JPS6236166B2 - - Google Patents
Info
- Publication number
- JPS6236166B2 JPS6236166B2 JP54102395A JP10239579A JPS6236166B2 JP S6236166 B2 JPS6236166 B2 JP S6236166B2 JP 54102395 A JP54102395 A JP 54102395A JP 10239579 A JP10239579 A JP 10239579A JP S6236166 B2 JPS6236166 B2 JP S6236166B2
- Authority
- JP
- Japan
- Prior art keywords
- dead center
- center position
- pressure
- cylinder
- top dead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measuring Fluid Pressure (AREA)
Description
【発明の詳細な説明】
本発明は内燃機関の気筒内圧力により機関の有
効トルクを検出するトルク検出器に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a torque detector that detects the effective torque of an internal combustion engine based on the internal cylinder pressure of the engine.
従来の内燃機関のトルク検出器は、機関と負荷
を接続するトルク伝達軸中に検出器を設置し、そ
の間の伝達トルクを測定するタイプのものであり
抵抗線ひずみ計型トルク検出器、光電式トルク検
出器、磁歪管式トルク検出器など種々の方式のも
のが実用化されている。上記の何れのトルク検出
器もトルク伝達軸のねじれを検出する検出部と計
測回路部からなつている。例えばトルク検出部に
スリツプリングを有する抵抗線ひずみ計型トルク
検出器においては車体の振動によりスリツプリン
グの接点の振動、接点の摩耗等の問題がある。又
スリツプリングのような接点部分をもたない光電
式トルク計、磁歪管式トルク計ではトルク伝達軸
が変わる毎にあらたに設計しなおすという非常に
経済的に好ましくないという問題がある。そこで
機関に簡単に取り付け可能で、しかも安価なトル
ク検出器が要求される。 Conventional torque detectors for internal combustion engines are of the type that measures the transmitted torque by installing the detector in the torque transmission shaft that connects the engine and the load. Resistance wire strain gauge type torque detectors, photoelectric type Various types of torque detectors, such as torque detectors and magnetostrictive tube torque detectors, have been put into practical use. Each of the above-mentioned torque detectors includes a detection section for detecting twist of the torque transmission shaft and a measurement circuit section. For example, in a resistance wire strain gauge type torque detector having a slip ring in the torque detecting section, there are problems such as vibration of the contacts of the slip ring and wear of the contacts due to vibration of the vehicle body. Furthermore, photoelectric torque meters and magnetostrictive tube torque meters that do not have contact parts such as slip rings have the problem of being economically undesirable because they must be redesigned every time the torque transmission axis changes. Therefore, there is a need for a torque detector that can be easily attached to an engine and is inexpensive.
本発明はこの要求を満たすもので、機関の気筒
内圧力を表わす信号をピストンの下死点位置より
上死点位置まで積分すると共に上死点位置より下
死点位置まで積分し、この両積分値、およびシリ
ンダ容積、シリンダ数、所定のトルク演算定数か
ら機関の有効トルクを算出する構成とすることに
より、安価で精度が高くしかも取り付けが簡単な
トルク検出器を提供することを目的とするもので
ある。 The present invention satisfies this requirement by integrating a signal representing the internal cylinder pressure of the engine from the bottom dead center position of the piston to the top dead center position, and also from the top dead center position to the bottom dead center position, and integrates the signal representing the internal cylinder pressure of the engine. The purpose of the present invention is to provide a torque detector that is inexpensive, highly accurate, and easy to install, by having a configuration that calculates the effective torque of an engine from the cylinder volume, the number of cylinders, and a predetermined torque calculation constant. It is.
以下本発明を図に示す一実施例により説明す
る。第1図はその全体のブロツク構成を示す図で
あり、101は内燃機関の気筒内圧力を検出する
圧力検出器、102,103はこの気筒のピスト
ンが上死点位置及び下死点位置にあることを検出
する角度検出器である。201は機関の有効トル
クを算出する電気的演算回路であり、その中の1
04は圧力検出器101よりの信号を増幅する圧
力信号増幅器、105はこの圧力信号増幅器10
4の圧力信号電圧を反転する信号反転器である。
また107は圧力信号電圧を下死点位置から上死
点位置まで積分し、また上死点位置から下死点位
置まで積分して、両積分値の差より機関の有効ト
ルクを算出すると共にこの値を一定期間ホールド
する積分演算回路である。106は下死点位置よ
り上死点位置までの積分期間および上死点位置よ
り下死点位置までの積分期間を制御するロジツク
回路である。 The present invention will be explained below with reference to an embodiment shown in the drawings. FIG. 1 is a diagram showing the overall block configuration, in which 101 is a pressure detector that detects the pressure inside the cylinder of the internal combustion engine, and 102 and 103 are the pistons of this cylinder at the top dead center position and the bottom dead center position. It is an angle detector that detects that. 201 is an electrical calculation circuit that calculates the effective torque of the engine;
04 is a pressure signal amplifier that amplifies the signal from the pressure detector 101, and 105 is this pressure signal amplifier 10.
