[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6238534B2 - - Google Patents

Info

Publication number
JPS6238534B2
JPS6238534B2 JP57087201A JP8720182A JPS6238534B2 JP S6238534 B2 JPS6238534 B2 JP S6238534B2 JP 57087201 A JP57087201 A JP 57087201A JP 8720182 A JP8720182 A JP 8720182A JP S6238534 B2 JPS6238534 B2 JP S6238534B2
Authority
JP
Japan
Prior art keywords
wall surface
valve
intake port
branch passage
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57087201A
Other languages
Japanese (ja)
Other versions
JPS58204925A (en
Inventor
Takeshi Okumura
Mikio Nakajima
Kyoshi Nakanishi
Tokuta Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57087201A priority Critical patent/JPS58204925A/en
Publication of JPS58204925A publication Critical patent/JPS58204925A/en
Publication of JPS6238534B2 publication Critical patent/JPS6238534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 本発明はヘリカル型吸気ポートに関する。[Detailed description of the invention] The present invention relates to a helical intake port.

ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題を生ず
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、分岐路内に開閉弁
を設けて機関高速高負荷運転時に開閉弁を開弁す
るようにしたヘリカル型吸気ポートが本出願人に
より既に提案されている。このヘリカル型吸気ポ
ートでは機関高速高負荷運転時にヘリカル型吸気
ポート入口通路部内に送り込まれた吸入空気の一
部が分岐路を介してヘリカル型吸気ポート渦巻部
内に送り込まれるために吸入空気の流路断面積が
増大し、斯くして充填効率を向上することができ
る。しかしながらこのヘリカル型吸気ポートでは
分岐路が入口通路部から完全に独立した筒状の通
路として形成されているので分岐路の流れ抵抗が
比較的大きく、しかも分岐路を入口通路部に隣接
して形成しなければならないために入口通路部の
断面積が制限を受けるので十分に満足のいく高い
充填効率を得るのが困難となつている。更に、ヘ
リカル型吸気ポートはそれ自体の形状が複雑であ
り、しかも入口通路部から完全に独立した分岐路
を併設した場合には吸気ポートの全体構造が極め
て複雑となるのでこのような分岐路を具えたヘリ
カル型吸気ポートをシリンダヘツド内に形成する
のはかなり困難である。
A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened during high-speed, high-load engine operation. In this helical type intake port, when the engine is operated at high speed and under high load, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through a branch path, so the intake air flow path is The cross-sectional area can be increased, thus improving the filling efficiency. However, in this helical intake port, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large, and the branch passage is formed adjacent to the inlet passage. This limits the cross-sectional area of the inlet passage, making it difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has a complicated shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will become extremely complicated. It is quite difficult to form a helical intake port in the cylinder head.

本発明は機関高速高負荷運転時に高い充填効率
を得ることができると共に製造の容易な新規形状
を有するヘリカル型吸気ポートを提供することに
ある。
SUMMARY OF THE INVENTION The present invention provides a helical intake port that is capable of achieving high filling efficiency during high-speed, high-load engine operation and has a novel shape that is easy to manufacture.

以下、添附図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固締
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを
案内するステムガイドを夫々示す。第1図並びに
第2図に示されるように吸気ポート6の上壁面1
1上には下方に突出する隔壁12が一体成形さ
れ、この隔壁12によつて渦巻部Bと、この渦巻
部Bに接線状に接続された入口通路部Aからなる
ヘリカル型吸気ポート6が形成される。この隔壁
12は入口通路部A内から吸気弁5のステムガイ
ド10の周囲まで吸入空気流の流れ方向に延びて
おり、第2図からわかるようにこの隔壁12の根
元部の巾Lは入口通路部Aに近い側が最も狭く、
この最狭部からステムガイド10の近傍まではほ
ぼ一様であり、ステムガイド10の周りで最も広
くなる。隔壁12は吸気ポート6の入口開口6a
に最も近い側に位置する先端部13を有し、更に
隔壁12は第2図においてこの先端部13から反
時計回りに延びる第1側壁面14aと、先端部1
3から時計回りに延びる第2側壁面14bとを有
する。第1側壁面14aは先端部13からステム
ガイド10の側方を通つて渦巻部Bの側壁面15
の近傍まで延びて渦巻部側壁面15との間に狭窄
部16を形成する。一方、第2側壁面14bは先
端部13からステムガイド10に向けて始めは第
1側壁面14aとの間隔が増大するように、次い
で第1側壁面14aとの間隔がほぼ一様となるよ
うに延びる。次いでこの第2側壁面14bはステ
ムガイド10の外周に沿つて延びて最狭部16に
達する。
Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a piston 2 and a cylinder head 3. A combustion chamber is formed in between, 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Reference numeral 9 indicates an ignition plug disposed within the combustion chamber 4, and reference numeral 10 indicates a stem guide for guiding the stem 5a of the intake valve 5. As shown in FIGS. 1 and 2, the upper wall surface 1 of the intake port 6
A partition wall 12 projecting downward is integrally molded on the top of the helical intake port 6, which consists of a spiral portion B and an inlet passage portion A tangentially connected to the spiral portion B. be done. This partition wall 12 extends in the flow direction of the intake air flow from inside the inlet passage section A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG. The side closest to part A is the narrowest,
It is almost uniform from this narrowest part to the vicinity of the stem guide 10, and becomes widest around the stem guide 10. The partition wall 12 is the inlet opening 6a of the intake port 6.
The partition wall 12 further includes a first side wall surface 14a extending counterclockwise from the tip 13 in FIG.
3 and a second side wall surface 14b extending clockwise from the second side wall surface 14b. The first side wall surface 14a passes from the distal end portion 13 to the side of the stem guide 10 to the side wall surface 15 of the spiral portion B.
The constricted portion 16 is formed between the spiral portion side wall surface 15 and the spiral portion side wall surface 15 . On the other hand, the second side wall surface 14b is arranged so that the distance from the first side wall surface 14a increases from the tip end 13 toward the stem guide 10, and then the distance from the first side wall surface 14a becomes almost uniform. Extends to. Next, this second side wall surface 14b extends along the outer periphery of the stem guide 10 and reaches the narrowest portion 16.

