JPS6232009A - Method for forming solid shape - Google Patents
Method for forming solid shapeInfo
- Publication number
- JPS6232009A JPS6232009A JP60171444A JP17144485A JPS6232009A JP S6232009 A JPS6232009 A JP S6232009A JP 60171444 A JP60171444 A JP 60171444A JP 17144485 A JP17144485 A JP 17144485A JP S6232009 A JPS6232009 A JP S6232009A
- Authority
- JP
- Japan
- Prior art keywords
- resin layer
- resin
- resin material
- sub
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0072—Roughness, e.g. anti-slip
- B29K2995/0073—Roughness, e.g. anti-slip smooth
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
本発明は3次元的な立体情報を表示する立体形状を、液
状光硬化型樹脂材を層状に供給する毎に露光走査して該
樹脂材を選択的に硬化せしめ、該光硬化樹脂層を積層状
に形成する方法において、上記液状光硬化型樹脂材の各
供給樹脂層を、光硬化閾値特性の異なる少なくとも2種
類の液状光硬化型樹脂材を積層状としてなる単位層とし
、既に露光走査して選択的に硬化せしめてなる樹脂層上
に供給された次の樹脂層を露光走査する際に、その露光
光が下部の前記選択硬化樹脂層に影響を及ぼすことを制
御することにより、各光硬化樹脂層境界部分での形状の
変形を解消し、高精度な立体硬化樹脂形状を形成するよ
うにしたものである。[Detailed Description of the Invention] [Summary] The present invention selectively exposes and scans a three-dimensional shape that displays three-dimensional stereoscopic information each time a liquid photocurable resin material is supplied in layers. In the method of forming the photocurable resin layer in a laminated form, each supplied resin layer of the liquid photocurable resin material is laminated with at least two types of liquid photocurable resin materials having different photocuring threshold characteristics. When the next resin layer supplied on the resin layer that has already been selectively cured by exposure scanning is exposed and scanned, the exposure light affects the selectively cured resin layer below. By controlling the effect of , the deformation of the shape at the boundary portion of each photocurable resin layer is eliminated, and a highly accurate three-dimensional cured resin shape is formed.
本発明は液状光硬化型樹脂材にレーザビーム光学系の露
光走査手段を用いて選択的に露光硬化する工程を積層す
る方向で繰り返して、3次元立体情報を表示する立体模
型形状を形成する方法に係り、特に積層状に形成する各
光硬化樹脂層の境界部分での形状の劣化のない高精度な
立体硬化樹脂形状を形成する方法に関するものである。The present invention is a method for forming a three-dimensional model shape that displays three-dimensional stereoscopic information by repeating the process of selectively exposing and curing a liquid photocurable resin material using an exposure scanning means of a laser beam optical system in the stacking direction. In particular, the present invention relates to a method of forming a highly accurate three-dimensional cured resin shape without deterioration of the shape at the boundary portion of each photocurable resin layer formed in a laminated manner.
3次元的な立体情報を表示する方法として、透視図表示
、投影図表示、等高線表示、或いはホログラフィ−によ
る立体視表示等が開発され、一般に広、く用いられてい
る。しかし、これらの方法は何れも表示した立体形状を
直感的に把握し、充分に理解するには必ずしも満足でき
るものではなく、また実在しない立体仮想物体や立体的
な鳥鰍図などを形成表示することは容易でない。As methods for displaying three-dimensional stereoscopic information, perspective view display, projection view display, contour line display, stereoscopic display using holography, etc. have been developed and are generally widely used. However, none of these methods are necessarily satisfactory for intuitively grasping and fully understanding the displayed three-dimensional shape, and they also create and display non-existent three-dimensional virtual objects, three-dimensional bird fin diagrams, etc. That is not easy.
このようなことから、近来、立体情報を直感的に把握し
、理解し易く表示するために、模型的な立体形状を比較
的容易に形成する方法として、例えば光硬化型樹脂とレ
ーザビーム光学系の露光走査手段を用い、該光硬化型樹
脂を立体情報に基づいて選択的に光硬化せしめて、複雑
な立体模型形状を積層状に形成することが提案されてい
る。For this reason, in recent years, in order to intuitively grasp 3D information and display it in an easy-to-understand manner, methods for relatively easily forming model-like 3D shapes have been developed, such as using photocurable resin and laser beam optical systems. It has been proposed to selectively photocure the photocurable resin based on three-dimensional information using an exposure scanning means to form a complex three-dimensional model shape in a layered manner.