This is a signal inverter that inverts the pressure signal voltage of 4.
107 also integrates the pressure signal voltage from the bottom dead center position to the top dead center position, and from the top dead center position to the bottom dead center position, and calculates the effective torque of the engine from the difference between the two integral values. This is an integral calculation circuit that holds a value for a certain period of time. 106 is a logic circuit that controls the integration period from the bottom dead center position to the top dead center position and the integration period from the top dead center position to the bottom dead center position.
第2図は圧力検出器101の機関への取付けと
その構造を示す断面図であり、圧力検出器101
はシリンダヘツド1と点火プラグ2との間に挿入
され締めつけられる。この圧力検出器101は弾
性ひずみにより分極して両端に電圧を発生する圧
電素子3を備え、その両端に電極板4,5が接着
してある。そしてその電極板4,5の外周を絶円
板6,7で覆い、間りようを接着材8で充てんし
た構造となつている。また9,10は信号取り出
し用のリード線である。次にこの圧力検出器10
1の作動について述べる。圧力検出器101は点
火プラグ2をシリンダヘツドに取り付ける際に初
期荷重を受けている。今機関の気筒内の圧力が大
きくなると、点火プラグ2は内部から押圧される
ので圧力検出器101にかかる荷重が減少する。
そして圧力検出器101中の圧電素子3に加わる
荷重も同様に減少する。したがつてこの圧電素子
3には気筒内圧力に比例した電圧が発生する。 FIG. 2 is a cross-sectional view showing how the pressure detector 101 is attached to the engine and its structure.
is inserted between the cylinder head 1 and the spark plug 2 and tightened. This pressure detector 101 includes a piezoelectric element 3 that is polarized by elastic strain and generates a voltage at both ends, and electrode plates 4 and 5 are bonded to both ends of the piezoelectric element 3. The outer circumferences of the electrode plates 4 and 5 are covered with circular plates 6 and 7, and the space between them is filled with an adhesive 8. Further, 9 and 10 are lead wires for taking out signals. Next, this pressure detector 10
The operation of No. 1 will be described. The pressure sensor 101 receives an initial load when the spark plug 2 is installed in the cylinder head. When the pressure inside the cylinder of the engine increases, the spark plug 2 is pressed from inside, so the load on the pressure detector 101 is reduced.
The load applied to the piezoelectric element 3 in the pressure detector 101 is also reduced. Therefore, a voltage proportional to the cylinder pressure is generated in the piezoelectric element 3.