第1図から第9図を参照すると、入口通路部A
の一方の側壁面17はほぼ垂直配置され、他方の
側壁面18はわずかばかり傾斜した下向きの傾斜
面から形成される。一方、入口通路部Aの上壁面
19は渦巻部Bに向けて下降する傾斜面から形成
され、渦巻部Bの上壁面20は吸気ポート入口開
口6aに向けて下降する傾斜面から形成される。
入口通路部Aの上壁面19は渦巻部Bの上壁面2
0に接続される。渦巻部Bの上壁面20は渦巻部
Bと入口通路部Aの接続部から狭窄部16に向け
て下降しつつ徐々に巾を狭め、次いで狭窄部16
を通過すると徐々に巾を広げる。一方、入口通路
部Aの側壁面17は渦巻部Bの側壁面15に滑ら
かに接続され、入口通路部Aの底壁面21は渦巻
部Bに向けて下降する。
Referring to FIGS. 1 to 9, the inlet passage section A
One side wall surface 17 is arranged substantially vertically, and the other side wall surface 18 is formed from a slightly downwardly inclined surface. On the other hand, the upper wall surface 19 of the inlet passage section A is formed from an inclined surface descending toward the spiral section B, and the upper wall surface 20 of the spiral section B is formed from an inclined surface descending toward the intake port entrance opening 6a.
The upper wall surface 19 of the inlet passage section A is the upper wall surface 2 of the spiral section B.
Connected to 0. The upper wall surface 20 of the spiral portion B gradually narrows in width as it descends from the connecting portion between the spiral portion B and the inlet passage portion A toward the narrowing portion 16 , and then the width thereof gradually narrows.
As it passes through, it gradually widens. On the other hand, the side wall surface 17 of the inlet passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the bottom wall surface 21 of the entrance passage section A descends toward the spiral section B.

一方、隔壁12の第1側壁面14aはわずかば
かり傾斜した下向きの傾斜面からなり、第2側壁
面14bはほぼ垂直をなす。隔壁12の底壁面2
2は、隔壁12の先端部13からステムガイド1
0の近傍まで延びる第1底壁面部分22aと、ス
テムガイド10の周りに位置する第2底壁面部分
22bからなる。第1底壁面部分22aは上壁面
19とほぼ平行をなして底壁面21の近くまで延
びる。一方、上壁面19から測つた第2底壁面部
分22bの高さは第1底壁面部分22aの高さよ
りも低く、更に第2底壁面部分22bと上壁面1
9との間隔は狭窄部16に向かつて徐々に小さく
なる。また、第2底壁面部分22b上には第4図
のハツチングで示す領域に下方に突出するリブ2
3が形成され、このリブ23は第1底壁面部分2
2aから狭窄部16まで延びる。第8図に示され
るように第2底壁面部分22bはリブ23に向け
て下降する。
On the other hand, the first side wall surface 14a of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. Bottom wall surface 2 of partition wall 12
2 is the stem guide 1 from the distal end 13 of the partition wall 12.
It consists of a first bottom wall surface portion 22a extending to the vicinity of 0, and a second bottom wall surface portion 22b located around the stem guide 10. The first bottom wall surface portion 22a is substantially parallel to the top wall surface 19 and extends close to the bottom wall surface 21. On the other hand, the height of the second bottom wall surface portion 22b measured from the top wall surface 19 is lower than the height of the first bottom wall surface portion 22a, and furthermore, the height of the second bottom wall surface portion 22b and the top wall surface 1
9 becomes gradually smaller toward the narrowed portion 16. Further, on the second bottom wall surface portion 22b, there is a rib 2 that projects downward in the area shown by hatching in FIG.
3 is formed, and this rib 23 is formed on the first bottom wall surface portion 2
2a to the narrowing portion 16. As shown in FIG. 8, the second bottom wall surface portion 22b descends toward the rib 23.

