JPS6235291A - Gas-water separator for nuclear reactor - Google Patents
Gas-water separator for nuclear reactorInfo
- Publication number
- JPS6235291A JPS6235291A JP60173996A JP17399685A JPS6235291A JP S6235291 A JPS6235291 A JP S6235291A JP 60173996 A JP60173996 A JP 60173996A JP 17399685 A JP17399685 A JP 17399685A JP S6235291 A JPS6235291 A JP S6235291A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- water separator
- liquid discharge
- liquid
- separator assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(発明の技術分野〕
本発明は沸騰水型原子炉に好適な原子炉用気水分離器に
係り、特に、気液2相流より分離された分離液を放出す
る液排出流路を改良した原子炉用気水分離器に関する。[Detailed Description of the Invention] (Technical Field of the Invention) The present invention relates to a steam-water separator for a nuclear reactor suitable for a boiling water nuclear reactor, and particularly for discharging a separated liquid separated from a gas-liquid two-phase flow. This invention relates to a steam-water separator for nuclear reactors with an improved liquid discharge flow path.
一般に、沸騰水型原子炉では、炉心内の多数の燃料集合
体から発生ずる熱により冷却材を沸騰させ、気液2相混
合流となった冷却材を炉心上方の上部プレナムで北合し
た後、気水分離器に導いて、蒸気と液とに分離する。こ
こで分11i11された蒸気はドライア(蒸気乾燥器)
に導いて充分に湿分を除き、タービン室へ送気し、また
、液は再び下部プレナムから炉心内へと戻している。Generally, in a boiling water reactor, the coolant is boiled by heat generated from a large number of fuel assemblies in the reactor core, and the coolant is combined into a gas-liquid two-phase mixed flow in an upper plenum above the core. , and is led to a steam separator to separate it into steam and liquid. The steam 11i11 separated here is stored in a dryer (steam dryer).
The liquid is then introduced into the reactor core to sufficiently remove moisture and sent to the turbine chamber, and the liquid is returned to the core from the lower plenum.
ところで、気水分1111器の気液分離性能はキャリー
オーバとキ17リーアンダとにより殆ど定まる。By the way, the gas-liquid separation performance of the steam/moisture 1111 device is mostly determined by carryover and key under.
ずなわち、気水分離器に導入された気液2相混合流の分
離が不十分な場合には液の一部が液滴状になって蒸気に
混入したまま蒸気排出流路から排出れる。キャリーオー
バは蒸気排出流路から排出される分離液の蒸気に対する
重量化を表わし、その比が大ぎければそれだけ湿った蒸
気がドライアに導かれることになり、ドライアで湿分が
充分に除湿されなかった場合には、タービンWを損傷す
る恐れがある。In other words, if the separation of the gas-liquid two-phase mixed flow introduced into the steam-water separator is insufficient, part of the liquid becomes droplets and is discharged from the steam exhaust channel while remaining mixed with the steam. . Carryover represents the weight of the separated liquid discharged from the steam exhaust channel relative to the steam, and the larger the ratio, the more humid steam will be led to the dryer, and the dryer will be able to remove moisture sufficiently. If not, there is a risk of damaging the turbine W.
一方、液排出流路から蒸気が気泡状になって分離液とと
もに流出する場合があり、その蒸気の分離液に対する車
聞比をキャリーアンダという。キ1?リーアンダが大き
いということはその会見水分l1lff器の分前効率が
劣化することを意味し、また気泡状の蒸気が分離液とと
もにダウンカマに流れ込み再循環ポンプあるいはジェッ
トポンプにキャビテーションを生じさせる恐れがある。On the other hand, steam may form bubbles and flow out together with the separated liquid from the liquid discharge channel, and the ratio of the steam to the separated liquid is called carry under. Ki 1? A large leunder means that the fractionation efficiency of the pressurized water l1lff device is degraded, and there is also a risk that bubble-like steam may flow into the downcomer together with the separated liquid, causing cavitation in the recirculation pump or jet pump.
つまり、気水分1!lfiの性能としてはキャリーオー
バおよび乍1Jリーアンダが共に小ざいもの程優れてい
る。In other words, air moisture 1! As for lfi performance, the smaller the carryover and 1J lead-under, the better.