ところでこのような形成方法にあっては、立体情報に基
づいて光硬化型樹脂を選択的に光硬化する工程を積層す
る方向に繰り返して、選択的に光硬化させた樹脂層を順
に積層形成する際に、既に選択的に光硬化された樹脂層
上に供給された次の樹脂層を露光走査すると、その露光
光が下部の前記選択硬化樹脂層に及んで該下部の光硬化
樹脂層との境界部分での光硬化形状が劣化する不都合が
生じ、精度の良い立体硬化樹脂形状が得られ難い問題が
あり、かかる問題の改善が要望されている。By the way, in such a formation method, the step of selectively photocuring the photocurable resin based on stereoscopic information is repeated in the laminating direction to form sequentially laminated layers of the selectively photocured resin. At this time, when the next resin layer supplied on the resin layer that has already been selectively photocured is exposed and scanned, the exposure light reaches the lower selectively cured resin layer and causes a collision with the lower photocurable resin layer. There is a problem in that the photocured shape at the boundary portion deteriorates, making it difficult to obtain a highly accurate three-dimensionally cured resin shape, and there is a demand for improvement of this problem.
(従来の技術〕
従来、光硬化型樹脂を用い、レーザビーム照射による露
光手段によって3次元的な立体情報を表示する模型形状
を形成するには、先ず第4図(a)に示すように昇降可
能な副走査台2に載置された樹脂材収容容器1内に、作
成すべき立体模型形状を幾つかの輪切り状に分割した厚
さに対応する第−要分の液状光硬化型樹脂材5を供給す
ると共に、その供給した樹脂材5表面が照射するレーザ
ビーム4の焦点位置となるように副走査台2を上下方向
に微調整する。(Prior art) Conventionally, in order to form a model shape that displays three-dimensional stereoscopic information using a photocurable resin and an exposure means using laser beam irradiation, first, as shown in FIG. In a resin material storage container 1 placed on a sub-scanning table 2, a liquid photocurable resin material is placed in a first part corresponding to the thickness of the three-dimensional model shape to be created divided into several slices. At the same time, the sub-scanning table 2 is finely adjusted in the vertical direction so that the surface of the supplied resin material 5 becomes the focal point of the irradiated laser beam 4.
次に第4図(b)に示すように前記樹脂材5表面に対し
・作成すべき立体模型形状を幾つかの輪切り状に分割し
た立体形状パターン信号に基づいてレーザビーム光学系
から走査反射u13を反射したレーザビーム4、または
前記副走査台2をX、Y方向に移動走査してレーザビー
ム照射を行い、選択的に露光硬化させた第一硬化樹脂層
5aを形成する。Next, as shown in FIG. 4(b), the surface of the resin material 5 is scanned and reflected by the laser beam optical system based on a three-dimensional shape pattern signal obtained by dividing the three-dimensional model shape to be created into several slices. The reflected laser beam 4 or the sub-scanning table 2 is moved and scanned in the X and Y directions to perform laser beam irradiation, thereby forming a first cured resin layer 5a that is selectively cured by exposure.
次に第4図(C)に示すように第二層分の液状光硬化型
樹脂材6を供給すると共に、その供給した樹脂材6表面
が照射するレーザビーム4の焦点位置となるように再度
、副走査台2を上下方向に微調整した後、第4図(d)
に示すように該樹脂材6表面に前記立体形状パターン信
号に基づき、同様にしてレーザビーム照射を行い、選択
的に露光硬化させた第二硬化樹脂層6aを形成する。Next, as shown in FIG. 4(C), the liquid photocurable resin material 6 for the second layer is supplied, and the surface of the supplied resin material 6 is adjusted again so that it becomes the focal point of the irradiated laser beam 4. , after finely adjusting the sub-scanning table 2 in the vertical direction, as shown in Fig. 4(d).
As shown in , the surface of the resin material 6 is similarly irradiated with a laser beam based on the three-dimensional pattern signal to form a second cured resin layer 6a that is selectively cured by exposure.
以下同様の工程により第4図+13)に示すように第二
層分の液状光硬化型樹脂材7を選択的に露光硬化させて
第三硬化樹脂層7aを形成することにより、最終的にこ
れら液状光硬化型樹脂材中に積層状の立体硬化樹脂像が
形成される。Thereafter, as shown in FIG. 4+13), the liquid photocurable resin material 7 for the second layer is selectively exposed and cured by the same process to form a third cured resin layer 7a. A laminated three-dimensional cured resin image is formed in the liquid photocurable resin material.