第3図は本実施例の詳細な電気回路図であり、
101は圧力検出器でその出力信号は圧力信号増
幅器104に入る。これは公知の演算増幅器2
1,23で構成され、この演算増幅器21の出力
は信号反転器105に入る。演算増幅器22と2
3のゲインは同一となるように構成してあるた
め、それぞれの出力はOVを基準に対称形をした
出力電圧となる。ピストンの上死点及び下死点位
置を検出する角度検出器102,103はカム軸
と同一回転をする円板上に、圧力検出器101を
とり付けてある気筒の圧縮、爆発行程での下死点
位置及び上死点位置に対応するスリツトを切り、
発光素子(図示しない)、受光素子をそれぞれ対
向させた構成であり、ピストンが下死点位置およ
び上死点位置を通過する毎にスリツトは光を通し
受光素子が導通し下死点位置及び上死点位置を検
出する。106はロジツク回路で角度検出器10
2よりの上死点位置を表わす上死点角度検出信号
はインバータ34を通してR―Sフリツプフロツ
プ37のセツト端子に入力され記憶される。また
角度検出器103よりの下死点位置を表わす下死
点角度検出信号はインバータ35とORゲート3
6を通りR―Sフリツプフロツプ37のリセツト
端子に入り記憶される。抵抗32、コンデンサ3
3は電源投入時のR―Sフリツプフロツプを初期
セツトするものである。インバータ34,35の
出力E,Dは、上死点位置及び下死点位置におい
て“1”レベルとなり、(第4図e,d)Dフリ
ツプフロツプ38の出力Fは第4図fに示す如く
下死点T1から上死点T2間“1”レベルを保持す
るように作動し、R―Sフリツプフロツプ37の
出力Gは第4図gに示す如く、上死点T2から下
死点T3間“1”レベルを保持するように作動す
る。また、単安定マツチバイブレータ39のQ出
力は第4図iに示す如く下死点T3から一定時間
(時点T4まで)“1”レベルを保持するものであ
る。また第4図hに示すようにこの出力が“1”
レベルから“0”レベルになつたときから次の下
死点T1までの期間“1”レベル信号を保持する
ためにANDゲート40を用いている。積分演算
回路は107はアナログスイツチ24と演算増幅
器25を備え、アナログスイツチ24はR―Sフ
リツプフロツプ37、Dフリツプフロツプ38、
ANDゲート40の出力G,F,Hの信号により
制御され、この信号が“1”レベルの時それぞれ
のスイツチ24a,24b,24cが導通するよ
うに作動する。演算増幅器25は、抵抗26とコ
ンデンサ28から積分器を構成し、抵抗27はコ
ンデンサ28の放電用の抵抗である。なお、3
0,31は電源でする。 FIG. 3 is a detailed electrical circuit diagram of this embodiment,
101 is a pressure detector, and its output signal is input to a pressure signal amplifier 104. This is a well-known operational amplifier 2
The output of this operational amplifier 21 enters a signal inverter 105. Operational amplifiers 22 and 2
3 have the same gain, so each output becomes an output voltage that is symmetrical with respect to OV. Angle detectors 102 and 103 for detecting the top dead center and bottom dead center positions of the piston are mounted on a disk that rotates at the same time as the camshaft. Cut slits corresponding to the dead center position and top dead center position,
The structure has a light emitting element (not shown) and a light receiving element facing each other, and each time the piston passes through the bottom dead center position and the top dead center position, the light passes through the slit and the light receiving element conducts. Detect dead center position. 106 is a logic circuit and an angle detector 10
The top dead center angle detection signal representing the top dead center position from 2 is inputted to the set terminal of the RS flip-flop 37 through the inverter 34 and stored. Further, the bottom dead center angle detection signal representing the bottom dead center position from the angle detector 103 is transmitted to the inverter 35 and the OR gate 3.
6, enters the reset terminal of the R-S flip-flop 37, and is stored. Resistor 32, capacitor 3
3 is for initial setting of the R-S flip-flop when the power is turned on. The outputs E and D of the inverters 34 and 35 are at the "1" level at the top dead center position and the bottom dead center position (Fig. 4e, d), and the output F of the D flip-flop 38 is at the low level as shown in Fig. 4f. It operates to maintain the "1" level from dead center T1 to top dead center T2 , and the output G of the R-S flip-flop 37 is maintained at the "1" level from top dead center T2 to bottom dead center T2, as shown in FIG. It operates to maintain the “1” level for 3 hours. Further, the Q output of the monostable match vibrator 39 is maintained at the "1" level for a certain period of time ( until time T4 ) from the bottom dead center T3, as shown in FIG. 4i. Also, as shown in Figure 4h, this output is “1”.
An AND gate 40 is used to hold the "1" level signal for a period from when the level changes to "0" level until the next bottom dead center T1 . The integral calculation circuit 107 includes an analog switch 24 and an operational amplifier 25, and the analog switch 24 includes an R-S flip-flop 37, a D flip-flop 38,
The switches 24a, 24b, and 24c are controlled by the output signals G, F, and H of the AND gate 40, and when these signals are at the "1" level, the switches 24a, 24b, and 24c are rendered conductive. The operational amplifier 25 constitutes an integrator from a resistor 26 and a capacitor 28, and the resistor 27 is a resistor for discharging the capacitor 28. In addition, 3
0,31 is the power supply.