これまでに外国および我国において気水分l1lIl器
特性試験および解析が多数行なわれ、気水分1m器の設
計や改良などに貢献してきた。これらによると、キャリ
ーオーバおよびキャリーアンダは主に気水分離器に流入
する気液2相混合流の流量、蒸気重量率(りAリティ)
および炉水位によって定まり、これらの相関関係を第6
図に示す。Up to now, numerous tests and analyzes of the characteristics of steam/moisture 1m vessels have been conducted both in foreign countries and in Japan, and have contributed to the design and improvement of steam/moisture 1m vessels. According to these, carryover and carryunder are mainly caused by the flow rate and steam weight ratio of the gas-liquid two-phase mixed flow flowing into the steam separator.
and the reactor water level, and these correlations are determined by the sixth
As shown in the figure.
そこで、気水分tl器の設計においては、設計仕様とし
て与えられる気水分1lII器組立体1体当りの気液2
相混合流量、クォリティおよび標準水位などから第6図
に示す特性を考慮して形状寸法を選定している。Therefore, in the design of the steam/moisture TL vessel, it is necessary to
The shape and dimensions are selected in consideration of the characteristics shown in FIG. 6 from the phase mixing flow rate, quality, standard water level, etc.
このようにして構成された複数の気水分離器組立体は、
例えば沸騰水型原子炉では第7図に示すようにシュラウ
ドヘッド1上に各気水分11器組立体2の上端を同一平
面に揃えて気水分離器3に組立てられる。シュラウドヘ
ッド1はシュラウド4の頭部に載置され、上方に凸のド
ーム状に形成されているため、各気水分離器組立体2と
上部プレナム5とを連結するスタンドバイブロは外周側
はどそのパイプ長が長くなっている。The multiple steam/water separator assemblies configured in this way are
For example, in a boiling water nuclear reactor, as shown in FIG. 7, each steam/water 11 vessel assembly 2 is assembled into a steam/water separator 3 on a shroud head 1 with the upper ends of each steam/water 11 vessel assembly 2 aligned on the same plane. Since the shroud head 1 is placed on the head of the shroud 4 and is formed into an upwardly convex dome shape, the stand vibro connecting each steam separator assembly 2 and the upper plenum 5 is placed on the outer peripheral side. The pipe length is getting longer.
このように構成されている従来の原子炉用気水分1ll
lt器には次の問題点があった。1 liter of conventional nuclear reactor steam moisture configured in this way
The lt device had the following problems.
(1)各気水分離器組立体2に流入される気液2相混合
流の流入aが一様でなく、シュラウドヘッド4上の中央
部に配置される気水分離器組立体2への流入聞の方が、
その外周部に配置されるものにりも多くなる。(1) The inflow a of the gas-liquid two-phase mixed flow into each steam-water separator assembly 2 is not uniform, and the flow a into the steam-water separator assembly 2 disposed at the center on the shroud head 4 is uneven. The inflow population was
The number of items placed on the outer periphery also increases.
(2)林立する気水分111tW組立体2群の間隙に存
在する炉水位が一様ではなく、中央部間の水位の方が、
その外周部間の水位よりも高い。(2) The reactor water level existing in the gap between the two groups of 111tW air/moisture assemblies is not uniform, and the water level between the central parts is
higher than the water level between its outer peripheries.
このような従来の気水分離器3に流入する気液2相混合
流の流速分布と、上部ブレナム5内の流動挙動との解析
の一例を第8図に示す。FIG. 8 shows an example of an analysis of the flow velocity distribution of the gas-liquid two-phase mixed flow flowing into such a conventional steam-water separator 3 and the flow behavior within the upper brenum 5.
第8図中の矢印は上部プレナム5およびスタンドバイブ
ロ内の流れの速さと方向を示している。The arrows in FIG. 8 indicate the speed and direction of the flow in the upper plenum 5 and the stand vibro.
第8図に示すように外周側で流量が少なくなる理由は、
スタンドバイブロが外周側に位置するほど長くなるため
、その分、圧力損失が大きくなることと、シュラウドヘ
ッド1が上方に凸のドーム状になっているために、上部
ブレナム5内で中心に向う流れが生じるためである。The reason why the flow rate decreases on the outer circumferential side as shown in Figure 8 is as follows.
The further the stand vibro is located on the outer periphery, the longer it becomes, resulting in a correspondingly larger pressure loss. Also, because the shroud head 1 has an upwardly convex dome shape, the flow toward the center inside the upper blenheim 5 increases. This is because
また、各気水分離器組立体2相互間の炉水位は、その中
央部で高く、外周部で低いことが実物大試験装置による
計測結果から明らかになっている。Furthermore, it is clear from measurement results using a full-scale test device that the reactor water level between the steam-water separator assemblies 2 is high at the center and low at the outer periphery.