一方、シリンダヘツド3内には渦巻部Bの渦巻
終端部Cと入口通路部Aとを連通する分岐路24
が形成され、この分岐路24の入口部に開閉弁の
役目を果すロータリ弁25が配置される。この分
岐路24は隔壁12によつて入口通路部Aから分
離されており、分岐路24の下側空間全体が入口
通路部Aに連通している。分岐路24の上壁面2
6はほぼ一様な巾を有する。この分岐路上壁面2
6は渦巻終端部Cに向けて下降する傾斜面から形
成され、この分岐路上壁面26は入口通路部Aの
上壁面19とほぼ等しい傾斜角を有する。分岐路
上壁面26は渦巻部Bの上壁面20に接続され
る。なお、第7図に示されるように底壁面21か
ら測つた分岐路24の上壁面26の高さH1は入
口通路部Aの上壁面19の高さH2よりも高くな
つている。隔壁12の第2側壁面14bに対面す
る分岐路24の側壁面27はほぼ垂直をなし、ま
た分岐路24下方の底壁面部分21aは隆起せし
められて傾斜面を形成する。この傾斜底壁面部分
21aは第1図に示すように吸気ポート6の入口
開口6aの近傍から渦巻部Bまで延びる。一方、
第1図、第4図および第8図からわかるように分
岐路24の出口近傍の渦巻部Bの側壁面部分15
aはわずかに傾斜した下向きの傾斜面に形成さ
れ、隔壁12の第2側壁面14bはこの傾斜側壁
面部分15aに向けて張り出している。従つて第
2側壁面14bと傾斜側壁面部分15a間には第
2の狭窄部16aが形成される。
On the other hand, a branch passage 24 is provided in the cylinder head 3 that communicates the spiral end C of the spiral portion B with the inlet passage A.
is formed, and a rotary valve 25 serving as an on-off valve is disposed at the inlet of this branch path 24. This branch passage 24 is separated from the inlet passage part A by the partition wall 12, and the entire lower space of the branch passage 24 communicates with the inlet passage part A. Upper wall surface 2 of branch road 24
6 has a substantially uniform width. This branch road wall surface 2
6 is formed from an inclined surface that descends toward the spiral terminal end C, and this branch road wall surface 26 has an approximately equal inclination angle to the upper wall surface 19 of the inlet passage section A. The branch road wall surface 26 is connected to the upper wall surface 20 of the spiral portion B. Note that, as shown in FIG. 7, the height H 1 of the upper wall surface 26 of the branch passage 24 measured from the bottom wall surface 21 is higher than the height H 2 of the upper wall surface 19 of the inlet passage section A. A side wall surface 27 of the branch passage 24 facing the second side wall surface 14b of the partition wall 12 is substantially vertical, and a bottom wall surface portion 21a below the branch passage 24 is raised to form an inclined surface. This inclined bottom wall surface portion 21a extends from the vicinity of the inlet opening 6a of the intake port 6 to the spiral portion B, as shown in FIG. on the other hand,
As can be seen from FIGS. 1, 4, and 8, the side wall surface portion 15 of the spiral portion B near the outlet of the branching path
a is formed as a slightly downwardly inclined surface, and the second side wall surface 14b of the partition wall 12 projects toward this inclined side wall surface portion 15a. Therefore, a second narrowed portion 16a is formed between the second side wall surface 14b and the inclined side wall surface portion 15a.

