JPS6236626B2 - - Google Patents
Info
- Publication number
- JPS6236626B2 JPS6236626B2 JP13893581A JP13893581A JPS6236626B2 JP S6236626 B2 JPS6236626 B2 JP S6236626B2 JP 13893581 A JP13893581 A JP 13893581A JP 13893581 A JP13893581 A JP 13893581A JP S6236626 B2 JPS6236626 B2 JP S6236626B2
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- temperature
- high vacuum
- cryopump
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005245 sintering Methods 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 15
- 239000003990 capacitor Substances 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 13
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 6
- 239000001307 helium Substances 0.000 claims description 6
- 229910052734 helium Inorganic materials 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000003507 refrigerant Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- 230000015556 catabolic process Effects 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 6
- 238000002048 anodisation reaction Methods 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
本発明は電解コンデンサの製造方法に関し、特
にタンタル、ニオビウムの弁作用金属(以下弁作
用金属と称す)粉末成型体の焼結体製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrolytic capacitor, and more particularly to a method for manufacturing a sintered body of a tantalum or niobium valve metal (hereinafter referred to as valve metal) powder compact.
一般に電解コンデンサは、弁作用金属粉末の成
型体を真空焼結した焼結体の表面上に酸化皮膜の
誘電体層を設け、この誘電体層に密着するよう
に、順次二酸化マンガン層、グラフアイト層、銀
ペースト層等を被着して陰極とするコンデンサで
ある。さらに詳述すると、まず、平均粒子径数μ
mの弁作用金属粉末に、陽極のリード線となる弁
作用金属粉末と同種の金属線を植立しながら、同
粉末を所定の形状、寸法に加圧、成型したのち、
1×10-4mmHg以下の真空度の下で、1600℃乃至
2000℃で30分間乃至60分間焼結して焼結体を製作
する。次に、焼結体表面に誘電体層となる酸化皮
膜を、焼結体を陽極とし、陽極と同種金属を陰極
として、リン酸水溶液等の電解質溶液中で陽極化
成によつて形成する。次に、二酸化マンガン層
を、陽極化成した素子(陽極化成素子)に含浸さ
せた硝酸マンガン液を熱分解すると同時に、陽極
化成素子の表面上に焼付け形成する。その後、陽
極化成素子の外表面上に順次、グラフアイト層、
銀ペースト層を形成させ、陰極のリード線となる
適当な金属線を半田付けなどの手段で接続し、樹
脂等で補強し、コンデンサを完成する。 In general, electrolytic capacitors are made by vacuum sintering a molded body of valve metal powder, and then a dielectric layer of oxide film is provided on the surface of the sintered body. It is a capacitor with a cathode formed by depositing a silver paste layer, etc. To explain in more detail, first, the average particle diameter is several μ.
After pressing and molding the valve metal powder into a predetermined shape and size while planting a metal wire of the same type as the valve metal powder that will become the lead wire of the anode,
1600℃ to 1600℃ under a vacuum of 1×10 -4 mmHg or less
A sintered body is produced by sintering at 2000°C for 30 to 60 minutes. Next, an oxide film that will become a dielectric layer is formed on the surface of the sintered body by anodization in an electrolyte solution such as an aqueous phosphoric acid solution, using the sintered body as an anode and the same type of metal as the anode as a cathode. Next, a manganese dioxide layer is formed by baking on the surface of the anodized element at the same time as the manganese nitrate solution with which the anodized element (anodized element) is impregnated is thermally decomposed. After that, a graphite layer is sequentially formed on the outer surface of the anodized element.
A silver paste layer is formed, a suitable metal wire serving as a cathode lead wire is connected by means such as soldering, and the capacitor is completed by reinforcing it with resin or the like.