炉水位がこのような高低差を持つ理由は次のように考え
られる。各気水分離器組立体2により分離された液は各
気水分離器組立体2の各液排出流路、各気水分離器組立
体2群の間隙、シュラウド4と図示しない原子炉圧力容
器内壁とで形成されるダランカマをそれぞれ経て図示し
ない下部プレナムへ達する。各気水分離器組立体2群の
間隙が狭隘であるために、流路抵抗が大きく、その損失
ヘッド分だけ水面が高くなる。このために、中央部の方
がその外周部よりも炉水位が高くなる。The reason why the reactor water level has such a difference in height is thought to be as follows. The liquid separated by each steam-water separator assembly 2 is transferred to each liquid discharge channel of each steam-water separator assembly 2, to the gap between the two groups of steam-water separator assemblies, to the shroud 4, and to the reactor pressure vessel (not shown). It reaches a lower plenum (not shown) through each darankama formed by the inner wall. Since the gap between the two groups of steam-water separator assemblies is narrow, the flow path resistance is large and the water level is increased by the head loss. For this reason, the reactor water level is higher at the center than at the outer periphery.
したがって、シュラウドヘッド4上の中央部に配設され
た気水分離器組立体2の方が気液2相混合流の流入流量
が多く、その外周の水位が高いために、キャリーオーバ
が大ぎい。一方、外周部に配設された気水分離器組立体
2に対しては流入流量が少なく、水位が低いためにキセ
リーアンダが大きくなる。このために、従来のように平
均流入流量と標準水位から気水弁M器の仕様を一律に定
め配設する方法では気水分離器全体としてのキャリーオ
ーバおよびキャリーアンダの最小化を図ることが困難で
あった。Therefore, the inflow flow rate of the gas-liquid two-phase mixed flow is larger in the steam-water separator assembly 2 disposed at the center of the shroud head 4, and the water level around its periphery is higher, resulting in a large carryover. . On the other hand, since the inflow flow rate to the steam-water separator assembly 2 disposed on the outer periphery is small and the water level is low, the under temperature becomes large. For this reason, the conventional method of uniformly setting and arranging the specifications of the steam/water valve M unit based on the average inflow flow rate and standard water level makes it difficult to minimize carryover and carryunder for the steam/water separator as a whole. It was difficult.
本発明は上記事情に鑑みなされたもので、その目的は簡
単な構成により気液分離機能を向上させる原子炉用気水
分離器を提供することにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide a steam-water separator for a nuclear reactor that improves gas-liquid separation function with a simple configuration.
上述した目的を達成づるために本発明は、シュラウドヘ
ッドの中央部に配置される気水弁1111t器組立体の
液排出流路の流路抵抗を、シュラウドヘッドの外周部に
配置される気水分離器組立体の液排出流路の流路抵抗よ
りも小さくなるようにしたことに特徴がある。In order to achieve the above-mentioned object, the present invention reduces the flow path resistance of the liquid discharge passage of the air/water valve 1111t device assembly disposed in the center of the shroud head to the air/water valve disposed at the outer periphery of the shroud head. The feature is that the flow path resistance is smaller than the flow path resistance of the liquid discharge path of the separator assembly.
以下、本発明の実施例について第1図〜第5図を参照し
て説明する。Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.
第1図は本発明の一実施例に組立てられる気水分離器組
立体10の要部縦断面を示しており、外筒11内には内
筒12、旋回1113を所要の間隔をおいてこの順に順
次、かつ同軸状に収容して、3重筒に構成している。旋
回l113の下端には案内羽根14を接続し、案内羽根
14はライザ管15を介して、図示しないシュラウドヘ
ッド上に立設されるスタンドバイブに連通し、このシュ
ラウドヘッド下方の上部プレナムより気液2相混合流を
導入するようになっている。したがって、スタンドパイ
プおよびライザ管15を介して案内羽根14に流入され
た気液2相混合流はここで回転力を与えられ、旋回胴1
3にて螺旋状に旋回し、遠心作用により気液分離される
。ここで、分離された蒸気は図中破線矢印に示すように
旋回しながら芦流し、一方、分離された液は図中実線矢
印で示すように旋回胴13の内壁に沿って液膜となって
上方へ昇流する。FIG. 1 shows a vertical cross section of a main part of a steam/water separator assembly 10 assembled in an embodiment of the present invention, in which an inner cylinder 12 and a swirl 1113 are placed in an outer cylinder 11 at a required interval. They are housed one after another and coaxially to form a triple cylinder. A guide vane 14 is connected to the lower end of the revolving l113, and the guide vane 14 communicates via a riser pipe 15 with a stand vibe installed on a shroud head (not shown). A two-phase mixed flow is introduced. Therefore, the gas-liquid two-phase mixed flow flowing into the guide vane 14 via the stand pipe and riser pipe 15 is given a rotational force here, and the rotating body 1
3, it spirals, and gas and liquid are separated by centrifugal action. Here, the separated vapor flows while swirling as shown by the broken line arrow in the figure, while the separated liquid becomes a liquid film along the inner wall of the rotating body 13 as shown by the solid line arrow in the figure. Rise upward.