第9図に示されるようにロータリ弁25はロー
タリ弁ホルダ28と、ロータリ弁ホルダ28内に
おいて回転可能に支持された弁軸29とにより構
成され、このロータリ弁ホルダ28はシリンダヘ
ツド3に穿設されたねじ孔30内に螺着される。
弁軸29の下端部には薄板状の弁体31が一体形
成され、第1図に示されるようにこの弁体31は
分岐路24の上壁面26から底壁面21まで延び
る。一方、弁軸29の上端部にはアーム32が固
定される。また、弁軸29の外周面上にはリング
溝33が形成され、このリング溝33内にはE字
型位置形決めリング34が嵌込まれる。更にロー
タリ弁ホルダ28の上端部にはシール部材35が
嵌着され、このシール部材35によつて弁軸29
のシール作用が行なわれる。
As shown in FIG. 9, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 rotatably supported within the rotary valve holder 28. The screw hole 30 is screwed into the screw hole 30.
A thin plate-like valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG. 1, this valve body 31 extends from the top wall surface 26 of the branch passage 24 to the bottom wall surface 21. On the other hand, an arm 32 is fixed to the upper end of the valve shaft 29. Further, a ring groove 33 is formed on the outer peripheral surface of the valve shaft 29, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Further, a seal member 35 is fitted to the upper end of the rotary valve holder 28, and the valve shaft 29 is connected to the valve shaft 29 by this seal member 35.
A sealing action is performed.

第10図を参照すると、ロータリ弁25の上端
部に固着されたアーム32の先端部は負圧ダイア
フラム装置40のダイアフラム41に固着された
制御ロツド42に連結ロツド43を介して連結さ
れる。負圧ダイアフラム装置40はダイアフラム
41によつて大気から隔離された負圧室44を有
し、この負圧室44内にダイアフラム押圧用圧縮
ばね45が挿入される。シリンダヘツド3には1
次側気化器46aと2次側気化器46bからなる
コンパウンド型気化器46を具えた吸気マニホル
ド47が取付けられ、負圧室44は負圧導管48
を介して吸気マニホルド47内に連結される。こ
の負圧導管48内には負圧室44から吸気マニホ
ルド47内に向けてのみ流通可能な逆止弁49が
挿入される。更に、負圧室44は大気導管50並
びに大気開放制御弁51を介して大気に連通す
る。この大気開放制御弁51はダイアフラム52
によつて隔成された負圧室53と大気圧室54と
を有し、更に大気圧室54に隣接して弁室55を
有する。この弁室55は一方では大気導管50を
介して負圧室44内に連通し、他方では弁ポート
56並びにエアフイルタ57を介して大気に連通
する。弁室55内には弁ポート56の開閉制御を
する弁体58が設けられ、この弁体58は弁ロツ
ド59を介してダイアフラム52に連結される。
負圧室53内にはダイアフラム押圧用圧縮ばね6
0が挿入され、更に負圧室53は負圧導管61を
介して1次側気化器46aのベンチユリ部62に
連結される。
Referring to FIG. 10, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of a negative pressure diaphragm device 40. As shown in FIG. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. 1 for cylinder head 3
An intake manifold 47 equipped with a compound type carburetor 46 consisting of a next side carburetor 46a and a secondary side carburetor 46b is attached, and the negative pressure chamber 44 is connected to a negative pressure conduit 48.
The intake manifold 47 is connected through the intake manifold 47 . A check valve 49 is inserted into the negative pressure conduit 48 and allows flow only from the negative pressure chamber 44 into the intake manifold 47 . Further, the negative pressure chamber 44 communicates with the atmosphere via an atmosphere conduit 50 and an atmosphere release control valve 51. This atmospheric release control valve 51 has a diaphragm 52
It has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a spacer, and further has a valve chamber 55 adjacent to the atmospheric pressure chamber 54. This valve chamber 55 communicates on the one hand with the negative pressure chamber 44 via an atmospheric conduit 50 and on the other hand with the atmosphere via a valve port 56 and an air filter 57. A valve body 58 for controlling the opening and closing of the valve port 56 is provided within the valve chamber 55, and the valve body 58 is connected to the diaphragm 52 via a valve rod 59.
A compression spring 6 for pressing the diaphragm is provided in the negative pressure chamber 53.
Further, the negative pressure chamber 53 is connected to the bench lily portion 62 of the primary side carburetor 46a via a negative pressure conduit 61.