周知の如く、電解コンデンサは破壊電圧が高
く、漏れ電流が小さいことが望まれ、この目的を
達成するため、特に焼結体においては、弁作用金
属以外の元素(不純物と称し、金属、非金属、水
素を総称する)の含有を少なくすることが重要で
ある。すなわち、弁作用金属以外の金属、非金属
は陽極化成され難いため、これらを含んでいる弁
作用金属を陽極化成した場合、その不純物によつ
て酸化皮膜が生長しなくなる。すなわち、最高化
成電圧が低くなり、破壊電圧の高い電解コンデン
サを得られなくなる。一方、水素は、タンタル、
ニオビウムによく吸蔵され、これらの金属を脆化
する性質をもつている。このため、水素を吸蔵し
た焼結体では、水素が陽極化成時に、生成した酸
化皮膜を突き破りながら陰極へ移動し、酸化皮膜
の生長を抑制するため、破壊電圧の高い電解コン
デンサが得られなくなる。又、酸化皮膜が生成さ
れても、その後の電解コンデンサ製造工程中にお
いて、陽極化成素子に加わる圧力、たとえば二酸
化マンガン焼付け時の熱衝撃等により、酸化皮膜
にキレツが生じ、漏れ電流が増大するようにな
る。 As is well known, electrolytic capacitors are desired to have high breakdown voltage and low leakage current, and in order to achieve this purpose, elements other than valve metals (referred to as impurities, metals and non-metals) are used in sintered bodies. It is important to reduce the content of hydrogen (generic term for hydrogen). That is, since metals and non-metals other than valve metals are difficult to be anodized, when a valve metal containing these metals is anodized, the impurities prevent the growth of an oxide film. That is, the maximum formation voltage becomes low, making it impossible to obtain an electrolytic capacitor with a high breakdown voltage. On the other hand, hydrogen is tantalum,
It is often absorbed by niobium and has the property of embrittling these metals. For this reason, in a sintered body that stores hydrogen, hydrogen moves to the cathode while breaking through the oxide film formed during anodization, suppressing the growth of the oxide film, making it impossible to obtain an electrolytic capacitor with a high breakdown voltage. Furthermore, even if an oxide film is formed, during the subsequent electrolytic capacitor manufacturing process, pressure applied to the anodized element, such as thermal shock during baking of manganese dioxide, may cause cracks in the oxide film, increasing leakage current. become.
不純物を除去する手段としては、弁作用金属粉
末の成型体を、その粉末の表面膜を有効に活用し
得る範囲で、出来るだけ高温度で、且つ高真空中
で焼結すること、そして高真空を得るポンプとし
て、古くから油拡散ポンプが知られ近年では、ク
ライオポンプがあることはよく知られている。 As a means to remove impurities, the molded body of valve metal powder is sintered at as high a temperature as possible in a high vacuum to the extent that the surface film of the powder can be effectively utilized; Oil diffusion pumps have been known for a long time as pumps for obtaining this, and in recent years, cryopumps have become well known.
しかし、発明者等の知見によると、油拡散ポン
プは高真空状態になると、油拡散ポンプ中の油蒸
気が真空炉内に送流し、油の汚染により破壊電圧
の高いコンデンサを得られない欠点がある。 However, according to the findings of the inventors, when the oil diffusion pump is in a high vacuum state, the oil vapor in the oil diffusion pump is sent into the vacuum furnace, making it impossible to obtain a capacitor with a high breakdown voltage due to oil contamination. be.
一方、クライオポンプは、油を使用しない、す
なわち一般にヘリウムガスを冷媒として排気ガス
面に接する反対側を十数度Kまで冷却し、その面
(冷却面)に排気ガスを凝縮させ、高真空を得る
手段であるため、油による汚染はないが、冷却面
の温度に近い沸点のガス、例えば水素ガス(14
〓)、ネオンガス(27〓)に対する排気能力は、
沸点の高いガスに対する排気能力に比べ低い。さ
らに、水素或はネオンガスが冷却面に凝縮する
と、排気能力が低くなる。従つて、数PPm乃至
数十PPmの水素を含んでいる弁作用金属粉末の
成型体をクライオポンプによつて保持された高真
空中で焼結すると、水素が充分除去されない状態
の焼結体となつたり、クライオポンプの排気能力
の低下を早める欠点があつた。 On the other hand, cryopumps do not use oil; they generally use helium gas as a refrigerant to cool the opposite side of the exhaust gas surface to over 10 degrees K, condense the exhaust gas on that surface (cooling surface), and create a high vacuum. There is no oil contamination, but gases with boiling points close to the cooling surface temperature, such as hydrogen
〓), the exhaust capacity for neon gas (27〓) is
It is lower than the exhaust capacity for gases with high boiling points. Furthermore, if hydrogen or neon gas condenses on the cooling surface, the exhaust capacity will be reduced. Therefore, if a molded body of valve metal powder containing several PPm to several tens of PPm of hydrogen is sintered in a high vacuum maintained by a cryopump, the sintered body will not have enough hydrogen removed. It has the disadvantage of accelerating the deterioration of the cryopump's pumping capacity.