この立体硬化樹脂像を該液状光硬化型樹脂材中より取り
出し、洗浄溶液等で付着している液状光硬化型樹脂材を
洗い流すことによつて、第4図(f)に示すように所望
とする3次元的な立体情報表示用の立体模型形状8を作
成している。By taking out this three-dimensional cured resin image from the liquid photocurable resin material and washing away the attached liquid photocurable resin material with a cleaning solution or the like, the desired image can be obtained as shown in FIG. 4(f). A three-dimensional model shape 8 for displaying three-dimensional three-dimensional information is created.
しかしながら、上記のようにレーザビーム照射による露
光手段を用いた従来の立体形状の形成方法にあっては、
各液状光硬化型樹脂層5. 6. 7上に照射されたレ
ーザビーム4は、該樹脂層の深さ方向にその光エネルギ
ーが吸収されながら透過して行くため、該露光エネルギ
ーの値は一般に第5図に示すように前記液状光硬化型樹
脂層5,6゜7の深さ方向に連続的に減衰する特性を有
している。However, in the conventional method of forming a three-dimensional shape using an exposure means using laser beam irradiation as described above,
Each liquid photocurable resin layer5. 6. Since the laser beam 4 irradiated onto the resin layer passes through the resin layer while its light energy is absorbed in the depth direction, the value of the exposure energy generally changes as shown in FIG. It has a characteristic of continuously attenuating in the depth direction of the mold resin layers 5 and 6.
また、液状光硬化型樹脂層としては、その液状光硬化型
樹脂材が持つ硬化闇値以上の露光エネルギーが作用した
部分のみが光硬化する特性を有していることから、例え
ば既に選択的に露光硬化を行った第一層目の光硬化樹脂
層5a上に供給形成された第二層目の液状光硬化型樹脂
層6を選択的に露光する際に、該二層目の液状光硬化型
樹脂層6のみを選択的に露光硬化し、その直下の第一層
目の光硬化樹脂層58部分に該樹脂材の硬化闇値以上の
露光エネルギーが及ばないように精度良く制御すること
が困難であった。In addition, since the liquid photocurable resin layer has the property of being photocured only in the area where exposure energy exceeding the curing darkness value of the liquid photocurable resin material is applied, for example, it has already been selectively cured. When selectively exposing the second liquid photocurable resin layer 6 that has been supplied and formed on the first photocurable resin layer 5a that has been exposed and cured, the liquid photocurable resin layer 6 of the second layer is It is possible to selectively expose and cure only the mold resin layer 6 and precisely control so that exposure energy exceeding the curing darkness value of the resin material does not reach the first photocurable resin layer 58 directly below it. It was difficult.
このため露光に用いるレーザビームの出力が変化すると
、露光硬化樹脂層の硬化厚が著しく変化して、高精度な
立体形状を形成する上で大きな障害となる欠点があった
。For this reason, when the output of the laser beam used for exposure changes, the cured thickness of the exposed and cured resin layer changes significantly, which poses a drawback that becomes a major hindrance in forming a highly accurate three-dimensional shape.
本発明はこのような従来の欠点に鑑み、硬化閾値特性の
異なる少なくとも2種類の液状光硬化型樹脂材を用いて
、順次積層形成した各樹脂層境界部分の硬化樹脂形状の
変形を無くし、以て高精度な立体形状を容易に形成可能
にした新規な立体形状形状の形成方法を提供することを
目的とするものである。In view of these conventional drawbacks, the present invention uses at least two types of liquid photocurable resin materials with different curing threshold characteristics to eliminate deformation of the shape of the cured resin at the boundary portion of each successively laminated resin layer. It is an object of the present invention to provide a novel method for forming a three-dimensional shape that makes it possible to easily form a three-dimensional shape with high precision.