次に上記構成の作動について述べる。一般に4
ストロークサイクル機関の有効トルクTEはVsを
シリンダ容積、Zをシリンダ数、Pmを平均有効
圧力とすると、TE=1/2π×200Vs・Z・pmとな
り平均有効圧力Pmから有効トルクTEが検出でき
ることになる。ここで、平均有効圧Pmにシリン
ダ容積Vsとシリンダ数Zを乗ずることにより、
機関1サイクル(2回転)の仕事量が求められ、
また機関1サイクルの仕事量は有効トルクTEと
回転距離2×2π×100(cm)の積に等しいの
で、Vs・Z・Pm=2×2π×100となり、従つ
て、TE=1/2π×100Vs・Z・Pmとなる。なお、
平均有効圧力Pmは近似的に爆発行程における上
死点から下死点までの気筒内圧力P1(θ)と圧縮
行程における下死点から上死点までの気筒内圧力
P2(θ)の平均値より求められ、Pm=k( 0P1
(θ)dθ− 0P2(θ)dθ)、k;定数となる。
すなわち、この平均有効圧力Pmは下死点位置か
ら上死点位置までの気筒内圧力に比例した圧力信
号の積分値S1と上死点位置から下死点位置までの
積分値S2との差から求めることができる。したが
つて機関が運転され圧力検出器101をとり付け
た気筒の圧縮、爆発行程の際には、第4図aに示
す如く気筒内圧力に比例した電圧Vp(t)が圧
力信号増幅器104の出力Aに発生する。信号反
転器105の出力Bには第4図bに示すような−
Vp(t)が発生する。そして下死点T1から上死
点T2間アナログスイツチ24aのコントロール
信号が“1”レベルとなりスイツチ24aは導通
し、演算増幅器22の出力電圧Vp(t)の積分
が開始される。今抵抗26の抵抗値がRオーム、
コンデンサ28の容量がCフアラツドとすると、
演算増幅器25の出力Cの電圧V1はV1=−1/RC∫T2 T1
Vp(t)dt=−S1/RCとなる。ただしS1=∫
T2 T1Vp(t)dtである。次に上死点T2から下死点
T3間はアナログスイツチ24のスイツチ24b
のみが導通し演算増幅器23の出力電圧−Vp
(t)が積分され、演算増幅器25の出力Cの電
圧Voは
Vo=V1−1/RC∫T3 T2{−Vp(t)}dt=−S1
+S2/RCと
なる。すなわち有効トルクTEは
TE=K・(S2−S1)=K・RCVoとなる。ただ
し、
S2=∫T3 T2{−Vp(t)}dt、Kは定数である。ま
た単安定マルチバイブレータ39の出力Iが
“1”レベル間この電圧Voはコンデンサ28に保
持されており、ANDゲート40の出力Hが
“1”レベルになるとアナログスイツチ24のス
イツチ24Cが導通しコンデンサ28の電荷は抵
抗29を通して放電され初期セツトされる。すな
わち単安定マルチバイブレータ39の出力Iが
“1”レベルのときの演算増幅器25の出力Cの
電圧を読むことにより、1回転毎に第4図cに示
す如く機関の有効トルクが検出できる。 Next, the operation of the above configuration will be described. generally 4
The effective torque TE of a stroke cycle engine is TE = 1/2π x 200Vs・Z・pm, where Vs is the cylinder volume, Z is the number of cylinders, and Pm is the average effective pressure, and the effective torque TE can be detected from the average effective pressure Pm. Become. Here, by multiplying the average effective pressure Pm by the cylinder volume Vs and the number of cylinders Z,
The amount of work for one engine cycle (two rotations) is calculated,
Also, the amount of work in one cycle of the engine is equal to the product of effective torque TE and rotational distance 2 x 2π x 100 (cm), so Vs・Z・Pm=2×2π×100, therefore, TE=1/2π× It becomes 100Vs・Z・Pm. Note that the average effective pressure Pm is approximately the cylinder pressure P 1 (θ) from top dead center to bottom dead center in the explosion stroke and the cylinder pressure from bottom dead center to top dead center in the compression stroke.
It is obtained from the average value of P 2 (θ), and Pm=k( 0 P 1
(θ)dθ− 0 P 2 (θ)dθ), k: constant.
In other words, this average effective pressure Pm is the sum of the integral value S 1 of the pressure signal proportional to the cylinder pressure from the bottom dead center position to the top dead center position and the integral value S 2 from the top dead center position to the bottom dead center position. It can be determined from the difference. Therefore, when the engine is operated and the cylinder equipped with the pressure detector 101 undergoes a compression or explosion stroke, a voltage Vp(t) proportional to the cylinder pressure is applied to the pressure signal amplifier 104 as shown in FIG. 4a. Occurs at output A. The output B of the signal inverter 105 has - as shown in FIG. 4b.