本発明の目的は、このような欠点に鑑み検討し
た結果、焼結体の陽極化成時において、酸化皮膜
が生長しなくなる電圧、いわゆる破壊電圧の高い
焼結体の製造方法を提供し、さらには高品質電解
コンデンサを提供するものである。 The purpose of the present invention, as a result of studies in view of these drawbacks, is to provide a method for manufacturing a sintered body that has a high voltage at which an oxide film does not grow during anodization of the sintered body, that is, a so-called breakdown voltage. The company provides high quality electrolytic capacitors.
すなわち、本発明は弁作用金属粉末に含まれて
いる水素は、高真空中においては、800℃附近で
多量に放出され、1000℃附近でほとんどなくなる
ことに着目し詳細に検討した結果、タンタル、ニ
オビウムの弁作用金属粉末成型体を真空炉中で室
温から1000℃までの範囲を油拡散ポンプで、所望
の高真空状態を保持しながら焼結する工程と、
1000℃から所定の焼結温度までの昇温過程、所定
の焼結温度における保持時間過程及び冷却過程を
ヘリウムガスを冷媒とするクライオポンプを用い
て、所望の高真空状態を保持しながら焼結する工
程を特徴とし、本発明で焼結して得た焼結体の破
壊電圧は、従来の油拡散ポンプのみで高真空に保
持しながら焼結して得た焼結体及びクライオポン
プのみで高真空に保持しながら焼結して得た、焼
結体のいずれの破壊電圧よりも高くなることに基
づいている。さらに、本発明は、室温から1000℃
の範囲内で油拡散ポンプを使用し、弁作用金属粉
末に含まれている水素を排気するため、1000℃を
越える昇温以降冷却過程の焼結工程で使用するク
ライオポンプの排気能力は、全焼結過程を、クラ
イオポンプ単独で排気した場合に比べ著しく向上
する。換言すれば焼結体の焼結処理能力が向上す
ることに基づいている。 That is, the present invention focuses on the fact that hydrogen contained in valve metal powder is released in large quantities around 800°C in a high vacuum, and almost disappears around 1000°C, and as a result of detailed study, we found that tantalum, A process of sintering a niobium valve metal powder molded body in a vacuum furnace at a temperature ranging from room temperature to 1000°C using an oil diffusion pump while maintaining a desired high vacuum state;
Sintering is carried out while maintaining the desired high vacuum state using a cryopump that uses helium gas as a refrigerant for the heating process from 1000℃ to the specified sintering temperature, the holding time process at the specified sintering temperature, and the cooling process. The breakdown voltage of the sintered body obtained by sintering according to the present invention is lower than that of the sintered body obtained by sintering while maintaining a high vacuum using only a conventional oil diffusion pump and a cryopump. This is based on the fact that the breakdown voltage is higher than any other sintered body obtained by sintering while being held in a high vacuum. Furthermore, the present invention can be applied from room temperature to 1000℃.
In order to exhaust the hydrogen contained in the valve metal powder using an oil diffusion pump within the range of The cryopump process is significantly improved compared to when the cryopump is used alone. In other words, it is based on improving the sintering processing ability of the sintered body.