本発明は上記目的を達成するため、立体硬化樹脂形状を
積層状に形成するための各液状光硬化型樹脂層を、硬化
閾値特性が異なる少なくとも2種類の液状光硬化型樹脂
層を積層して、かかる2層状の液状光硬化型樹脂層上か
ら、両者の硬化闇値の略中間値となる光エネルギーを有
するレーザビーム等によって露光を行った際に、硬化閾
値特性が異なる上部樹脂層は光硬化し、下部樹脂層は未
硬化となる現象を利用している。In order to achieve the above object, the present invention includes laminating at least two types of liquid photocurable resin layers having different curing threshold characteristics in each liquid photocurable resin layer for forming a three-dimensional cured resin shape in a layered manner. When the two-layered liquid photocurable resin layer is exposed to light using a laser beam or the like having a light energy that is approximately an intermediate value between the curing dark values of the two layers, the upper resin layer having different curing threshold characteristics is exposed to light. It utilizes the phenomenon that the lower resin layer remains uncured while the resin layer is cured.
即ち、液状光硬化型樹脂材の硬化閾値Ethは、その光
吸収係数をα、樹脂硬化厚さく樹脂供給厚さ)をt、露
光エネルギーをEeとした場合、次の(11式で表され
る。That is, the curing threshold Eth of a liquid photocurable resin material is expressed by the following (Equation 11), where α is the light absorption coefficient, t is the resin curing thickness (resin supply thickness), and Ee is the exposure energy. .
Eth = Ee −exp (−αt) ・・
・fl)しかして、第1図に示すように光吸収係数αA
。Eth = Ee −exp (−αt) ・・
・fl) Therefore, as shown in Fig. 1, the light absorption coefficient αA
.
硬化閾値EthA、を有する樹脂供給厚さtAの液状光
硬化型樹脂層Aと光吸収係数αB、硬化闇値EthB。A liquid photocurable resin layer A having a resin supply thickness tA having a curing threshold value EthA, a light absorption coefficient αB, and a curing darkness value EthB.
を有する樹脂供給厚さtBの液状光硬化型樹脂層Bとか
らなる第一樹脂層21と、同じように光吸収係デ
数α^、硬化閾値ELhA、を有する樹脂供給厚さLA
の液状光硬化型樹脂層Aと光吸収係数αB、硬化闇値E
thB、を有する樹脂供給厚さtBの液状光硬化型樹脂
層Bとからなる第二樹脂層22とを重ねた状態どし、該
第二樹脂層22表面にレーザビーム39を照射して該層
22のみを露光硬化させる場合、第二樹脂層22A、第
二樹脂層22B及び第一樹脂層21Aの各下面部分への
到達露光エネルギーE2A、E2B、EIAは、それぞ
れ(2)、 (3)、 (4)式で表される。and a liquid photocurable resin layer B having a resin supply thickness tB, and a resin supply thickness LA having a light absorption coefficient α^ and a curing threshold ELhA in the same way.
Liquid photocurable resin layer A, light absorption coefficient αB, and curing darkness value E
thB, and a liquid photocurable resin layer B having a resin supply thickness tB. When exposing and curing only 22, the exposure energies E2A, E2B, and EIA reaching the lower surface portions of the second resin layer 22A, the second resin layer 22B, and the first resin layer 21A are (2), (3), respectively. It is expressed by equation (4).
E2八 −Ee −exp (−八 −tA)
・ ・ ・ (2)[2B =Ee
−exp (−(A−tA+ B−tB) ) ・
13)EIA =Ee−exp (−(2A −t
A+ B−tB) ) 14)また(2)〜(4)式
において、第二樹脂層22が完全に光硬化する条件は次
式で表される。E28 -Ee -exp (-8 -tA)
・ ・ ・ (2) [2B = Ee
-exp (-(A-tA+ B-tB)) ・
13) EIA = Ee-exp (-(2A -t
A+B-tB) ) 14) Also, in equations (2) to (4), the conditions under which the second resin layer 22 is completely photocured are expressed by the following equation.
E2A > f!thA、 EthB ・・・(
5)E2B > EthB ・・・(6)
更にこの時、第一樹脂層21を光硬化させない条件とし
て次の関係式が重要となる。E2A > f! thA, EthB...(
5) E2B > EthB...(6)
Furthermore, at this time, the following relational expression is important as a condition for not photocuring the first resin layer 21.
E2B < ll+thA ・・・(7)
EIA < EthB ・・・(8)〔作
用〕
従って、上記第一樹脂層21及び第二樹脂層22を構成
する液状光硬化型樹脂層A及びBの諸特性α。E2B <ll+thA...(7)
EIA < EthB (8) [Function] Therefore, various characteristics α of the liquid photocurable resin layers A and B that constitute the first resin layer 21 and the second resin layer 22.