気化器46は通常用いられる気化器であつて1
次側スロツトル弁63が所定開度以上開弁したと
きに2次側スロツトル弁64が開弁し、1次側ス
ロツトル弁63が全開すれば2次側スロツトル弁
64も全開する。1次側気化器46aのベンチユ
リ部62に発生する負圧は機関シリンダ内に供給
される吸入空気量が増大するほど大きくなり、従
つてベンチユリ部62に発生する負圧が所定負圧
よりも大きくなつたときに、即ち機関高速高負荷
運転時に大気開放制御弁51のダイアフラム52
が圧縮ばね60に抗して右方に移動し、その結果
弁体58が弁ポート56を開弁して負圧ダイアフ
ラム装置40の負圧室44を大気に開放する。こ
のときダイアフラム41は圧縮ばね45のばね力
により下方に移動し、その結果ロータリ弁25が
回転せしめられて分岐路24を全開する。一方1
次側スロツトル弁63の開度が小さいときにはベ
ンチユリ部62に発生する負圧が小さなために大
気開放制御弁51のダイアフラム52は圧縮ばね
60のばね力により左方に移動し、弁体58が弁
ポート56を閉鎖する。更にこのように1次側ス
ロツトル弁63の開度が小さいときには吸気マニ
ホルド47内には大きな負圧が発生している。逆
止弁49は吸気マニホルド47内の負圧が負圧ダ
イアフラム装置40の負圧室44内の負圧よりも
大きくなると開弁し、吸気マニホルド47内の負
圧が負圧室44内の負圧よりも小さくなると閉弁
するので大気開放制御弁51が閉弁している限り
負圧室44内の負圧は吸気マニホルド47内に発
生した最大負圧に維持される。負圧室44内に負
圧が加わるとダイアフラム41は圧縮ばね45に
抗して上昇し、その結果ロータリ弁25が回動せ
しめられて分岐路24が閉鎖される。従つて機関
低速低負荷運転時にはロータリ弁25によつて分
岐路24が閉鎖されることになる。なお、高負荷
運転時であつても機関回転数が低い場合、並びに
機関回転数が高くても低負荷運転が行なわれてい
る場合にはベンチユリ部62に発生する負圧が小
さなために大気開放制御弁51は閉鎖され続けて
いる。従つてこのような低速高負荷運転時並びに
高速低負荷運転時には負圧室44内の負圧が前述
の最大負圧に維持されているのでロータリ弁25
によつて分岐路24が閉鎖されている。
The vaporizer 46 is a commonly used vaporizer.
When the downstream throttle valve 63 opens to a predetermined opening degree or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, the secondary throttle valve 64 also fully opens. The negative pressure generated in the bench lily portion 62 of the primary side carburetor 46a increases as the amount of intake air supplied into the engine cylinder increases, and therefore the negative pressure generated in the bench lily portion 62 becomes larger than a predetermined negative pressure. diaphragm 52 of the atmospheric release control valve 51 when the engine is operating at high speed and high load.
moves to the right against the compression spring 60, and as a result, the valve body 58 opens the valve port 56 and opens the negative pressure chamber 44 of the negative pressure diaphragm device 40 to the atmosphere. At this time, the diaphragm 41 is moved downward by the spring force of the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is fully opened. On the other hand 1
When the opening degree of the next throttle valve 63 is small, the negative pressure generated in the bench lily part 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 moves to the left by the spring force of the compression spring 60, and the valve body 58 Close port 56. Furthermore, when the opening degree of the primary throttle valve 63 is small as described above, a large negative pressure is generated within the intake manifold 47. The check valve 49 opens when the negative pressure in the intake manifold 47 becomes greater than the negative pressure in the negative pressure chamber 44 of the negative pressure diaphragm device 40, and the negative pressure in the intake manifold 47 becomes larger than the negative pressure in the negative pressure chamber 44. Since the valve closes when the pressure becomes smaller than the pressure, the negative pressure in the negative pressure chamber 44 is maintained at the maximum negative pressure generated in the intake manifold 47 as long as the atmospheric release control valve 51 is closed. When negative pressure is applied within the negative pressure chamber 44, the diaphragm 41 rises against the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is closed. Therefore, when the engine is operating at low speed and low load, the branch passage 24 is closed by the rotary valve 25. Note that when the engine speed is low even during high-load operation, or when low-load operation is performed even when the engine speed is high, the negative pressure generated in the bench lily portion 62 is small, so that it is not opened to the atmosphere. Control valve 51 remains closed. Therefore, during such low-speed, high-load operation and high-speed, low-load operation, the negative pressure in the negative pressure chamber 44 is maintained at the aforementioned maximum negative pressure, so that the rotary valve 25
Branch road 24 is closed by.

