[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6235596B2 - - Google Patents

Info

Publication number
JPS6235596B2
JPS6235596B2 JP9313581A JP9313581A JPS6235596B2 JP S6235596 B2 JPS6235596 B2 JP S6235596B2 JP 9313581 A JP9313581 A JP 9313581A JP 9313581 A JP9313581 A JP 9313581A JP S6235596 B2 JPS6235596 B2 JP S6235596B2
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
exchange element
porous member
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9313581A
Other languages
Japanese (ja)
Other versions
JPS57207795A (en
Inventor
Kenzo Takahashi
Shohei Eto
Masataka Yoshino
Yoshiki Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9313581A priority Critical patent/JPS57207795A/en
Publication of JPS57207795A publication Critical patent/JPS57207795A/en
Publication of JPS6235596B2 publication Critical patent/JPS6235596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新鮮な外気の吸入と汚れた室内空気
の排出とを同時に行う換気装置、あるいはビル等
の空調機械室の新鮮空気処理装置等に用いられる
全熱交換素子に関し、特に湿度交換効率と気体移
行率の改善された全熱交換素子に関する。 従来の熱交換素子は熱交換のみを目的とするた
め、2種の気流を仕切る仕切板に熱伝導率の高い
金属板が用いられてきたが、その後顕熱(温度)
と同時に潜熱(湿度)も交換させるために和紙や
炭素繊維等の多孔質の材料を仕切板とする全熱交
換素子が開発された。しかし、この全熱交換素子
は上記多孔質性の仕切板が伝熱性と透湿性を有す
ると同時に通気性も有するため、2種の気流が全
熱交換素子の内部で混合するという欠点を持つ。 本発明者らは、このような欠点を除去するため
に先に透湿性が大きく透気性の小さいいわゆる気
体の選択透過性を有する仕切板の研究を行つた結
果、吸湿剤と親水性高分子化合物の混合物を多孔
質部材に含有させた透湿性気体遮蔽物を仕切板に
用いた全熱交換素子を提案した。その後、さらに
上記全熱交換素子の湿度交換効率の向上及び気体
移行率の低減を行なうために高度の気体の選択透
過性を有する仕切板の研究を行なつた結果、弱疎
水性の多孔質部材の片面に吸湿剤を含む親水性高
分子化合物の水溶液をコーテイングして緻密な吸
湿性の薄膜を形成させた後、前記吸湿性薄膜面に
他の多孔質部材をラミネートすることにより三層
構造とした透湿性気体遮蔽物は薬剤の塗工量を大
きくしてもベトついたりドレインを発生せず、こ
れを仕切板に用いた全熱交換素子が高い湿度交換
効率と著しく低い気体移行率を示すことを見い出
し、本発明を完成するに至つた。 以下、本発明の実施例を第1図〜第6図に基づ
いて説明する。 第1図は本発明の実施例として直交流形の全熱
交換素子を示す。この図において、1は仕切板
(第2図参照)、2は例えばクラフト紙又はセラミ
ツクス等で鋸歯状に形成される間隔板(第3図参
照)である。 そして、この仕切板1と間隔板2を互いにその
方向に直交するように配置して、互いに直交する
流体の流通路3,4を形成している。 尚、間隔板2はその上面及び下面の稜線部分で
仕切板1に接着されている。 そして、本発明では上記仕切板1として、弱疎
水性の多孔質部材と、該部材の片面に吸湿剤を含
む親水性高分子化合物の水溶液をコーテイングし
て形成した緻密な吸湿性薄膜と、該吸湿性薄膜に
ラミネートした他の多孔質部材と、の三層構造か
らなる透湿性気体遮蔽物を用いる。この透湿性気
体遮蔽物は第4図に示すような断面となり、図中
5は緻密な吸湿性薄膜、6,7が多孔質部材であ
る。 ここで、上記弱疎水性多孔質部材としては、適
度に親水処理の施された多孔性の高分子膜或いは
サイズ剤を用いて弱疎水化処理の施された紙類が
用いられる。具体的には前者として疎水性のポリ
エチレン、ポリカーボネート、ポリエステル等を
素材とする多孔性の高分子膜(厚さ20〜100μm
程度のフイルム)の表面に親水基を結合させるこ
とにより適度に親水性を付与した高分子膜が用い
られる。後者としては和紙、紙、洋紙等の紙類
やカーボン繊維、ガラス繊維等との混抄紙にロジ
ン、膠等の天然サイズ剤、合成サイズ剤を用いて
弱疎水化処理を施した紙類が用いられる。疎水性
の評価法としてはJIS規格P−8122−54によるサ
イズ度試験法があるが、適度の親水性あるいは弱
疎水性とはサイズ度で20〜200秒程度を指す。 上記吸湿剤としては一般に乾燥剤として用いら
れているハロゲン化物、酸化物、塩類、水酸化物
を始め、吸湿性物質である多価アルコール類等も
用いることができるが、特に塩化チリウムが適す
る。 上記親水性高分子化合物としては、通常一般の
水溶性高分子樹脂、天然樹脂あるいはこれらの混
合物例えばポリビニルアルコール樹脂、ポリビニ
ルメチルエーテル樹脂、ポリアクリル酸樹脂、ポ
リメタクリル酸樹脂、メチルセルロース等が用い
られるが、特にポリビニルアルコール樹脂が適す
る。 上記弱疎水性の多孔質部材の片面に吸湿剤を含
む親水性高分子化合物の緻密な吸湿性の薄膜を形
成させる場合、弱疎水性多孔質部材に対して20〜
100g/m2の塗工量になるようにコーテイングす
ることが好ましい。尚、この塗工量が20g/m2
下では効果が薄く、100g/m2以上では塗膜が厚
くなる。 上記吸湿剤を含む親水性高分子化合物の緻密な
薄膜は吸湿剤2〜10重量%及び親水性高分子化合
物10〜30重量%の水溶液を調整し、この水溶液を
用いて上記弱疎水性の多孔質部材にコーテイング
することにより形成される。 尚、必要に応じて上記水溶液中に防炎剤等を加
えても良い。 以上のように構成された直交流形の全熱交換素
子は第1図中矢印イ方向の流通路3を通過する第
1の流体として例えば暖房された室内の暖かい空
気を流し、矢印ロ方向の流通路4を通過する第2
の流体として例えば冬期の戸外の冷たい空気を流
すと、前記第1の流体が持つている熱(温度)と
水蒸気(湿度)が仕切板1を透過して第2の流体
に移行し、これによつて第2の流体が暖められ、
かつ加湿された状態で室内に入つてくることにな
る。 ここで本発明に係る仕切板を構成する透湿性気
体遮蔽物の製作例について説明する。 第1の製作例としては、サイズ処理され、サイ
ズ度が40秒の工業用紙を弱疎水性の多孔質部材
として用い、塩化リチウム10重量%、ポリビニル
アルコール20重量%を含む水溶液を調整してコー
テイングマシンを用いて片面にコーテイングし、
水溶液が多孔質部材の内部に浸透する前に乾燥を
行い、緻密で吸湿性の薄膜を形成する。塗工量は
60g/m2、薄膜の厚さは約10μm程度であつた。
これを巻き戻しながら他の工業用紙と加熱圧着
して透湿性気体遮蔽物を得た。 第2の製作例としては、適度に親水処理を施し
サイズ度が80秒程のポリエチレン多孔質シートを
弱疎水性の多孔質部材として用い塩化リチウム10
重量%、ポリビニルアルコール20重量%を含む水
溶液を用いて片面にコーテイング加工を行い、水
溶液が多孔質部材に浸透する前に乾燥を行い、緻
密で吸湿性の薄膜を形成した。 塗工量は40g/m2、薄膜の厚さは約8μm程度
であつた。 これを巻き戻しながら他のポリエチレン多孔質
シートと加熱圧着して透湿性気体遮蔽物を得た。 ここで、従来の透湿性気体遮蔽物の製作例とし
て、次にあげるものである。 第1の製作例として、サイズ処理されたサイズ
度40秒の工業用紙を多孔質部材として用い、塩
化リチウム5重量%、ポリビニルアルコール20重
量%を含む水溶液を調整してコーテイングマシン
を用いて片面にコーテイングし、水溶液が多孔質
部材の内部に浸透する前に乾燥を行い、緻密で吸
湿性の薄膜を形成した。塗工量は20g/m2、薄膜
の厚さは約3μm程度であつた。得られた透湿性
気体遮蔽物の断面は第5図に示すようになり、8
が緻密な吸湿性の薄膜、9は多孔質部材である。 この場合に前記塩化リチウム5重量%濃度を選
んだ理由は10重量%では吸湿性が大きくなり過ぎ
るため表面がベトついて取り扱いや加工が困難に
なるからである。又、塗工量も20g/m2を越える
と同様に取り扱いや加工が困難となる。 第2の製作例として、第1の製作例と同じ多孔
質部材と水溶液を用い、含浸装置を用いて水溶液
に両面に付着させ、水溶液が多孔質部材の内部に
浸透する前に乾燥を行い、緻密で吸湿性の薄膜を
形成した。塗工量は40g/m2、薄膜の厚さは片面
で約3μm程度であつた。得られた透湿性気体遮
蔽物の断面は第6図に示すようになり、10,1
2が緻密な吸湿性の薄膜、11が多孔質部材であ
る。 上記本発明に係る透湿性気体遮蔽物の製作例の
ものと、従来の製作例のものとを適用して得た全
熱交換素子の特性として温度交換効率、湿度交換
効率及び気体移行率を測定した結果は下表の通り
であつた。
The present invention relates to a total heat exchange element used in a ventilation system that simultaneously takes in fresh outside air and exhausts dirty indoor air, or a fresh air treatment device for an air conditioning machine room in a building, etc., and particularly relates to a total heat exchange element that improves humidity exchange efficiency. The present invention relates to a total heat exchange element with improved gas transfer rate. Conventional heat exchange elements are intended only for heat exchange, so a metal plate with high thermal conductivity has been used as a partition plate to separate two types of airflow.