Eth、樹脂供給厚さtA等と露光エネルギーHeを前
記(5)〜(8)式を満足させる条件にして、第一樹脂
層21上の第二樹脂層22を露光硬化させることにより
、該第−樹脂層21と第二樹脂層22との層境界領域で
の闇値の差と露光エネルギーHeの減衰現象等から、第
一樹脂層21に影響を与えることなく、第二樹脂層22
のみを光硬化させることが可能となる。By exposing and curing the second resin layer 22 on the first resin layer 21, the second resin layer 22 on the first resin layer 21 is cured by setting Eth, resin supply thickness tA, etc., and exposure energy He to satisfy the above formulas (5) to (8). - Due to the difference in darkness value in the layer boundary region between the resin layer 21 and the second resin layer 22 and the attenuation phenomenon of the exposure energy He, the second resin layer 22 can be used without affecting the first resin layer 21.
It becomes possible to photocure only the
かかる形成方法により積層状の立体硬化樹脂形状を形成
すれば、露光光の出力が多少変化しても層境界領域での
変形のない、高精度な立体硬化樹脂形状を得ることがで
きる。If a laminated three-dimensional cured resin shape is formed by such a forming method, a highly accurate three-dimensional cured resin shape that does not deform in the layer boundary region even if the output of exposure light changes somewhat can be obtained.
以下図面を用いて本発明の実施例について詳細に説明す
る。Embodiments of the present invention will be described in detail below with reference to the drawings.
第2図は本発明に係る立体形状の形成方法に用いられる
形成装置の一実施例を示す概略構成斜視図である。FIG. 2 is a schematic perspective view showing an embodiment of a forming apparatus used in the method for forming a three-dimensional shape according to the present invention.
図において、31はレーザ装置、32は光変調器、33
は反射鏡、34.35はレンズ、36は回転多面鏡、3
7はfθレンズ、38は走査反射鏡であり、これらによ
りレーザビーム光学系が構成されている。In the figure, 31 is a laser device, 32 is an optical modulator, and 33 is a laser device.
is a reflecting mirror, 34.35 is a lens, 36 is a rotating polygon mirror, 3
7 is an fθ lens, and 38 is a scanning reflector, which constitute a laser beam optical system.
また40は液状光硬化型樹脂材44が収容された樹脂材
収容容器であり、該収容容器40は矢印Aの方向に移動
走査すると共に、矢印Bで示す垂直方向に昇降調整可能
な副走査台41に載置されている。Further, 40 is a resin material storage container in which a liquid photocurable resin material 44 is stored, and the storage container 40 moves and scans in the direction of arrow A, and also has a sub-scanning table that can be raised and lowered in the vertical direction shown by arrow B. It is placed on 41.
更に前記樹脂材収容容器40上には、該収容容器40内
に光吸収係数α及び光硬化閾値Ethの異なる2種類の
液状光硬化型樹脂材A、Bをそれぞれ供給する細長い供
給口42a、43aを有する2つの樹脂供給管42.4
3が配設されている。Further, on the resin material storage container 40, there are elongated supply ports 42a and 43a for supplying two types of liquid photocurable resin materials A and B having different light absorption coefficients α and photocuring threshold values Eth into the storage container 40, respectively. two resin supply pipes 42.4 with
3 are arranged.
そして上記レーザ装置31から出射されたレーザビーム
39は光変調器32により変調され、反射鏡33により
反射された後、レンズ34.35により適当なビーム径
に変換され、回転多面鏡36によって偏向される。更に
fθレンズ37により等速度走査され、走査反射鏡38
により樹脂材収容容器40内の液状光硬化型樹脂材44
の表面を照射し、選択的に露光硬化せしめて光硬化樹脂
層を形成する構成となっている。A laser beam 39 emitted from the laser device 31 is modulated by an optical modulator 32, reflected by a reflecting mirror 33, converted to an appropriate beam diameter by lenses 34 and 35, and deflected by a rotating polygon mirror 36. Ru. Furthermore, it is scanned at a constant speed by the fθ lens 37, and the scanning reflector 38
The liquid photocurable resin material 44 in the resin material storage container 40 is
The surface of the resin is irradiated and selectively exposed and cured to form a photocurable resin layer.
さて、このような形成装置を用いて3次元的な立体情報
を表示する立体模型形状を形成するには、第3図(al
に示すように2つの樹脂供給管42.43の供給口42
aと43aとの間隔を’l+該供給口42aとレーザビ
ーム39の主走査位置との間隔を22とすると、先ず最
初に露光硬化すべき第一樹脂層21の表面がレーザビー
ム39の焦点位置となるように副走査台41を垂直方向
に昇降操作して調整する。Now, in order to form a three-dimensional model shape that displays three-dimensional three-dimensional information using such a forming apparatus, the method shown in FIG. 3 (al.