上述したように吸入空気量が少ない機関低速低
負荷運転時にはロータリ弁25が分岐路24を閉
鎖している。このとき、入口通路部A内に送り込
まれた混合気の一部は第1図および第2図におい
て矢印Rで示すように上壁面19,20に沿つて
進み、残りの混合気のうちの一部の混合気は第1
図および第2図において矢印Sで示すようにロー
タリ弁25の手前で入口通路部Aの側壁面17の
方へ向きを変えた後に渦巻部Bの側壁面15に沿
つて進む。前述したように上壁面19,20の巾
は狭窄部16に近づくに従つて次第に狭くなるた
めに上壁面19,20に沿つて流れる混合気の流
路は次第に狭ばまり、斯くして上壁面19,20
に沿う混合気流は次第に増速される。更に、前述
したように隔壁12の第1側壁面14aは渦巻部
Bの側壁面15の近傍まで延びているので上壁面
19,20に沿つて進む混合気流は渦巻部Bの側
壁面15上に押しやられ、次いで第1図および第
2図において矢印Tで示すように側壁面15に沿
つて進むために渦巻部B内には強力な旋回流が発
生せしめられる。次いで混合気は旋回しつつ吸気
弁5とその弁座間に形成される間隙を通つて燃焼
室4内に流入して燃焼室4内に強力な旋回流を発
生せしめる。このように旋回流は隔壁12の第1
側壁面14aと側壁面17,15間を流れる混合
気流によつて発生せしめられ、斯くして第1側壁
面14aと側壁面17,15間の空間がヘリカル
通路を形成する。
As described above, the rotary valve 25 closes the branch passage 24 when the engine is operated at low speed and under low load with a small amount of intake air. At this time, part of the air-fuel mixture sent into the inlet passage A travels along the upper wall surfaces 19 and 20 as shown by arrow R in FIGS. 1 and 2, and part of the remaining air-fuel mixture The mixture of parts is the first
As shown by arrow S in the drawings and FIG. 2, it changes direction toward the side wall surface 17 of the inlet passage section A before the rotary valve 25, and then proceeds along the side wall surface 15 of the spiral section B. As mentioned above, the widths of the upper wall surfaces 19 and 20 gradually become narrower as they approach the narrowed portion 16, so the flow path for the air-fuel mixture flowing along the upper wall surfaces 19 and 20 gradually narrows, and thus the width of the upper wall surfaces 19,20
The speed of the air mixture along is gradually increased. Furthermore, as described above, since the first side wall surface 14a of the partition wall 12 extends to the vicinity of the side wall surface 15 of the spiral portion B, the air mixture flowing along the upper wall surfaces 19 and 20 flows onto the side wall surface 15 of the spiral portion B. A strong swirling flow is generated in the spiral portion B because the fluid is pushed away and then proceeds along the side wall surface 15 as shown by the arrow T in FIGS. 1 and 2. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4. In this way, the swirl flow is generated in the first part of the partition wall 12.
This is generated by the mixed air flow flowing between the side wall surface 14a and the side wall surfaces 17, 15, and thus the space between the first side wall surface 14a and the side wall surfaces 17, 15 forms a helical passage.