Vp(t) is generated. Then, the control signal of the analog switch 24a between the bottom dead center T1 and the top dead center T2 becomes "1" level, the switch 24a becomes conductive, and the integration of the output voltage Vp(t) of the operational amplifier 22 is started. Now the resistance value of resistor 26 is R ohm,
Assuming that the capacitance of the capacitor 28 is C farad,
The voltage V 1 of the output C of the operational amplifier 25 becomes V 1 =-1/RC∫ T2 T1 Vp(t)dt=-S 1 /RC. However, S 1 = ∫
T2 T1 Vp(t)dt. Next, from top dead center T 2 to bottom dead center
Switch 24b of analog switch 24 between T 3
Only the output voltage of the operational amplifier 23 -Vp is conductive.
(t) is integrated, and the voltage Vo of the output C of the operational amplifier 25 is Vo=V 1 -1/RC∫ T3 T2 {-Vp(t)}dt=-S 1
+S 2 /RC. That is, the effective torque TE becomes TE=K・(S 2 −S 1 )=K・RCVo. However, S 2 =∫ T3 T2 {−Vp(t)}dt, K is a constant. Further, while the output I of the monostable multivibrator 39 is at the "1" level, this voltage Vo is held in the capacitor 28, and when the output H of the AND gate 40 reaches the "1" level, the switch 24C of the analog switch 24 is turned on and the capacitor is turned on. The charge at 28 is discharged through resistor 29 and initialized. That is, by reading the voltage of the output C of the operational amplifier 25 when the output I of the monostable multivibrator 39 is at the "1" level, the effective torque of the engine can be detected for each rotation as shown in FIG. 4c.
なお上記実施例では機関の気筒内圧力を検出す
る圧力検出器101をプラグとシリンダヘツド間
に挿入した場合を示したが、シリンダヘツドとシ
リンダ締付けボルト間に挿入しても同様に検出可
能であることは明らかである。 Although the above embodiment shows the case where the pressure detector 101 for detecting the internal cylinder pressure of the engine is inserted between the plug and the cylinder head, it can be similarly detected by inserting it between the cylinder head and the cylinder tightening bolt. That is clear.
以上述べたように本発明は、機関の気筒内圧力
を圧力検出器で検出すると共に、この気筒のピス
トンが上死点位置及び下死点位置にあることを角
度検出器にて検出し、両者の信号から気筒内圧力
を表わす信号をピストンの下死点位置より上死点
位置まで積分すると共にこの上死点位置より次の
下死点位置まで積分し、この両積分値、およびシ
リンダ容積、シリンダ数、所定のトルク演算定数
からの機関の有効トルクを算出する構成としたこ
とにより、機関の有効トルクが1回転毎に精度よ
く検出でき、しかも安価で取り付けが容易なトル
ク検出器を提供できるという優れた効果を有す
る。 As described above, the present invention detects the internal cylinder pressure of the engine using a pressure detector, and also uses an angle detector to detect whether the piston of this cylinder is at the top dead center position or the bottom dead center position. Integrate the signal representing the cylinder pressure from the signal from the piston from the bottom dead center position to the top dead center position, and from this top dead center position to the next bottom dead center position, and calculate the value of both integrals and the cylinder volume, By adopting a configuration that calculates the effective torque of the engine from the number of cylinders and a predetermined torque calculation constant, it is possible to provide a torque detector that can accurately detect the effective torque of the engine for each rotation, and is inexpensive and easy to install. It has this excellent effect.
第1図は本発明の一実施例を示すブロツク構成
図、第2図は第1図中圧力検出器の構造および機
関への取り付け状態を示す断面図、第3図は第1
図の詳細な電気回路図、第4図は第3図各部の信
号波形図である。
101…圧力検出器、102,103…角度検
出器、107…電気的演算回路の主要部をなす積
分演算回路、201…電気的演算回路。
Fig. 1 is a block configuration diagram showing one embodiment of the present invention, Fig. 2 is a sectional view showing the structure of the pressure detector in Fig. 1 and how it is attached to the engine, and Fig. 3 is a block diagram showing an embodiment of the present invention.
The detailed electric circuit diagram shown in the figure, and FIG. 4 is a signal waveform diagram of each part of FIG. 3. 101... Pressure detector, 102, 103... Angle detector, 107... Integral computing circuit forming the main part of the electrical computing circuit, 201... Electric computing circuit.