The supply ports 42 of the two resin supply pipes 42 and 43 as shown in
Assuming that the distance between a and 43a is 'l+the distance between the supply port 42a and the main scanning position of the laser beam 39 is 22, the surface of the first resin layer 21 to be exposed and hardened first is at the focus position of the laser beam 39. The sub-scanning table 41 is vertically moved up and down to adjust the position.
次に副走査台41を一定速り速度で副走査を開始すると
共に、前記樹脂材供給口42aより樹脂材収容容器40
内に例えば光吸収係数αが18cm−1,光硬化閾値E
thinが14mJ/cm2の特性を有する液状光硬
化型樹脂材Bを250μmの層厚に供給を開始し、該副
走査台41が間隔11以上に移動した時点から、新たに
もう一方の前記樹脂材供給口43aより樹脂材収容容器
40内の前記樹脂層B上に例えば光吸収鼻
係数αが6 cm−1+光硬化閾値E thAが211
1IJ/Cm2の特性を有する液状光硬化型樹脂材Aを
250μmの層厚に供給を開始する。Next, the sub-scanning table 41 starts sub-scanning at a constant speed, and the resin material storage container 40 is opened from the resin material supply port 42a.
For example, the light absorption coefficient α is 18 cm −1 and the photocuring threshold E
The liquid photocurable resin material B having a thin characteristic of 14 mJ/cm2 is started to be supplied to a layer thickness of 250 μm, and from the time when the sub-scanning table 41 is moved to a distance of 11 or more, the other resin material is newly added. For example, the light absorption coefficient α is 6 cm −1 + the light curing threshold E thA is 211 from the supply port 43 a onto the resin layer B in the resin material storage container 40 .
Supply of liquid photocurable resin material A having a characteristic of 1 IJ/Cm2 to a layer thickness of 250 μm is started.
その後、第3図山)に示すように副走査台41が間隔!
!2以上に移動した時点より、作成すべき立体模型形状
を幾つかの輪切り状に分割した厚さくこの場合500μ
m)に対応する上記樹脂層Bと樹脂層Aからなる第一樹
脂層21の表面に対して、作成すべき立体模型形状を幾
つかの輪切り状に分割した第一層目の立体形状パターン
信号に基づいてレーザビーム39照射を主走査して選択
的に露光硬化せしめて第一硬化樹脂層21aを形成する
。After that, the sub-scanning table 41 is moved at intervals as shown in Fig. 3).
! From the point at which the three-dimensional model shape to be created is divided into several slices, the thickness of which is 500μ in this case.
A three-dimensional shape pattern signal of the first layer obtained by dividing the three-dimensional model shape to be created into several slices on the surface of the first resin layer 21 consisting of the resin layer B and resin layer A corresponding to m). The first cured resin layer 21a is formed by selectively exposing and curing the resin by main-scanning the laser beam 39 based on the above.
尚、この時のレーザビーム39の露光エネルギーEeと
しては、前記(5)〜(8)式の関係より次に示す(5
)′〜(8)式が必要条件となる。Note that the exposure energy Ee of the laser beam 39 at this time is determined by the following equation (5) based on the relationships of equations (5) to (8) above.
)' to (8) are necessary conditions.
Ee〉25IIIJ/cI112,17IIIJ/cI
112・・(5)′Ee > 25mJ /ca+2・
・・(6) ’Ee<3811IJ/c112・・・(
7)Ee < 29n+J /cta2・・・(8)
”従って、上記2種類の樹脂層A、 Bの光吸収係数α
、光硬化閾値IEth 、層厚を等により定まる次式で
示す範囲の露光エネルギー値Eeとしている。Ee〉25IIIJ/cI112, 17IIIJ/cI
112...(5)'Ee > 25mJ/ca+2.
...(6) 'Ee<3811IJ/c112...(
7) Ee < 29n+J/cta2...(8)
``Therefore, the light absorption coefficient α of the above two types of resin layers A and B
, a photocuring threshold IEth, a layer thickness, etc., are set to an exposure energy value Ee in the range shown by the following equation.
