がある。 The above example describes the case where the amount of SOx emissions in exhaust gas is calculated from the SOx concentration in exhaust gas from a boiler and the exhaust gas flow rate.
Instead of using the measured value of SOx emissions, the amount of sulfur in the fuel is calculated from the sulfur content in the fuel and the fuel flow rate, and from this, the amount of SOx emissions in the exhaust gas is approximated by equivalent conversion and monitored and controlled. be.
この場合は燃料中の硫黄量と排ガス中のSOx排
出量は比例関係が成立しており、第2図において
TL=0、T1=0とした場合に相当する。 In this case, there is a proportional relationship between the amount of sulfur in the fuel and the amount of SOx emitted in the exhaust gas, which corresponds to the case where T L =0 and T 1 =0 in FIG. 2.
この値を前述の計算式に代入すると、SOx排出
量の積算値を規制値に等しくするブレンド比率変
更のための燃料操作量は下記式になる。 When this value is substituted into the above-mentioned calculation formula, the fuel operation amount for changing the blend ratio to make the integrated value of SOx emissions equal to the regulation value becomes the following formula.
ΔF=1/Sa―Sb
・STA―ST(t0)―SOx(t0)(T―t
0)/K0(T―t0)
上記に示す如く燃料中の硫黄分および燃料流量
より燃料中の硫黄量を算出し、これより排ガス中
のSOx排出量を等価換算により近似する場合は、
現在時刻までのSOx排出量の積算値と現在時刻に
おけるSOx排出量の瞬時値および規定時間までの
残り時間よりブレンド比率変更のための燃料の修
正操作量を算出する事により、容易に本発明の原
理にもとづく制御を実施することができる。 ΔF=1/S a −S b・S TA −S T (t 0 )−SOx(t 0 )(T−t
0 )/K 0 (T-t 0 ) As shown above, when calculating the amount of sulfur in the fuel from the sulfur content in the fuel and the fuel flow rate, and approximating the amount of SOx emissions in the exhaust gas from this by equivalent conversion,
By calculating the fuel correction operation amount for changing the blend ratio from the cumulative value of SOx emissions up to the current time, the instantaneous value of SOx emissions at the current time, and the remaining time until the specified time, the present invention can be easily applied. Control based on principles can be implemented.
第4図は上記制御を計算機を用いて実施した一
実施例のブロツク図を示したものであり、第5図
はその時の計算機の制御処理内容をフローチヤー
トで示したものである。 FIG. 4 shows a block diagram of an embodiment in which the above control is carried out using a computer, and FIG. 5 shows a flowchart of the contents of the control processing by the computer at that time.
図4において、低硫黄分燃料は、低硫黄分供給
ライン41より供給され、高硫黄分供給ライン4
2より供給される高硫黄分燃料とラインブレンド
され、燃料供給ライン47を経てボイラ48で燃
焼される。ボイラ48への燃料供給量は、ボイラ
の負荷要求に従つて燃料制御装置50により制御
される。流量計46の流量信号は、このために制
御装置50へ取込まれると同時に、SOx排出量制
御のため、計算機システム53へも取込まれる。
低硫黄分燃料の流量は、計算機システム53から
の指令により制御弁駆動装置56により駆動され
る流量制御弁43により調節される。流量計44
の信号は、このために計算機システム53へ取込
まれる。本プロセスでは高硫黄分燃料の流量は、
ボイラへの燃料供給量(流量計46の値)から低
硫黄分燃料流量(流量計44の値)を引いたもの
となる。一方、煙突49からの排ガス流量は、排
ガス流量検出器52により、また排ガス中のSOx
濃度は、SOx濃度検出器51によりそれぞれ計測
され計算機システム53へ取込まれる。尚、排ガ
ス流量については、計算機システム53で計算に
より算出することもできる。燃料中の硫黄分は分
析結果に基づき低硫黄分燃料硫黄分設定器54お
よび高硫黄分燃料硫黄分設定器55にそれぞれ設
定され、計算機システムへ取込まれる。計算機シ
ステム53においては、これらの情報をもとに第
5図に示す処理に従つてSOx排出量制御が実行さ
れる。本処理は、定められた周期で繰返し実行さ
れるが、制御周期が当該時間帯の終りに近づいた
時(t0がTに近くなつた時)に制御偏差がある場
合(STA―ST(t0)がある場合)操作量が大きく
なり、制御が不安定になる。このため本制御方式
では、当該時間帯の終点近傍においては、前記の
操作量を算出する下記式
ΔF=1/Sa―Sb
・STA―ST(t0)―SOx(t0)(t―t
0)/K0(T―t0)
に対して、下記リミツトを設けて対処している。 In FIG. 4, the low sulfur content fuel is supplied from the low sulfur content supply line 41, and the high sulfur content fuel is supplied from the high sulfur content supply line 4.