旋回胴13の上端はこの旋回胴13より若干小径の蒸気
排出流路16に連結され、この蒸気排出流路16の下端
部外周に所要の間隙を設定して同軸状に配設された短管
状のチューブ17の上端と内筒12の上端との間に環状
のリング18が径方向に架設され、蒸気排出流路16の
下端部外周に液膜を流入させる環状の液入口19を配設
している。この液入口19は旋回胴13と内筒12とで
画成された環状空間の液排出流路20を介して排水口2
1に連通し、排水口21の上方の高さまで炉水Wが溢水
されている。The upper end of the revolving barrel 13 is connected to a steam exhaust passage 16 having a slightly smaller diameter than the revolving barrel 13, and a short tubular shape coaxially arranged with a required gap is set on the outer periphery of the lower end of the steam exhaust passage 16. An annular ring 18 is installed in the radial direction between the upper end of the tube 17 and the upper end of the inner cylinder 12, and an annular liquid inlet 19 is provided around the outer periphery of the lower end of the steam exhaust passage 16 to allow a liquid film to flow into the steam discharge channel 16. ing. The liquid inlet 19 is connected to the drain port 2 through a liquid discharge passage 20 in an annular space defined by the rotating body 13 and the inner cylinder 12.
1, and the reactor water W is overflowing to the height above the drain port 21.
内筒12の内壁面にはその軸方向中門部に環状の抵抗リ
ング22が固着され、液排出流路20を流下する分離液
が過度に流れないようにしている。An annular resistance ring 22 is fixed to the inner wall surface of the inner cylinder 12 at its axially central portion to prevent the separated liquid flowing down the liquid discharge channel 20 from flowing excessively.
この抵抗リング22の流路抵抗の値は、シュラウドヘッ
ド(図示省略)上に組立てられる各気水分離器組立体1
0の配置に応じて異なり、シュラウドヘッド上の中央部
に配置される気水分離器組立体10の抵抗リング22の
流路抵抗は、シュラウドヘッドの外周部に配置される気
水分離器組立体10の抵抗リング22の流路抵抗よりも
小さくなるように設定されている。The value of the flow path resistance of this resistance ring 22 is determined for each steam separator assembly 1 assembled on the shroud head (not shown).
0, the flow path resistance of the resistance ring 22 of the steam/water separator assembly 10 located centrally on the shroud head is different depending on the location of the steam/water separator assembly 10 located at the outer periphery of the shroud head. The flow path resistance is set to be smaller than the flow path resistance of the ten resistance rings 22.
抵抗リング22の流路抵抗値とキャリーオーバおよびキ
1νリーアンダとの相関関係を第2図に示す。第2図は
第6図(A)で示す炉水Wと、キせリーアンダおよびキ
ャリーオーバとの関係とほぼ同様の曲線を示しているが
、これは次のように考えられる。FIG. 2 shows the correlation between the flow path resistance value of the resistance ring 22 and the carryover and the key 1v lead-under. FIG. 2 shows a curve that is almost the same as the relationship between the reactor water W and the leakage under and carryover shown in FIG. 6(A), and this can be considered as follows.
すなわち、炉水Wの水位が高くなると、その水頭弁だけ
液排出流路20の排水口21における静圧が昇圧するの
で、液排出流路20内を流れる分離液の流量が減少し、
それに見合った分の液は蒸気と共に蒸気排出流路16か
ら流出する。これがキャリーオーバ増加の理由である。That is, when the water level of the reactor water W rises, the static pressure at the drain port 21 of the liquid discharge channel 20 increases by the amount of the head valve, so the flow rate of the separated liquid flowing in the liquid discharge channel 20 decreases.
The corresponding amount of liquid flows out from the steam exhaust channel 16 together with the steam. This is the reason for the increase in carryover.
また、分離液の流量が減少すれば、それに巻込まれる然
気用も減少するのでキャリーアンダは減少することにな
る。このような現象は液排出流路20の流路抵抗を増加
することによっても生じる。ずなわら、抵抗リング22
の抵抗値を大きくすれば、分離液の流量が減少するので
、上述と殆ど同じ理由によりキャリーオーバが増加しキ
トリーアンダが減少する。Furthermore, if the flow rate of the separation liquid is reduced, the amount of air entrained therein is also reduced, resulting in a reduction in carry-under. Such a phenomenon also occurs by increasing the flow resistance of the liquid discharge flow path 20. Zunawara, resistance ring 22
If the resistance value of is increased, the flow rate of the separation liquid is decreased, so the carryover increases and the chitley under is decreased for almost the same reason as mentioned above.