At the same time, in order to exchange latent heat (humidity), a total heat exchange element using porous materials such as Japanese paper or carbon fiber as partition plates was developed. However, this total heat exchange element has the disadvantage that two types of air currents mix inside the total heat exchange element because the porous partition plate has heat conductivity and moisture permeability, and also has air permeability. In order to eliminate these drawbacks, the present inventors first conducted research on a partition plate that has high moisture permeability and low air permeability, so-called gas selective permeability. We proposed a total heat exchange element using a moisture-permeable gas shield in which a porous member contains a mixture of the following as partition plates. Subsequently, in order to further improve the humidity exchange efficiency and reduce the gas transfer rate of the total heat exchange element, we conducted research on partition plates with a high degree of gas selective permeability. After forming a dense hygroscopic thin film by coating one side of the membrane with an aqueous solution of a hydrophilic polymer compound containing a hygroscopic agent, a three-layer structure is formed by laminating another porous material on the surface of the hygroscopic thin film. This moisture-permeable gas shield does not become sticky or cause drainage even when a large amount of chemical is applied, and a total heat exchange element using this material as a partition plate exhibits high humidity exchange efficiency and a significantly low gas transfer rate. This discovery led to the completion of the present invention. Embodiments of the present invention will be described below with reference to FIGS. 1 to 6. FIG. 1 shows a cross-flow type total heat exchange element as an embodiment of the present invention. In this figure, reference numeral 1 indicates a partition plate (see FIG. 2), and reference numeral 2 indicates a sawtooth-shaped spacer plate (see FIG. 3) made of, for example, kraft paper or ceramics. The partition plate 1 and the spacing plate 2 are arranged so as to be orthogonal to each other to form fluid flow paths 3 and 4 that are orthogonal to each other. Note that the spacing plate 2 is bonded to the partition plate 1 at the ridgeline portions of its upper and lower surfaces. In the present invention, the partition plate 1 includes a weakly hydrophobic porous member, a dense hygroscopic thin film formed by coating one side of the member with an aqueous solution of a hydrophilic polymer compound containing a hygroscopic agent; A moisture-permeable gas shield consisting of a three-layer structure consisting of a hygroscopic thin film and another porous member laminated is used. This moisture-permeable gas shield has a cross section as shown in FIG. 4, where 5 is a dense hygroscopic thin film and 6 and 7 are porous members. Here, as the weakly hydrophobic porous member, a porous polymer membrane that has been appropriately hydrophilized or paper that has been weakly hydrophobically treated using a sizing agent is used. Specifically, the former is a porous polymer membrane (20 to 100 μm thick) made of hydrophobic polyethylene, polycarbonate, polyester, etc.
A polymer membrane is used which has been imparted with appropriate hydrophilicity by bonding hydrophilic groups to the surface of the film. The latter includes papers such as Japanese paper, paper, and Western paper, as well as papers made by mixing paper with carbon fibers, glass fibers, etc., and papers that have been subjected to weak hydrophobic treatment using natural sizing agents such as rosin and glue, or synthetic sizing agents. It will be done. As a method for evaluating hydrophobicity, there is a sizing test method according to JIS standard P-8122-54, and moderate hydrophilicity or weak hydrophobicity refers to a sizing of about 20 to 200 seconds. As the moisture absorbent, halides, oxides, salts, hydroxides, which are generally used as desiccants, and polyhydric alcohols, which are hygroscopic substances, can be used, but thirium chloride is particularly suitable. As the hydrophilic polymer compound, commonly used water-soluble polymer resins, natural resins, or mixtures thereof such as polyvinyl alcohol resins, polyvinyl methyl ether resins, polyacrylic acid resins, polymethacrylic acid resins, methyl cellulose, etc. are used. , especially polyvinyl alcohol resins. When forming a dense hygroscopic thin film of a hydrophilic polymer compound containing a hygroscopic agent on one side of the weakly hydrophobic porous member, the