It is line blended with high sulfur content fuel supplied from 2, and is burned in a boiler 48 via a fuel supply line 47. The amount of fuel supplied to the boiler 48 is controlled by a fuel control device 50 according to the boiler load requirements. The flow rate signal from the flowmeter 46 is input to the control device 50 for this purpose, and at the same time, it is also input to the computer system 53 for SOx emission control.
The flow rate of the low sulfur fuel is regulated by a flow control valve 43 driven by a control valve drive device 56 based on a command from a computer system 53. Flowmeter 44
The signal is taken into the computer system 53 for this purpose. In this process, the flow rate of high sulfur fuel is
It is obtained by subtracting the low sulfur content fuel flow rate (value of flow meter 44) from the amount of fuel supplied to the boiler (value of flow meter 46). On the other hand, the exhaust gas flow rate from the chimney 49 is determined by the exhaust gas flow rate detector 52 and the SOx in the exhaust gas.
The concentrations are each measured by SOx concentration detectors 51 and taken into the computer system 53. Note that the exhaust gas flow rate can also be calculated by the computer system 53. The sulfur content in the fuel is set in the low sulfur fuel sulfur content setter 54 and the high sulfur fuel sulfur content setter 55 based on the analysis results, and is taken into the computer system. In the computer system 53, SOx emission control is executed according to the process shown in FIG. 5 based on this information. This process is repeatedly executed at a predetermined period, but if there is a control deviation when the control period approaches the end of the relevant time period (when t 0 approaches T), S TA - S T (if there is t 0 )) the manipulated variable becomes large and control becomes unstable. Therefore, in this control method, near the end point of the time period, the above operation amount is calculated using the following formula ΔF=1/S a −S b・S TA −ST (t 0 )−SOx(t 0 ) (t-t
0 )/K 0 (T−t 0 ) is dealt with by setting the following limit.
T―t0αの時T―t0=α α:定数
以上の処理は、第5図中ブロツク90で行なわ
れる。 When T-t 0 α, T-t 0 =α α: Constant The above processing is performed in block 90 in FIG.
本制御方式によれば、規定時間帯におけるSOx
排出量を精度良く制御できるため、高価な低硫黄
分燃料の消費量を節減でき、ボイラの燃料費を低
減できる効果がある。 According to this control method, the SOx
Since emissions can be controlled accurately, the consumption of expensive low-sulfur fuel can be reduced, which has the effect of reducing boiler fuel costs.
第1図は、従来技術を説明するためのブロツク
図、第2図および第3図は、本発明を説明するた
めのグラフ、第4図は、本発明の実施例を説明す
るためのブロツク図、第5図は、同フローチヤト
である。
41…低硫黄分燃料供給ライン、42…高硫黄
分燃料供給ライン、43…流量制御弁、44…流
量計、45…流量制御弁、46…流量計、47…
燃料供給ライン、48…ボイラ、49…煙突、5
3…計算機システム。
FIG. 1 is a block diagram for explaining the prior art, FIGS. 2 and 3 are graphs for explaining the present invention, and FIG. 4 is a block diagram for explaining an embodiment of the present invention. , FIG. 5 is the same flowchart. 41...Low sulfur content fuel supply line, 42...High sulfur content fuel supply line, 43...Flow rate control valve, 44...Flow meter, 45...Flow rate control valve, 46...Flow meter, 47...