25+wJ/cs+2<Ee<29sJ/cm2H+
+ (9)やがて前記樹脂材供給口42aが樹脂収容
容器40の他端に達した時点で、全樹脂材A、Bの供給
を停止した後、次に露光硬化すべき第二樹脂層22の表
面がレーザビーム39の焦点位置となるように副走査台
41を垂直方向に昇降操作して調整し、第3図(C)に
示すように副走査台41により樹脂材収容容器40を元
の副走査開始位置に速やかに戻す。25+wJ/cs+2<Ee<29sJ/cm2H+
+ (9) When the resin material supply port 42a reaches the other end of the resin storage container 40, the supply of all the resin materials A and B is stopped, and then the second resin layer 22 to be cured by exposure is Adjust the sub-scanning table 41 by vertically raising and lowering it so that the surface is at the focal point of the laser beam 39, and as shown in FIG. 3(C), move the resin material storage container 40 back to its original position. Immediately return to the sub-scanning start position.
次に第3図(d)に示すように副走査台41を一定速り
速度で副走査を開始すると共に、前記樹脂材供給口42
a、43aより樹脂材収容容器40内に、前記第一樹脂
層21の場合と同様に液状光硬化型樹脂材B及びAを2
50μ鍋の層厚に順次供給を開始し、該樹脂層Bと樹脂
層Aからなる第二樹脂層22の表面に対して、作成すべ
き立体模型形状を幾つかの輪切り状に分割した第二層目
の立体形状パターン信号に基づいて第一硬化樹脂層21
a形成時と同様の露光エネルギー値Eeを有するレーザ
ビーム39照射を主走査して選択的に露光硬化せしめて
第二硬化樹脂層22aを形成する。Next, as shown in FIG. 3(d), the sub-scanning table 41 starts sub-scanning at a constant speed, and the resin material supply port 42
As in the case of the first resin layer 21, two liquid photocurable resin materials B and A are placed in the resin material storage container 40 from a and 43a.
The supply is started sequentially to the layer thickness of the 50 μm pot, and a second layer is applied to the surface of the second resin layer 22 consisting of the resin layer B and the resin layer A, in which the three-dimensional model shape to be created is divided into several slices. The first cured resin layer 21 is formed based on the three-dimensional shape pattern signal of the layer.
The second cured resin layer 22a is formed by selectively exposing and curing the second cured resin layer 22a by main-scanning irradiation with a laser beam 39 having the same exposure energy value Ee as in forming a.
以下、同様の工程操作により+n脂材の供給停止、及び
次のレーザビーム39焦点位置の調整後、第3図(el
に示すように副走査台41により樹脂材収容容器40を
元の副走査開始位置に速やかに戻し、上記工程操作を繰
り返して露光硬化樹脂層を順次積層形成し、積層状の立
体硬化樹脂像を構築する。Thereafter, after stopping the supply of the +n resin material and adjusting the focal position of the next laser beam 39 by the same process operation, as shown in Fig. 3 (el
As shown in , the resin material storage container 40 is quickly returned to the original sub-scanning start position using the sub-scanning table 41, and the above steps are repeated to sequentially form exposed and cured resin layers to form a layered three-dimensional cured resin image. To construct.
かかる積層状の立体硬化樹脂像においては、光吸収係数
α、光硬化閾値Ethの異なる2層構成の樹脂層A、B
を用い、上記(9)式を満足する露光エネルギー値Ee
を有するレーザビーム39の露光操作によって、先に露
光操作して成る樹脂層上の次の樹脂層を選択的に露光硬
化した際に、先の樹脂層の未硬化部分を光硬化させるこ
となく、次の樹脂層のみが選択的に露光硬化されるので
、これら層境界部分での越境硬化による形状変化が解消
される。In such a laminated three-dimensional hardened resin image, resin layers A and B have a two-layer structure with different light absorption coefficient α and light hardening threshold Eth.
Using the exposure energy value Ee that satisfies the above equation (9)
When the next resin layer on the resin layer formed by the previous exposure operation is selectively exposed and cured by the exposure operation of the laser beam 39 having Since only the next resin layer is selectively exposed and cured, shape changes due to cross-boundary curing at these layer boundary areas are eliminated.