It is preferable to apply the coating to a coating weight of 100 g/m 2 . If the coating amount is less than 20 g/m 2 , the effect will be weak, and if it is more than 100 g/m 2 , the coating will become thick. A dense thin film of the hydrophilic polymer compound containing the moisture absorbent is prepared by preparing an aqueous solution containing 2 to 10% by weight of the moisture absorbent and 10 to 30% by weight of the hydrophilic polymer compound, and using this aqueous solution to form the weakly hydrophobic porous membrane. It is formed by coating a material. Incidentally, a flame retardant or the like may be added to the aqueous solution as necessary. The cross-flow type total heat exchange element configured as described above flows, for example, warm air from a heated room as the first fluid passing through the flow path 3 in the direction of arrow A in FIG. The second passage passing through the flow path 4
For example, when cold air from outdoors in winter is passed through the fluid, the heat (temperature) and water vapor (humidity) of the first fluid pass through the partition plate 1 and transfer to the second fluid. The second fluid is thus warmed;
In addition, the air enters the room in a humidified state. Here, an example of manufacturing a moisture-permeable gas shield constituting a partition plate according to the present invention will be described. The first production example uses sized industrial paper with a sizing degree of 40 seconds as a weakly hydrophobic porous member, and coats it with an aqueous solution containing 10% by weight of lithium chloride and 20% by weight of polyvinyl alcohol. Coating on one side using a machine,
Before the aqueous solution penetrates into the interior of the porous member, it is dried to form a dense, hygroscopic thin film. The coating amount is
The weight was 60 g/m 2 and the thickness of the thin film was about 10 μm.
While unwinding this paper, it was heat-pressed and bonded to other industrial paper to obtain a moisture-permeable gas shield. As a second production example, a polyethylene porous sheet that has undergone appropriate hydrophilic treatment and has a size degree of about 80 seconds is used as a weakly hydrophobic porous member, and lithium chloride 10
A coating process was performed on one side using an aqueous solution containing 20% by weight of polyvinyl alcohol, and drying was performed before the aqueous solution penetrated into the porous member to form a dense and hygroscopic thin film. The coating amount was 40 g/m 2 and the thickness of the thin film was about 8 μm. While unwinding this sheet, it was heat-pressed and bonded to another porous polyethylene sheet to obtain a moisture-permeable gas shield. Here, the following is an example of manufacturing a conventional moisture permeable gas shield. As a first production example, we used sized industrial paper with a size degree of 40 seconds as a porous member, prepared an aqueous solution containing 5% by weight of lithium chloride and 20% by weight of polyvinyl alcohol, and coated it on one side using a coating machine. The material was coated and dried before the aqueous solution penetrated into the porous member to form a dense, hygroscopic thin film. The coating amount was 20 g/m 2 and the thickness of the thin film was about 3 μm. The cross section of the obtained moisture-permeable gas shield is shown in Fig. 5.
9 is a dense hygroscopic thin film, and 9 is a porous member. In this case, the reason why the concentration of 5% by weight of lithium chloride was selected is that 10% by weight would result in too high hygroscopicity, resulting in a sticky surface and difficulty in handling and processing. Furthermore, if the coating amount exceeds 20 g/m 2 , handling and processing become difficult. As a second production example, the same porous member and aqueous solution as in the first production example are used, the aqueous solution is applied to both sides using an impregnating device, and the aqueous solution is dried before it penetrates into the inside of the porous member. A dense and hygroscopic thin film was formed. The coating weight was 40 g/m 2 and the thickness of the thin film was about 3 μm on one side. The cross section of the obtained moisture-permeable gas shield is shown in FIG.
2 is a dense hygroscopic thin film, and 11 is a porous member. Temperature exchange efficiency, humidity exchange efficiency, and gas transfer rate were measured as the characteristics of total heat exchange elements obtained by applying the production example of the moisture permeable gas shield according to the present invention and the conventional production example. The results were as shown in the table below.