Fuel supply line, 48...boiler, 49...chimney, 5
3...Computer system.
Claims (1)
と、燃料供給部から供給される各種燃料量を制御
する燃料供給量制御手段を有するボイラにおい
て、ボイラからの排ガス流量を検出する排ガス流
量検出手段a、排ガス中のSOx濃度の検出手段
b、各燃料の供給量を検出する燃料供給量検出手
段c、各燃料の硫黄分を検出する燃料成分検出手
段dを設け、 環境規制の評価起点時刻より現在時刻までの
SOx排出量を、上記手段a及び手段bにより検出
された各時刻における排ガス流量及びSOx濃度の
検出値に基づいて、あるいは、上記手段c及び手
段dにより検出された各時刻における燃料供給量
及び各燃料中に含まれる硫黄量の検出値に基づい
て各時刻におけるSOx排出量を算出しこれを積算
することにより、積算し、 上記手段a及び手段bにより検出された排ガス
流量及びSOx濃度の検出値に基いて算出された現
在時刻におけるSOx排出量の瞬間値と、上記手段
c及び手段dにより検出された各時刻における燃
料供給量及び各燃料中に含まれる硫黄量の検出値
に基いて算出された現在時刻までの燃料中の硫黄
量の変動量をもとに、予め定められた計算式に従
つて現在時刻以降のSOx排出量の推移を計算によ
り予測し、 前記積算結果と前記予測結果より、予め定めら
れた計算式に従つて、環境規制評価期間における
SOx排出量の予測値を算出し、 この予測値とSOx排出量の規制値との偏差に応
じて、予測値と規制値の偏差を無くするように燃
料中の硫黄量を修正操作すべく、前記各燃料供給
量制御手段への制御指令値を与えて各種燃料の供
給比率を修正制御するようにしたことを特徴とす
る排ガス中のSOx排出量制御方法。 2 特許請求の範囲第1項記載の排ガス中のSOx
排出量制御方法において、現在時刻が環境規制評
価期間の終点に近いとき、環境規制評価期間にお
けるSOx排出量の予測値と規制値との偏差にもと
づく各燃料供給量の修正制御量の算出に所定のリ
ミツトを設けることを特徴とする排ガス中のSOx
排出量制御方法。[Claims] 1. Detecting the flow rate of exhaust gas from the boiler in a boiler having a fuel supply section capable of supplying a plurality of types of fuel and a fuel supply amount control means for controlling the amounts of various fuels supplied from the fuel supply section. The system is equipped with exhaust gas flow rate detection means a, detection means b for SOx concentration in exhaust gas, fuel supply amount detection means c for detecting the supply amount of each fuel, and fuel component detection means d for detecting the sulfur content of each fuel. from the evaluation start time to the current time
The amount of SOx emissions is determined based on the detected values of the exhaust gas flow rate and SOx concentration at each time detected by means a and b, or the amount of fuel supplied at each time detected by means c and d. By calculating and integrating the SOx emissions at each time based on the detected value of the amount of sulfur contained in the fuel, the detected values of the exhaust gas flow rate and SOx concentration detected by means a and b are integrated. is calculated based on the instantaneous value of SOx emissions at the current time calculated based on the amount of fuel supplied at each time detected by means c and means d and the detected value of the amount of sulfur contained in each fuel. Based on the amount of change in the amount of sulfur in the fuel up to the current time, the trend in SOx emissions after the current time is predicted by calculation according to a predetermined calculation formula, and based on the integration results and the prediction results. , according to a predetermined calculation formula, during the environmental regulation evaluation period.