Claims (1)
と、この気筒のピストンが上死点及び下死点位置
にあることを検出する角度検出器と、前記圧力検
出器及び前記角度検出器よりの両検出信号から、
前記気筒内圧力を表わす信号を前記ピストンの下
死点位置より上死点位置まで積分すると共にこの
上死点位置より次の下死点位置まで積分し、両積
分値の差と機関のシリンダ容積、シリンダ数、お
よび所定のトルク演算定数の積より内燃機関の有
効トルクを算出する電気的演算回路とを備えたこ
とを特徴とする内燃機関用トルク検出器。1. A pressure detector that detects the pressure inside the cylinder of the internal combustion engine, an angle detector that detects whether the piston of this cylinder is at the top dead center or bottom dead center position, and a From both detection signals,
The signal representing the cylinder pressure is integrated from the bottom dead center position of the piston to the top dead center position, and from this top dead center position to the next bottom dead center position, and the difference between the two integral values and the cylinder volume of the engine are calculated. , the number of cylinders, and an electrical calculation circuit that calculates the effective torque of the internal combustion engine from the product of a predetermined torque calculation constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10239579A JPS5626231A (en) | 1979-08-10 | 1979-08-10 | Torque detector for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10239579A JPS5626231A (en) | 1979-08-10 | 1979-08-10 | Torque detector for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5626231A JPS5626231A (en) | 1981-03-13 |
JPS6236166B2 true JPS6236166B2 (en) | 1987-08-05 |
Family
ID=14326251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10239579A Granted JPS5626231A (en) | 1979-08-10 | 1979-08-10 | Torque detector for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5626231A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6260483A (en) * | 1985-09-06 | 1987-03-17 | Omron Tateisi Electronics Co | Control circuit for regenerative control of servomotor |
JPH0789090B2 (en) * | 1986-08-30 | 1995-09-27 | トヨタ自動車株式会社 | Torque detection device for internal combustion engine |
JPS63136990A (en) * | 1986-11-27 | 1988-06-09 | Omron Tateisi Electronics Co | Control circuit for servo motor |
CN103868633B (en) * | 2014-03-17 | 2016-01-27 | 中国北方发动机研究所(天津) | Engine overhead air distribution camshaft contact stress method of testing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5354077A (en) * | 1976-10-26 | 1978-05-17 | Megasystems Inc | Indicated horsepower measuring system for piston type engine |
-
1979
- 1979-08-10 JP JP10239579A patent/JPS5626231A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5354077A (en) * | 1976-10-26 | 1978-05-17 | Megasystems Inc | Indicated horsepower measuring system for piston type engine |
Also Published As
Publication number | Publication date |
---|---|
JPS5626231A (en) | 1981-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4503713A (en) | Dual sensitivity torque detector | |
KR100283294B1 (en) | Real time measurement system of car engine torque | |
US6786078B2 (en) | Vibration pickup comprising a clamping sleeve | |
US4537065A (en) | Device for detection of abnormality in pressure detector for internal combustion engine | |
JPS6236166B2 (en) | ||
JP4308697B2 (en) | In-cylinder pressure detector | |
US4266427A (en) | Combustion timing method and apparatus with direct TDC detection | |
GB2053348A (en) | Device for detecting engine knock | |
JPS6157830A (en) | Method and device for deciding on abnormal combustion | |
US4567751A (en) | Knocking detection device in diesel engine | |
JPS6232352B2 (en) | ||
JPH0322571B2 (en) | ||
JPH0216967B2 (en) | ||
JPS5846670B2 (en) | NinenenkikanyoudenshikitenKajikichiyouseisouchi | |
JPH0354771B2 (en) | ||
Zhao et al. | Engine performance monitoring using spark plug voltage analysis | |
JPS6244606B2 (en) | ||
KR950033031A (en) | Monitoring system for reciprocating engines and compressors | |
JP2946126B2 (en) | Internal combustion engine combustion state monitoring device | |
JP2816518B2 (en) | Combustion pressure detector | |
JPH07209126A (en) | System for detecting and controlling combustion pressure using piezoelectric sensor | |
JPH1054773A (en) | Pressure measuring sensor usable in high temperature environment | |
JPS5994030A (en) | Apparatus for measuring shaft output of internal combustion engine | |
JPS6235609B2 (en) | ||
JPH0613995B2 (en) | Torque detector for internal combustion engine |