【表】 上記表より明らかなように本発明の製作例1及
び2で得た全熱交換素子は従来の製作例1及び2
で得たものと比較して温度交換効率は変わらない
が、湿度交換効率の向上と気体移行率の著しい低
減が認められた。 以上説明したように、本発明に係る全熱交換素
子は仕切板として弱疎水性の多孔質部材の表層に
緻密で吸湿性の薄膜を形成し、さらに他の多孔質
部材でラミネートした三層構造の透湿性気体遮蔽
物を用いることにより、湿度交換効率の向上と気
体移行率の低減が実現されるという効果がある。
[Table] As is clear from the above table, the total heat exchange elements obtained in Production Examples 1 and 2 of the present invention are different from those of conventional Production Examples 1 and 2.
Although the temperature exchange efficiency did not change compared to that obtained in 1.2, the humidity exchange efficiency was improved and the gas transfer rate was significantly reduced. As explained above, the total heat exchange element according to the present invention has a three-layer structure in which a dense, hygroscopic thin film is formed on the surface layer of a weakly hydrophobic porous member as a partition plate, and further laminated with another porous member. By using the moisture-permeable gas shield, it is possible to improve the humidity exchange efficiency and reduce the gas transfer rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る全熱交換素子の一例を示
す斜視図、第2図は同上の全熱交換素子における
仕切板の斜視図、第3図は同上の全熱交換素子に
おける間隔板の斜視図、第4図は同上の仕切板に
適用した透湿性気体遮蔽物の断面図、第5図及び
第6図は従来の透湿性気体遮蔽物の断面図であ
る。 1……仕切板、2……間隔板、5……緻密な吸
湿性の薄膜、6,7……多孔質部材。
Fig. 1 is a perspective view showing an example of a total heat exchange element according to the present invention, Fig. 2 is a perspective view of a partition plate in the total heat exchange element as above, and Fig. 3 is a perspective view of a spacing plate in the total heat exchange element as above. A perspective view, FIG. 4 is a cross-sectional view of a moisture-permeable gas shield applied to the above partition plate, and FIGS. 5 and 6 are cross-sectional views of a conventional moisture-permeable gas shield. 1... Partition plate, 2... Spacing plate, 5... Dense hygroscopic thin film, 6, 7... Porous member.