次に実施例について図面を参照しながら説明す
る。 Next, embodiments will be described with reference to the drawings.
まず、弁作用金属粉末中に含まれている水素の
放出量と温度との関係を説明する。 First, the relationship between the amount of released hydrogen contained in the valve metal powder and the temperature will be explained.
タンタル製容器に平均粒子径3μmのタンタル
粉末を10g採取し、真空炉中に収容し、油拡散ポ
ンプで真空度を1×10-5mmHg附近に保持しなが
ら、毎分20℃の上昇速度で2000℃まで昇温した時
の水素放出量をガス分析装置によつて調べた。水
素ガス放出量と温度との関係を示した第1図から
水素ガスは500℃附近から徐々に増え、800℃附近
で最大となり、1000℃でほとんどなくなることが
分かる。 10g of tantalum powder with an average particle size of 3μm was collected in a tantalum container, placed in a vacuum furnace, and heated at a rising rate of 20℃ per minute while maintaining the degree of vacuum around 1×10 -5 mmHg using an oil diffusion pump. The amount of hydrogen released when the temperature was raised to 2000℃ was investigated using a gas analyzer. From Figure 1, which shows the relationship between hydrogen gas release amount and temperature, it can be seen that hydrogen gas gradually increases from around 500°C, reaches a maximum around 800°C, and almost disappears at 1000°C.
実施例 1
平均粒子径が約3μmのタンタル粉末1grを採
取し、この粉末に陽極のリード線となるタンタル
線を植立しながら、直径6mm、成型密度6gr/cm2
のプレス成型体を製作した。次に、二つの従来方
法、すなわち(イ)として全焼結過程の高真空状態を
油拡散ポンプで保持した場合、(ロ)として全焼結過
程の高真空状態をヘリウムガスを冷媒とするクラ
イオポンプで保持した場合と、本発明方法、すな
わち(ハ)として室温から1000℃までの範囲の高真空
状態を油拡散ポンプで、それ以降の昇温乃至冷却
過程の高真空状態をヘリウムガスを冷媒とするク
ライオポンプで保持した場合の三つの真空排気系
条件を設定し、それぞれについて、先に得た成型
体10個を1×10-5mmHg以下の真空度に保持しな
がら、通常の方法で昇温し、1700℃に達した所で
30分間保持したのち、通常の方法で降温し、炉内
が冷却したあと大気中に取り出し、焼結体を得
た。Example 1 1gr of tantalum powder with an average particle size of about 3μm was collected, and while a tantalum wire that would become the lead wire of the anode was planted on this powder, the powder was made to have a diameter of 6mm and a molding density of 6gr/cm 2
A press molded body was manufactured. Next, there are two conventional methods: (a) where the high vacuum state during the entire sintering process is maintained using an oil diffusion pump, and (b) where the high vacuum state during the entire sintering process is maintained using a cryopump using helium gas as a coolant. In the case of holding, and in the method of the present invention (c), a high vacuum state in the range from room temperature to 1000 ° C. is maintained using an oil diffusion pump, and a high vacuum state in the subsequent temperature rising and cooling process is maintained using helium gas as a refrigerant. We set three conditions for the evacuation system when held with a cryopump, and for each, heated the 10 previously obtained molded bodies using the usual method while maintaining the vacuum level below 1 × 10 -5 mmHg. Then, when the temperature reached 1700℃
After holding for 30 minutes, the temperature was lowered in the usual manner, and after the inside of the furnace had cooled, it was taken out into the atmosphere to obtain a sintered body.
このあと、これらの焼結体を一般に実施されて
いるような陽極化成方法、すなわち0.1体積%の
リン酸溶液中に浸漬し、電流密度30mA/grの下
で定電流化成を行ない、タンタル酸化皮膜を生長
させていつた時、それが生長しなくなる電圧、い
わゆる化成時の破壊電圧を測定した。破壊電圧と
真空排気系条件(イ)、(ロ)、(ハ)との関係を示した第2
図から破壊電圧は油拡散ポンプとクライオポンプ
を併用した本発明実施例(ハ)の方が、それぞれ単独
で排気した従来例(イ)、(ロ)より高くなることが分か
る。 Thereafter, these sintered bodies were immersed in a commonly used anodization method, that is, immersed in a 0.1% by volume phosphoric acid solution, and subjected to constant current anodization at a current density of 30 mA/gr to form a tantalum oxide film. After growing, we measured the voltage at which it stopped growing, the so-called breakdown voltage during chemical formation. The second part shows the relationship between breakdown voltage and vacuum pumping system conditions (a), (b), and (c).