一方、吸入空気量が多い機関高速高負荷運転時
にはロータリ弁25が開弁するので入口通路部A
内に送り込まれた混合気は大別すると3つの流れ
に分流される。即ち、第1の流れは第3図および
第4図において矢印Xで示すように隔壁12の第
1側壁面14aと入口通路部Aの側壁面17間に
流入し、次いで渦巻部Aの上壁面20に沿つて旋
回しつつ流れる混合気流であり、第2の流れは第
3図および第4図において矢印Yで示すように分
岐路24を介して渦巻部B内に流入する混合気流
であり、第3の流れは第3図において矢印Zで示
すように入口通路部Aの底壁面21に沿つて渦巻
部B内に流入する混合気流である。分岐路24の
流れ抵抗は第1側壁面14aと側壁面17間の流
れ抵抗に比べて小さく、従つて第2の混合気流Y
の方が第1の混合気流Xよりも多くなる。更に、
前述したように底壁面21から測つた分岐路24
の上壁面26の高さH1はヘリカル通路の上壁面
19の高さH2よりも高く、しかも分岐路24の
上壁面26とヘリカル通路の上壁面19はほぼ同
じ傾斜角で渦巻部Bに向けて傾斜しているので分
岐路24の上壁面26はヘリカル通路の上壁面1
9に比べて吸気ポート入口開口6aから離れた位
置で渦巻部Bの上壁面20に接続される。その結
果、第1混合気流Xが渦巻部Bの側壁面15に沿
つて旋回運動を開始してから早い時期に第3図に
示される如く第2混合気流Yが第1混合気流Xの
上側に斜めに衝突するので第1混合気流Xは旋回
運動を開始してから早い時期に流れ方向が下向き
に偏向せしめられる。即ち、第1混合気流Xは十
分に旋回しないうちに下向きに偏向せしめられる
ので渦巻部B内における旋回流の発生が抑制さ
れ、斯くして充填効率が高められることになる。
更に分岐路24の出口には第2狭窄部16aが形
成されているために分岐路24から流入した混合
気流は第2狭窄部16aを通過する際に流速を速
められ、斯くして第1混合気流は一層下向きに偏
向せしめられる。このように流れ抵抗の小さな分
岐路24から多量の混合気が供給され、更に第1
混合気流の流れ方向が下向きに偏向されるので高
い充填効率が得られることになる。
On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 opens, so the inlet passage A
The air-fuel mixture sent into the tank is divided into three main streams. That is, the first flow flows between the first side wall surface 14a of the partition wall 12 and the side wall surface 17 of the inlet passage section A as shown by the arrow X in FIGS. 3 and 4, and then flows into the upper wall surface of the spiral section A. 20, the second flow is a mixture flow that flows into the swirl portion B via the branch path 24 as shown by the arrow Y in FIGS. 3 and 4, The third flow is a mixed air flow that flows into the swirl section B along the bottom wall surface 21 of the inlet passage section A, as shown by arrow Z in FIG. The flow resistance of the branch passage 24 is smaller than the flow resistance between the first side wall surface 14a and the side wall surface 17, and therefore the second air mixture flow Y
is larger than the first air mixture flow X. Furthermore,
As mentioned above, the branch path 24 measured from the bottom wall surface 21
The height H 1 of the upper wall surface 26 is higher than the height H 2 of the upper wall surface 19 of the helical passage, and the upper wall surface 26 of the branch passage 24 and the upper wall surface 19 of the helical passage are connected to the spiral part B at approximately the same inclination angle. Since the upper wall surface 26 of the branch path 24 is inclined towards the upper wall surface 1 of the helical path,
It is connected to the upper wall surface 20 of the spiral portion B at a position farther from the intake port inlet opening 6a than in the case 9. As a result, as shown in FIG. 3, at an early stage after the first air mixture flow X starts its swirling movement along the side wall surface 15 of the swirl portion B, the second air mixture flow Y moves to the upper side of the first air mixture flow X. Since the collision occurs obliquely, the flow direction of the first air mixture X is deflected downward at an early stage after starting the swirling motion. That is, since the first mixed gas flow X is deflected downward before it is sufficiently swirled, the generation of a swirling flow within the swirl portion B is suppressed, and thus the filling efficiency is increased.
Further, since a second constriction part 16a is formed at the outlet of the branch passage 24, the flow rate of the mixture flow flowing in from the branch passage 24 is increased when passing through the second constriction part 16a, and thus the first mixture The airflow is deflected further downward. In this way, a large amount of air-fuel mixture is supplied from the branch passage 24 with low flow resistance, and furthermore, the first
Since the flow direction of the air mixture flow is deflected downward, high filling efficiency can be obtained.

また、本発明によるヘリカル型吸気ポートは吸
気ポート6の上壁面上に隔壁12を一体成形すれ
ばよいのでヘリカル型吸気ポートを容易に製造す
ることができる。
Further, in the helical type intake port according to the present invention, the partition wall 12 may be integrally formed on the upper wall surface of the intake port 6, so that the helical type intake port can be easily manufactured.