したがって、炉水Wの水位の高いシュラウドヘッドの中
央部に配置された気水分離器組立体10には抵抗値の小
さい抵抗リング22を、その液排出流路20に設け、炉
水Wの水位の低い外周部配置の気水分1lIIt器組立
体10には抵抗値の大きい抵抗リング22を、その液排
出流路20に設ける。Therefore, a resistance ring 22 with a small resistance value is provided in the liquid discharge passage 20 of the steam separator assembly 10, which is disposed in the center of the shroud head where the water level of the reactor water W is high. A resistance ring 22 having a large resistance value is provided in the liquid discharge channel 20 of the steam/moisture device assembly 10 which is arranged at the outer periphery with a low resistance.
これによれば、中央部の気水分離器組立体10のキャリ
ーオーバを減少させ、しかb、外周部の気水分離器組立
体10のキI7リーアンダを減少させることができる。According to this, it is possible to reduce the carryover of the steam/water separator assembly 10 in the central portion, and also reduce the key under of the steam/water separator assembly 10 in the outer peripheral portion.
これを第3図および数式を用いて説明する。This will be explained using FIG. 3 and mathematical formulas.
第3図は気水分離器組立体1oの液排出流路20周りを
示す模式図である。液排出流路20の上端部A点におけ
る圧力PAと、その排水口21のB点にお【プる圧力P
8は運動量保存則がら次式のように表わされる。FIG. 3 is a schematic diagram showing the vicinity of the liquid discharge channel 20 of the steam/water separator assembly 1o. The pressure PA at point A at the upper end of the liquid discharge channel 20, and the pressure P at point B at the drain port 21.
8 is expressed as the following equation based on the law of conservation of momentum.
(PA+ρ1oL1)−PB
・・・・・・(1)
ρ1 :液+J)出流路20を流れる流体の平均密度f
:液排出流路20の摩擦係数
Dll:液刊出流路20の水力相当直径Δ :液排出流
路20の流路面積
K :抵抗リング22の抵抗値
m :液排出流路20を流れる流体の質量流量q :重
力加速度
また、B点の圧力P8は
PB−Po+ρ2G12 ・・・・・・(2
)Po :蒸気ドーム部の圧力
ρ2 :気水分離器組立体10の相互1mの間隙に存在
する流体の平均密度
L2 :炉水Wの水面からB点までの水位一方、質量の
保存則から、気水分離器組立体10への流入流lftm
1nと上記(1)式のmとの間には次の(3)式が成立
する。(PA+ρ1oL1)-PB...(1) ρ1:Liquid+J) Average density f of the fluid flowing through the outlet channel 20
: Friction coefficient Dll of the liquid discharge channel 20 : Hydraulic equivalent diameter Δ of the liquid discharge channel 20 : Channel area K of the liquid discharge channel 20 : Resistance value m of the resistance ring 22 : Fluid flowing through the liquid discharge channel 20 Mass flow rate q: Gravitational acceleration Also, the pressure P8 at point B is PB-Po+ρ2G12 (2
) Po : Pressure in the steam dome part ρ2 : Average density of the fluid existing in the 1 m gap between the steam and water separator assemblies 10 L2 : Water level from the water surface of the reactor water W to point B On the other hand, from the law of conservation of mass, Inflow flow lftm into the steam/water separator assembly 10
The following equation (3) holds true between 1n and m in equation (1) above.
X :旋回胴13の内部における平均蒸気重重率(クォ
リティ)
Co:キャリーオーバ
Cu:キレリーアンダ
m10:気水分離器組立体10に流入する質量流量
上記(1)、(2)、(3)式から水位がΔL2、流量
がΔminだけそれぞれ変化した場合には抵抗リング2
2の抵抗値Kを、
〔以下余白〕
・・・・・・ (4)
たけ変えれば、気水分離器組立体10の特性を炉水W水
位およびその流量が変化しなかった場合と等価にするこ
とができる。X: Average steam weight ratio (quality) inside the rotating shell 13 Co: Carryover Cu: Killer under m10: Mass flow rate flowing into the steam/water separator assembly 10 From the above equations (1), (2), and (3) If the water level changes by ΔL2 and the flow rate changes by Δmin, the resistance ring 2
If the resistance value K of 2 is changed by [the following margin] ...... (4), the characteristics of the steam-water separator assembly 10 can be made equivalent to the case where the reactor water W level and its flow rate do not change. can do.