It can be seen from the figure that the breakdown voltage is higher in the embodiment (c) of the present invention in which an oil diffusion pump and a cryopump are used in combination than in the conventional examples (a) and (b) in which each pump is pumped independently.
実施例 2
実施例1と同様のプレス成型体を1回毎の焼結
に100個準備し、実施例1の真空排気系条件の従
来例(ロ)と本発明実施例(ハ)の下で、それぞれ何回焼
結できるか調べた。クライオポンプの排気能力が
2×10-4mmHgの真空度に低下までの回数で比較
すると、従来例では6回であつたが、本発明では
16回と延び、焼結体の処理能力が約3倍となるこ
とが分かつた。Example 2 100 press molded bodies similar to those in Example 1 were prepared for each sintering process, and sintering was carried out under the conventional example (b) and the present invention example (c) of the vacuum evacuation system conditions of example 1. , we investigated how many times each could be sintered. Comparing the number of times it takes for the cryopump's evacuation capacity to drop to a vacuum level of 2 x 10 -4 mmHg, it was 6 times in the conventional example, but in the present invention.
It was found that the processing capacity was increased to 16 times, and the processing capacity for sintered bodies was approximately tripled.
以上、実施例から明らかなように、タンタル粉
末成型体の焼結において、高真空排気系を油拡散
ポンプとクライオポンプの併用した本発明は、そ
れぞれのポンプを単独に使用した従来方法より、
破壊電圧の高い焼結体を製造することができ、こ
の結果、高品質のタンタル電解コンデンサを提供
することができる。 As is clear from the examples above, in sintering tantalum powder compacts, the present invention, which uses a high vacuum pumping system in combination with an oil diffusion pump and a cryopump, is more effective than the conventional method in which each pump is used individually.
A sintered body with a high breakdown voltage can be manufactured, and as a result, a high quality tantalum electrolytic capacitor can be provided.
さらに、本発明はクライオポンプによる焼結体
の処理能力を改善し、焼結体の生産性を大幅に向
上出来た。 Furthermore, the present invention has improved the processing capacity of sintered bodies by a cryopump, and has been able to significantly improve the productivity of sintered bodies.
なお、実施例では弁作用金属粉末としてタンタ
ル粉末を用いた例を示したが、タンタル粉末成型
体の焼結温度に近い焼結温度で焼結するニオビウ
ム粉末成型体の焼結工程を適用し得ることは明白
である。 In addition, in the example, an example was shown in which tantalum powder was used as the valve action metal powder, but a sintering process for a niobium powder molded body, which is sintered at a sintering temperature close to the sintering temperature of a tantalum powder molded body, may be applied. That is clear.
第1図は、タンタル粉末成型体を1×10-5mm
Hg附近の真空度に保持しながら、室温から2000
℃まで昇温していつた時、タンタル粉末成型体か
ら放出する水素ガス放出量の累積比率と温度との
関係を示す図。第2図は、タンタル粉末成型体の
焼結時における従来の真空排気系(イ)、(ロ)及び本発
明の真空排気系(ハ)とで焼結した焼結体の化成時に
おける破壊電圧を示す図。
Figure 1 shows a tantalum powder compact of 1×10 -5 mm.
While maintaining the degree of vacuum near Hg, from room temperature to 2000
FIG. 2 is a diagram showing the relationship between the cumulative ratio of the amount of hydrogen gas released from the tantalum powder molded body and the temperature when the temperature is raised to ℃. Figure 2 shows the breakdown voltage during sintering of a sintered body sintered using conventional vacuum evacuation systems (a) and (b) and the vacuum evacuation system of the present invention (c) during sintering of a tantalum powder compact. Diagram showing.