Claims (1)

【特許請求の範囲】 1 仕切板によつて仕切られた2つの通路を備
え、該通路夫々に流通させた流体相互を前記仕切
板を介して熱交換させるようにした全熱交換素子
において、前記仕切板を、弱疎水性の多孔質部材
と、該部材の片面に吸湿剤を含む親水性高分子化
合物の水溶液をコーテイングして形成した緻密な
吸湿性薄膜と、該吸湿性薄膜にラミネートした他
の多孔質部材と、の三層構造の透湿性気体遮蔽物
で形成したことを特徴とする全熱交換素子。 2 弱疎水性の多孔質部材として、適度に親水処
理を施した多孔性の高分子膜を用いてなる特許請
求の範囲第1項記載の全熱交換素子。 3 弱疎水性の多孔質部材として、サイズ剤を用
いて弱疎水化処理の施された紙類を用いてなる特
許請求の範囲第1項記載の全熱交換素子。 4 吸湿剤として、塩化リチウムを用いてなる特
許請求の範囲第1項〜第3項のうちいずれか1つ
に記載の全熱交換素子。 5 親水性高分子化合物として、水溶性のポリビ
ニルアルコールを用いてなる特許請求の範囲第1
項〜第4項のうちいずれか1つに記載の全熱交換
素子。
[Scope of Claims] 1. A total heat exchange element comprising two passages partitioned by a partition plate, in which fluids flowing through the respective passages exchange heat with each other via the partition plate, The partition plate is made by laminating a weakly hydrophobic porous member, a dense hygroscopic thin film formed by coating one side of the member with an aqueous solution of a hydrophilic polymer compound containing a hygroscopic agent, and the hygroscopic thin film. A total heat exchange element characterized in that it is formed of a porous member and a three-layer moisture-permeable gas shield. 2. The total heat exchange element according to claim 1, which uses a porous polymer membrane that has been appropriately hydrophilized as the weakly hydrophobic porous member. 3. The total heat exchange element according to claim 1, wherein the weakly hydrophobic porous member is paper that has been subjected to a weakly hydrophobic treatment using a sizing agent. 4. The total heat exchange element according to any one of claims 1 to 3, which uses lithium chloride as a moisture absorbent. 5 Claim 1 in which water-soluble polyvinyl alcohol is used as the hydrophilic polymer compound
The total heat exchange element according to any one of items 1 to 4.
JP9313581A 1981-06-17 1981-06-17 Total heat exchanging element Granted JPS57207795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9313581A JPS57207795A (en) 1981-06-17 1981-06-17 Total heat exchanging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9313581A JPS57207795A (en) 1981-06-17 1981-06-17 Total heat exchanging element