すなわち、仮に、気水分離器組立体10への流入流ff
1m1n“、クォリティX*および水位L2*という標
準的条件のちとで、キャリーオーバおよびキャリーアン
ダを最小とする寸法、抵抗値がそれぞれ11* 、 K
*であるときに、そのときのキャリーオーバおよびキ
ャリーアンダの値がそれぞれGo” 、Cu”であった
とする。この場合、気水分離器組立体10がシュラウド
ヘッド上に配設される位置(中心からr mlれている
とする)に応じて、次の(5)式が成立するように各液
排出流路20の流路抵抗を調整すれば、キャリーオーバ
およびキャリーアンダを最小にすることができる。That is, if the inflow flow ff into the steam separator assembly 10
After standard conditions of 1m1n", quality X* and water level L2*, the dimensions and resistance values that minimize carryover and carryunder are 11* and K, respectively.
*, and the carryover and carryunder values at that time are Go'' and Cu'', respectively. In this case, depending on the position where the steam/water separator assembly 10 is disposed on the shroud head (assuming that it is r ml away from the center), each liquid discharge flow is adjusted so that the following equation (5) is satisfied. By adjusting the flow path resistance of channel 20, carryover and carryunder can be minimized.
K(r)
x (min(r) −min“〉 ・・・
・・・(5)第4図および第5図は本発明の他の実施例
をそれぞれ示し、気水分111fti1組立体10にお
ける液排出流路20の抵抗リング22の抵抗値を変えず
に一定とし、その流路長J3よび流路面積を、シュラウ
ドヘッド(図示省略)の中央部と、その外周部とに配置
されものとでそれぞれ変えた例を示ず。K(r) x (min(r) −min">...
(5) FIGS. 4 and 5 respectively show other embodiments of the present invention, in which the resistance value of the resistance ring 22 of the liquid discharge channel 20 in the air/moisture 111fti1 assembly 10 is kept constant without changing. , no example is shown in which the flow path length J3 and the flow path area are changed depending on whether the shroud head (not shown) is placed in the center or on the outer periphery thereof.
寸なわら、第4図(Δ)に示すようにシュラウドヘッド
の中央部に配置される気水分離器組立体1oの内筒12
の筒長を、第4図(B)で示ずシュラウドヘッドの外周
部に配置される気水分離器組立体10の内筒12よりも
、例えば破線で示す部分だけ短くして、液排出流路20
の流路長を短縮し、流路抵抗を小さく設定している。As shown in FIG. 4 (Δ), the inner cylinder 12 of the steam separator assembly 1o is arranged in the center of the shroud head.
The length of the cylinder is made shorter than the inner cylinder 12 of the steam/water separator assembly 10, which is not shown in FIG. Road 20
The length of the flow path is shortened, and the flow path resistance is set to be low.
また、第5図(A)に示すようにシュラウドヘッドの中
央部に配置される気水分離器組立体10の液排出流路2
0め流路面積SAを、第5図(B)で示す外周部に配置
される気水分離器組立体10の流路面積S、よりも広く
して、液排出流路20の流路抵抗を小さく設定している
。Further, as shown in FIG. 5(A), the liquid discharge channel 2 of the steam/water separator assembly 10 is disposed in the center of the shroud head.
The flow path area SA of 0 is made larger than the flow path area S of the steam/water separator assembly 10 disposed on the outer periphery shown in FIG. is set small.
以上説明したように本発明は、気液2相流を旋回させて
気液を分離する旋回胴と、この旋回胴にて分離された分
離液を炉水中に開口する排水口より排出する液排出流路
とを有する気水分離器組立体の複数を、上方に凸に湾曲
するシュラウドヘッド上に組立てる原子炉用気水弁ll
1ll器において、上記シュラウドヘッドの中央部に配
置される上記気水分離器組立体の上記液排出流路の流路
抵抗を、外周部に配置される気水分離器組立体の液排出
流路の流路抵抗よりも小さくなるように構成した。As explained above, the present invention provides a rotating shell that separates gas and liquid by swirling a gas-liquid two-phase flow, and a liquid discharge that discharges the separated liquid separated by the rotating barrel from a drain port that opens into reactor water. A steam and water valve for a nuclear reactor in which a plurality of steam and water separator assemblies each having a flow path are assembled on a shroud head that curves convexly upward.