The predicted value of SOx emissions is calculated, and the amount of sulfur in the fuel is corrected according to the deviation between this predicted value and the regulation value of SOx emissions so as to eliminate the deviation between the predicted value and the regulation value. A method for controlling SOx emissions in exhaust gas, characterized in that supply ratios of various fuels are corrected and controlled by giving control command values to each of the fuel supply amount control means. 2 SOx in exhaust gas described in claim 1
In the emission control method, when the current time is close to the end point of the environmental regulation evaluation period, a predetermined value is used to calculate the corrected control amount for each fuel supply amount based on the deviation between the predicted value of SOx emissions and the regulation value during the environmental regulation evaluation period. SOx in exhaust gas characterized by setting a limit of
Emission control methods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12384479A JPS5649815A (en) | 1979-09-28 | 1979-09-28 | Control for discharged sox in exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12384479A JPS5649815A (en) | 1979-09-28 | 1979-09-28 | Control for discharged sox in exhaust gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5649815A JPS5649815A (en) | 1981-05-06 |
JPS6238610B2 true JPS6238610B2 (en) | 1987-08-19 |
Family
ID=14870782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12384479A Granted JPS5649815A (en) | 1979-09-28 | 1979-09-28 | Control for discharged sox in exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5649815A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01186908A (en) * | 1987-11-17 | 1989-07-26 | Fiberstars Inc | Coolable light irradiation apparatus and method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018040331A (en) * | 2016-09-09 | 2018-03-15 | 三井造船株式会社 | Fuel supply system |
JP7155685B2 (en) * | 2018-07-10 | 2022-10-19 | 住友金属鉱山株式会社 | SOx concentration control method for boiler exhaust gas |
-
1979
- 1979-09-28 JP JP12384479A patent/JPS5649815A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01186908A (en) * | 1987-11-17 | 1989-07-26 | Fiberstars Inc | Coolable light irradiation apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JPS5649815A (en) | 1981-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4362499A (en) | Combustion control system and method | |
CN107561941A (en) | A kind of full working scope qualified discharge control method of fired power generating unit denitrating system | |
JP4791269B2 (en) | Determination method of boiler fuel input amount, boiler fuel control device and program | |
JP5155690B2 (en) | Coal-fired boiler gas concentration estimation device and gas concentration estimation method | |
KR890000342B1 (en) | System for controlling combustion and o2 in the flue gases from combustion processes | |
US6752093B2 (en) | Method for operating a refuse incineration plant | |
CN110618706A (en) | Multistage intelligent denitration online optimization control system based on data driving | |
CN113256589A (en) | Heating furnace adjusting method and device, electronic equipment and storage medium | |
CN103593578A (en) | Flue suction force feedback setting method in coke oven heating combustion process | |
US4505668A (en) | Control of smoke emissions from a flare stack | |
JPS6238610B2 (en) | ||
JP2008001816A (en) | Combustion-controlling method in coke oven | |
KR200301073Y1 (en) | Apparatus for controlling burner | |
JP2664909B2 (en) | Operating method of refuse incineration equipment | |
JP3023255B2 (en) | Exhaust gas concentration control device | |
CN102759933B (en) | Blind zone detection device applied to pH value control process of desulfurization system | |
JPH07280256A (en) | In-furnace pressure controlling method for burning furnace | |
CN111425881B (en) | Method and system for reducing disturbance of start and stop of double-inlet and double-outlet coal mill on denitration system | |
JPH025222Y2 (en) | ||
JPH10176829A (en) | Automatic regulating method of set value for controlling concentration of oxygen in boiler waste gas | |
JPS6056971B2 (en) | Control device for SOx emissions in exhaust gas | |
JP3132977B2 (en) | Fuel control device for heavy oil / emulsion mixed-fired boiler | |
CN110578051B (en) | Control method of smoke exhaust fan of continuous annealing furnace | |
SU1627787A1 (en) | Method and system for automatic control of air delivery to boiler furnace | |
SU1332104A1 (en) | Method of automatic control of air feed to boiler furnace |