以上述べたように本発明によれば機関低速低負
荷運転時には分岐路を遮断することにより強力な
旋回流を燃焼室内に発生せしめることができる。
一方、機関高速高負荷運転時には分岐路を開口す
ることにより多量の混合気が流れ抵抗の小さな分
岐路を介して渦巻部内に送り込まれ、更に混合気
が渦巻部側壁面に沿つて旋回を開始してから早い
時期に渦巻部側壁面に沿い旋回する混合気の流れ
方向が分岐路から流入する混合気流によつて下向
きに偏向せしめられるので高い充填効率を得るこ
とができる。
As described above, according to the present invention, when the engine is operated at low speed and low load, a strong swirling flow can be generated in the combustion chamber by blocking the branch passage.
On the other hand, during engine high-speed, high-load operation, by opening the branch passage, a large amount of air-fuel mixture flows into the volute through the branch passage with low resistance, and the mixture begins to swirl along the side wall of the volute. Since the flow direction of the air-fuel mixture swirling along the side wall surface of the swirl portion is deflected downward by the air-fuel mixture flow flowing in from the branch passage at an early stage after the injection, high filling efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図の−線に沿つてみた本発明
に係る内燃機関の側面断面図、第2図は第1図の
−線に沿つてみた平面断面図、第3図は本発
明によるヘリカル型吸気ポートの形状を図解的に
示す側面図、第4図はヘリカル型吸気ポートの形
状を図解的に示す平面図、第5図は第3図の−
線に沿つてみた断面図、第6図は第3図の−
線に沿つてみた断面図、第7図は第3図の−
線に沿つてみた断面図、第8図は第3図の−
線に沿つてみた断面図、第9図はロータリ弁の
側面断面図、第10図はロータリ弁の駆動制御装
置を示す図である。 4……燃焼室、6……ヘリカル型吸気ポート、
12……隔壁、24……分岐路、25……ロータ
リ弁。
FIG. 1 is a side sectional view of an internal combustion engine according to the present invention taken along the line - in FIG. 2, FIG. 2 is a plan sectional view taken along the line - in FIG. 1, and FIG. FIG. 4 is a side view schematically showing the shape of the helical intake port, FIG. 4 is a plan view schematically showing the shape of the helical intake port, and FIG.
A cross-sectional view taken along the line, Figure 6 is - of Figure 3.
A cross-sectional view taken along the line, Figure 7 is - of Figure 3.
A cross-sectional view taken along the line, Figure 8 is - of Figure 3.
9 is a sectional view taken along the line, FIG. 9 is a side sectional view of the rotary valve, and FIG. 10 is a diagram showing a drive control device for the rotary valve. 4... Combustion chamber, 6... Helical intake port,
12... Bulkhead, 24... Branch, 25... Rotary valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気弁周りに形成された渦巻部と、該渦巻部
に接線状に接続されかつほぼまつすぐに延びる入
口通路部とにより構成されたヘリカル型吸気ポー
トにおいて、吸気ポート上壁面から下方に突出し
かつ吸入空気流の流れ方向に延びる隔壁を吸気ポ
ート内に形成して該隔壁の両側に入口通路部と該
入口通路部から分岐した分岐路とを形成し、該隔
壁の下方に入口通路部と分岐路とを連通する下側
空間を形成すると共に分岐路を渦巻部の渦巻終端
部に連通し、該分岐路内に開閉弁を設けて該開閉
弁により分岐路内を流れる吸入空気流を制御し、
上記渦巻部の上壁面を吸気ポート入口開口に向け
て下降する傾斜面から形成すると共に上記入口通
路部および分岐路の各上壁面を渦巻部に向けてほ
ぼ同一の傾斜角で下降する傾斜面から形成し、該
分岐路の上壁面の高さを入口通路部の上壁面の高
さよりも高くしたヘリカル型吸気ポート。
1. In a helical intake port configured by a spiral part formed around the intake valve and an inlet passage connected tangentially to the spiral part and extending almost straight, the helical intake port projects downward from the upper wall surface of the intake port. A partition wall extending in the flow direction of the intake air flow is formed in the intake port, an inlet passage portion and a branch passage branching from the inlet passage portion are formed on both sides of the partition wall, and an inlet passage portion and a branch passage are formed below the partition wall. A lower space communicating with the branch passage is formed, and a branch passage is communicated with the spiral terminal end of the spiral part, and an on-off valve is provided in the branch passage, and the intake air flow flowing through the branch passage is controlled by the on-off valve. ,
The upper wall surface of the spiral portion is formed from an inclined surface that descends toward the intake port inlet opening, and the upper wall surfaces of each of the inlet passage portion and the branch passage are formed from an inclined surface that descends at approximately the same angle of inclination toward the spiral portion. A helical intake port in which the height of the upper wall surface of the branch passage is higher than the height of the upper wall surface of the inlet passage.
JP57087201A 1982-05-25 1982-05-25 Helical intake port Granted JPS58204925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57087201A JPS58204925A (en) 1982-05-25 1982-05-25 Helical intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087201A JPS58204925A (en) 1982-05-25 1982-05-25 Helical intake port

Publications (2)

Publication Number Publication Date
JPS58204925A JPS58204925A (en) 1983-11-29
JPS6238534B2 true JPS6238534B2 (en) 1987-08-18

Family

ID=13908354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087201A Granted JPS58204925A (en) 1982-05-25 1982-05-25 Helical intake port

Country Status (1)

Country Link
JP (1) JPS58204925A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606308A (en) * 1985-09-16 1986-08-19 General Motors Corporation Engine cylinder intake port

Also Published As

Publication number Publication date
JPS58204925A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
JPS6032009B2 (en) Helical intake port
JPS6238533B2 (en)
JPS6238537B2 (en)
JPS6236139B2 (en)
JPS6238534B2 (en)
JPS6231619Y2 (en)
JPS6238535B2 (en)
JPS6239672B2 (en)
JPS6229623Y2 (en)
JPS6229624Y2 (en)
JPS6335166Y2 (en)
JPS6238536B2 (en)
JPS6239670B2 (en)
JPS6236138B2 (en)
JPS6236136B2 (en)
JPS6238529B2 (en)
JPS6242136B2 (en)
JPS6239671B2 (en)
JPH0133791Y2 (en)
JPS6238530B2 (en)
JPS6238538B2 (en)
JPS6239669B2 (en)
JPH0144891B2 (en)
JPS6238532B2 (en)
JPS6238528B2 (en)