In a 1 liter vessel, the flow resistance of the liquid discharge passage of the steam separator assembly disposed at the center of the shroud head is equal to the flow passage resistance of the liquid discharge passage of the steam separator assembly disposed at the outer periphery. The flow path resistance was designed to be smaller than that of the
したがって、本発明によれば、シュラウドヘッド上に組
立てられる気水分離器全体としてのキャリーオーバおよ
びキャリーアンダを共に低減し、気液分離性能の向上を
図ることができる効果を奏する。Therefore, according to the present invention, it is possible to reduce both the carry-over and carry-under of the entire steam-water separator assembled on the shroud head, and to improve the gas-liquid separation performance.
第1図は本発明の一実施例に組み込まれる気水分離器組
立体の要部断面図、第2図は気水分離器組立体の液排出
流路における流路抵抗と、キャリーオーバおよびキャリ
ーアンダとの一般的な相関関係を示すグラフ、第3図は
第1図の要部の模式図、第4図(A)(B)は本発明の
他の実施例を示しており、気水分離器組立体について中
央部配置と外周部配置とで比較して示す模式図、第5図
(△)(B)は本発明のざらに他の実施例を示しており
、気水分離器組立体について中央部配δと外周部配置と
で比較して示す模式図、第6図(A)(8)はキャリー
アンダおよびキャリーオーバと、炉水位および液排出流
路の入口流ωとの相関関係を示すグラフ、第7図は一般
的な原子炉用気水分離器の組立および配置状態を示す正
面図、第8図は上部ブレナムにおける気液2相混合流の
流れを示す要部模式図である。
10・・・気水分離器組立体、11・・・外筒、12・
・・内筒、13・・・旋回胴、14・・・案内羽根、1
5・・・ライザ管、19・・・液入口、20・・・液排
出流路、21・・・排出口、22・・・抵抗リング、W
・・・炉水。 ゛代理人弁理士 則 近 憲
佑
同 三 俣 弘 文流路抵抗イ直
螢2 図
中央部 外周部
<A) ・(B)
羊4 月
中央部 タト用部
(A) CB)
$5 図
(13) )′[13jtf
茶 6 図FIG. 1 is a cross-sectional view of a main part of a steam/water separator assembly incorporated in an embodiment of the present invention, and FIG. 2 shows flow resistance in a liquid discharge channel of the steam/water separator assembly, carryover and carry-over. A graph showing the general correlation with the under, FIG. 3 is a schematic diagram of the main part of FIG. 1, and FIG. 4 (A) and (B) show other embodiments of the present invention. FIG. 5 (△) (B), which is a schematic diagram showing a comparison between the center arrangement and the outer peripheral arrangement of the separator assembly, roughly shows another embodiment of the present invention. A schematic diagram comparing the central arrangement δ and the outer peripheral arrangement for a three-dimensional structure, and Figure 6 (A) (8) shows the correlation between carry-under and carry-over, and the reactor water level and the inlet flow ω of the liquid discharge channel. A graph showing the relationship, Figure 7 is a front view showing the assembly and arrangement of a general steam-water separator for nuclear reactors, and Figure 8 is a schematic diagram of the main parts showing the flow of the gas-liquid two-phase mixed flow in the upper blennium. It is. 10... Steam water separator assembly, 11... Outer cylinder, 12...
... Inner cylinder, 13 ... Swivel body, 14 ... Guide vane, 1
5... Riser pipe, 19... Liquid inlet, 20... Liquid discharge channel, 21... Discharge port, 22... Resistance ring, W
...Reactor water.゛Representative Patent Attorney Noriyuki Ken Yudo Hiroshi Mimata Flow path resistance direct firefly 2 Diagram center Outer periphery <A) ・(B) Sheep 4 Moon center Tato part (A) CB) $5 Diagram ( 13) )′[13jtf Brown 6 Fig.