Claims (1)
焼結して得られる焼結体を陽極体とする電解コン
デンサの製造方法において、該成型体を室温から
1000℃までの範囲を油拡散ポンプを用いて所望の
高真空状態を保持しながら焼結する工程と、1000
℃から所定の焼結温度までの昇温過程、所定の焼
結温度における保持時間過程及び冷却過程をヘリ
ウムガスを冷媒とするクライオポンプを用いて、
所望の高真空状態を保持しながら焼結する工程と
を含むことを特徴とする電解コンデンサの製造方
法。1. In a method for manufacturing an electrolytic capacitor in which a sintered body obtained by sintering a valve action metal powder molded body at high temperature in a high vacuum is used as an anode body, the molded body is heated from room temperature to
A process of sintering while maintaining the desired high vacuum state using an oil diffusion pump at temperatures up to 1000℃;
Using a cryopump with helium gas as a refrigerant, the heating process from °C to a predetermined sintering temperature, the holding time process at the predetermined sintering temperature, and the cooling process are carried out using a cryopump that uses helium gas as a refrigerant.
A method for manufacturing an electrolytic capacitor, comprising the step of sintering while maintaining a desired high vacuum state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13893581A JPS5839703A (en) | 1981-09-03 | 1981-09-03 | Production of electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13893581A JPS5839703A (en) | 1981-09-03 | 1981-09-03 | Production of electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5839703A JPS5839703A (en) | 1983-03-08 |
JPS6236626B2 true JPS6236626B2 (en) | 1987-08-07 |
Family
ID=15233577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13893581A Granted JPS5839703A (en) | 1981-09-03 | 1981-09-03 | Production of electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5839703A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3585791B2 (en) * | 1999-11-04 | 2004-11-04 | Necトーキン株式会社 | Method for producing anode body for solid electrolytic capacitor and continuous sintering apparatus used for the method |
-
1981
- 1981-09-03 JP JP13893581A patent/JPS5839703A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5839703A (en) | 1983-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6447570B1 (en) | Sintered Tantalum and Niobium capacitor pellets doped with Nitrogen, and method of making the same | |
EP2289083B1 (en) | High volumetric efficiency anodes for electrolytic capacitors | |
US20090078344A1 (en) | Tantalum anodes for high voltage capacitors employed by implantable medical devices and fabrication thereof | |
JP2001135552A (en) | Manufacturing method for valve acting metallic powder secondary particle and anode for solid-state electrolytic capacitor, and continuously sintering system | |
EP0166205B1 (en) | Method of producing electrolytic capacitor with al-ti anode body | |
JPH0449773B2 (en) | ||
US6689185B2 (en) | Niobium powder for capacitor, sintered body using the powder and capacitor using the same | |
EP0098149B1 (en) | Porous body for electrolytic capacitor having a lead wire and method of producing the same | |
JPS6236626B2 (en) | ||
JP2000082639A (en) | MANUFACTURE OF Nb CAPACITOR | |
US3286136A (en) | Fabrication of electrodes from modular units | |
JP5289669B2 (en) | Method for producing fine powder of Nb compound, method for producing solid electrolytic capacitor using fine powder of Nb compound | |
JPH0239417A (en) | Manufacture of electrolytic capacitor | |
JP2885101B2 (en) | Manufacturing method of electrolytic capacitor | |
JPS6053454B2 (en) | Manufacturing method of sintered capacitor element | |
TWI266661B (en) | Niobium powder and solid electrolytic capacitor | |
JP2772154B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2908830B2 (en) | Manufacturing method of electrolytic capacitor | |
JP2008205190A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP3290477B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4589187B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP5497076B2 (en) | Fine powder of Nb compound, porous sintered body, solid electrolytic capacitor using the same, and production method thereof | |
JPH0722080B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPS6035816B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPS6232606B2 (en) |