Publications (2)

Publication Number Publication Date
JPS57207795A JPS57207795A (en) 1982-12-20
JPS6235596B2 true JPS6235596B2 (en) 1987-08-03

Family

ID=14074073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9313581A Granted JPS57207795A (en) 1981-06-17 1981-06-17 Total heat exchanging element

Country Status (1)

Country Link
JP (1) JPS57207795A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163651A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
US10619944B2 (en) 2012-10-16 2020-04-14 The Abell Foundation, Inc. Heat exchanger including manifold

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8400302L (en) * 1984-01-20 1985-08-18 Munters Ab Carl Contact body
JPH1054691A (en) * 1996-08-08 1998-02-24 Mitsubishi Electric Corp Shim of heat exchanger, and member for heat exchanger, and heat exchanger, and its manufacture
CA2283089C (en) * 1999-05-10 2004-05-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and method for preparing it
NL1018735C1 (en) * 2001-08-10 2003-02-11 Forest Air B V Heat exchanger, has walls provided with hydrophilic coating formed chemically from aqueous solution
JP3969064B2 (en) * 2001-11-16 2007-08-29 三菱電機株式会社 Heat exchanger and heat exchange ventilator
JP4094318B2 (en) * 2002-03-28 2008-06-04 松下エコシステムズ株式会社 Heat exchange membrane and heat exchange element
KR20040040176A (en) * 2002-11-06 2004-05-12 엘지전자 주식회사 Heat exchange structure in air conditioner
US7320361B2 (en) * 2005-10-28 2008-01-22 Mitsubishi Denki Kabushiki Kaisha Heat exchanger
JP2007285598A (en) 2006-04-17 2007-11-01 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008292061A (en) * 2007-05-24 2008-12-04 Mitsubishi Electric Corp Total enthalpy heat exchanger
JP5156504B2 (en) * 2008-06-25 2013-03-06 日本ゴア株式会社 Composite membrane and moisture adjustment module using the same
EP3770543B1 (en) * 2018-03-20 2022-04-13 Mitsubishi Electric Corporation Total heat exchange element and total heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163651A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
US10619944B2 (en) 2012-10-16 2020-04-14 The Abell Foundation, Inc. Heat exchanger including manifold

Also Published As

Publication number Publication date
JPS57207795A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
KR100621716B1 (en) Total heat exchanging element
JP5506441B2 (en) Total heat exchange element and total heat exchanger
US4377400A (en) Heat exchanger
CA2283089C (en) Heat exchanger and method for preparing it
KR100893819B1 (en) Heat exchanger and heat exchange ventilator
US4484938A (en) Total heat exchanger
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
JPS6235596B2 (en)
KR101148711B1 (en) Heat exchanger element and heat exchanger
JPH06194093A (en) Total enthalpy heat exchanger
WO2007119843A1 (en) Heat exchanger
JPH0425476B2 (en)
JP2738284B2 (en) Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
EP3805685A1 (en) Total heat exchange element and method for manufacturing same
JP2009144930A (en) Total enthalpy heat exchanger
JPH0124529B2 (en)
KR100837023B1 (en) Total heat exchange element and total heat exchanger
JPS5846325B2 (en) Method for manufacturing a moisture-permeable gas shield
GB2417315A (en) Heat exchange element with flame retardant and moisture permeable portions
EP3770543B1 (en) Total heat exchange element and total heat exchanger
JPS6130609B2 (en)
JPH0515959B2 (en)
JPS6213048B2 (en)
JPS5924793B2 (en) total heat exchanger
JPS6028660B2 (en) Moisture-permeable gas shield