Claims (1)
この旋回胴にて分離された分離液を炉水中に開口する排
水口より排出する液排出流路とを有する気水分離器組立
体の複数を、上方に凸に湾曲するシュラウドヘッド上に
組立てる原子炉用気水分離器において、上記シュラウド
ヘッドの中央部に配置される上記気水分離器組立体の上
記液排出流路の流路抵抗を、外周部に配置される気水分
離器組立体の液排出流路の流路抵抗よりも小さくなるよ
うに構成したことを特徴とする原子炉用気水分離器。 2、シュラウドヘッドの中央部配置の気水分離器組立体
は、その液排出流路の抵抗リングの流路抵抗を、外周部
配置の気水分離器組立体の液排出流路のものよりも小さ
く設定している特許請求の範囲第1項に記載の原子炉用
気水分離器。 3、シュラウドヘッドの中央部配置の気水分離器組立体
は、その液排出流路の軸方向長さを、外周部配置の気水
分離器組立体の液排出流路のものよりも短く設定してい
る特許請求の範囲第1項に記載の原子炉用気水分離器。 4、シュラウドヘッドの中央部配置の気水分離器組立体
は、その液排出流路の流路断面積を、その外周部配置の
気水分離器組立体の液排出流路のものよりも広く設定し
ている特許請求の範囲第1項に記載の原子炉用気水分離
器。[Claims] 1. A swirling barrel that swirls a gas-liquid two-phase flow to separate gas and liquid;
A plurality of steam/water separator assemblies each having a liquid discharge channel for discharging the separated liquid separated in the rotating shell from a drain opening into the reactor water are assembled on a shroud head that curves convexly upward. In the steam-water separator for a furnace, the flow resistance of the liquid discharge passage of the steam-water separator assembly disposed at the center of the shroud head is determined by A steam-water separator for a nuclear reactor, characterized in that it is configured to have a flow resistance smaller than that of a liquid discharge flow path. 2. The steam separator assembly located at the center of the shroud head has a resistance ring in its liquid discharge passage whose flow resistance is higher than that of the liquid discharge passage of the steam separator assembly located at the outer periphery. A steam-water separator for a nuclear reactor according to claim 1, which is set to be small. 3. The axial length of the liquid discharge passage of the steam/water separator assembly located at the center of the shroud head is set to be shorter than that of the liquid discharge passage of the steam/water separator assembly located at the outer periphery. A steam-water separator for a nuclear reactor according to claim 1. 4. The steam/water separator assembly located at the center of the shroud head has a liquid discharge passage whose cross-sectional area is wider than that of the liquid discharge passage of the steam/water separator assembly located at its outer periphery. A steam-water separator for a nuclear reactor as set forth in claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60173996A JPS6235291A (en) | 1985-08-09 | 1985-08-09 | Gas-water separator for nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60173996A JPS6235291A (en) | 1985-08-09 | 1985-08-09 | Gas-water separator for nuclear reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6235291A true JPS6235291A (en) | 1987-02-16 |
Family
ID=15970824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60173996A Pending JPS6235291A (en) | 1985-08-09 | 1985-08-09 | Gas-water separator for nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6235291A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012047658A (en) * | 2010-08-30 | 2012-03-08 | Hitachi-Ge Nuclear Energy Ltd | Steam drier and boiling water type nuclear power plant |
JP2012058113A (en) * | 2010-09-10 | 2012-03-22 | Hitachi-Ge Nuclear Energy Ltd | Steam separation facility for nuclear reactor |
-
1985
- 1985-08-09 JP JP60173996A patent/JPS6235291A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012047658A (en) * | 2010-08-30 | 2012-03-08 | Hitachi-Ge Nuclear Energy Ltd | Steam drier and boiling water type nuclear power plant |
JP2012058113A (en) * | 2010-09-10 | 2012-03-22 | Hitachi-Ge Nuclear Energy Ltd | Steam separation facility for nuclear reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4629481A (en) | Low pressure drop modular centrifugal moisture separator | |
KR101056010B1 (en) | Water separator | |
US4322233A (en) | Apparatus for separating entrained liquid from a liquid gas mixture | |
JPH04301796A (en) | Gas/liquid separator | |
JPH0395496A (en) | Method for applying natural circulation type boiling water reactor of free surface vapor separation system with load following faculty | |
US5885333A (en) | Low pressure drop steam separators | |
JPH0727053B2 (en) | A steam-water separation system for boiling water reactors. | |
JPS6235291A (en) | Gas-water separator for nuclear reactor | |
JPH06201890A (en) | Module type drier-unified steam separator | |
JP3971146B2 (en) | Steam separator and boiling water reactor | |
EP0859368B1 (en) | Low pressure drop steam separators | |
JP3272142B2 (en) | Steam separator and steam separator | |
JP3762598B2 (en) | Steam separator and boiling water reactor | |
JP3743900B2 (en) | Steam separator and boiling water reactor | |
JP2001079323A (en) | Steam-water separator | |
JP3964587B2 (en) | Reactor steam separator | |
JP2003307584A (en) | Steam separation device | |
JP4358561B2 (en) | Reactor coolant supply structure | |
JP2013003083A (en) | Steam separator and boiling-water reactor with the same | |
JPH11326576A (en) | Steam separator | |
JP5089485B2 (en) | Jet pump and reactor | |
JPH05346483A (en) | Steam water separator for bwr | |
JPH04315993A (en) | Steam separator | |
JP2004245656A (en) | Steam separator | |
JPS6264989A (en) | Steam separator for boiling water type reactor |