従って、上記積層状の立体硬化樹脂像を従来と同様に液
状光硬化型樹脂材中より取り出して該液状光硬化型樹脂
材の除去処理を行うことにより、所望とする3次元的な
立体情報を表示する立体硬化樹脂形状を高精度に得るこ
とが可能となる。Therefore, the desired three-dimensional stereoscopic information can be obtained by removing the laminated three-dimensional cured resin image from the liquid photocurable resin material and removing the liquid photocurable resin material in the same manner as in the past. It becomes possible to obtain the three-dimensional cured resin shape to be displayed with high precision.
以上の説明から明らかなように、本発明に係る立体形状
の形成方法によれば、光硬化闇値の異なる少なくとも2
種類の液状光硬化型樹脂材からなる2層構成の樹脂層と
これらの樹脂材に対する適正な露光エネルギー値t’e
を有するレーザビームからなる露光手段を用いて、積層
状に該樹脂層を順次光硬化することにより、光硬化すべ
き樹脂層以外の該層重下の樹脂層に光硬化作用が及ぶこ
となく正確に制御することが可能となり、各樹脂層表面
位置の設定及び露光走査に要する時間のみの比較的短時
間で高精度な立体形状を容易に形成することが可能とな
る優れた利点を有する。As is clear from the above explanation, according to the method for forming a three-dimensional shape according to the present invention, at least two
A resin layer with a two-layer structure consisting of various types of liquid photocurable resin materials and an appropriate exposure energy value t'e for these resin materials.
By sequentially photo-curing the resin layers in a laminated form using an exposure means consisting of a laser beam having a This has the excellent advantage that a highly accurate three-dimensional shape can be easily formed in a relatively short time, which is only the time required for setting the surface position of each resin layer and for exposure scanning.
第1図は本発明に係る立体形状の形成方法の原理を説明
するための図、 1第2図は本発明に
係る立体形状の形成方法に用いる形成装置の一実施例を
示す概略構
成図、
第3図は本発明に係る立体形状の形成方法の一実施例を
工程順に示す要部断面図、
第4図は従来の立体形状の形成方法を説明するための要
部断面図、
第5図は樹脂層の深さ方向に対する露光エネルギーの分
布を示す図である。
第1図乃至第3図において、
A、Bは光硬化閾値特性の異なる液状光硬化型樹脂層、
21は第一樹脂層、21aは第一硬化樹脂層、22は第
二樹脂層、22aは第二硬化樹脂層、31はレーザ装置
、32は光変調器、36は回転多面鏡、37はfθレン
ズ、38は走査反射鏡、39はレーザビーム、40は樹
脂材収容容器、41は副走査台、42.43は樹脂材供
給管、42a、 43aは第1II
オ廃呵1−り中1シ蝦醇被1楕八゛閏
第2図
LvJ1 is a diagram for explaining the principle of the three-dimensional shape forming method according to the present invention; 1 FIG. 2 is a schematic configuration diagram showing an embodiment of a forming apparatus used in the three-dimensional shape forming method according to the present invention; FIG. 3 is a cross-sectional view of a main part showing an example of the method for forming a three-dimensional shape according to the present invention in the order of steps; FIG. 4 is a cross-sectional view of a main part for explaining a conventional method for forming a three-dimensional shape; FIG. FIG. 2 is a diagram showing the distribution of exposure energy in the depth direction of the resin layer. In FIGS. 1 to 3, A and B are liquid photocurable resin layers having different photocuring threshold characteristics;
21 is a first resin layer, 21a is a first cured resin layer, 22 is a second resin layer, 22a is a second cured resin layer, 31 is a laser device, 32 is an optical modulator, 36 is a rotating polygon mirror, 37 is fθ 38 is a scanning reflector, 39 is a laser beam, 40 is a resin material storage container, 41 is a sub-scanning table, 42 and 43 are resin material supply pipes, 42a and 43a are 1st II Shrimp cover 1 ellipse 2nd figure LvJ
Claims (1)
て各樹脂層(21、22)を選択的に硬化せしめ、該光
硬化樹脂層(21a、22a)を積層状に形成して立体
形状を形成する方法において、上記液状光硬化型樹脂材
の各供給樹脂層(21、22)を、光硬化閾値特性の異
なる少なくとも2種類の液状光硬化型樹脂材(A、B)
を積層状としてなる単位層とし、既に露光走査して選択
的に硬化せしめてなる単位樹脂層(21a)上に供給さ
れた次の単位樹脂層(22)を露光走査する際に、その
露光光が前記選択硬化樹脂層(21a)に影響を及ぼす
ことを制御するようにしたことを特徴とする立体形状の
形成方法。Each time the liquid photocurable resin material is supplied in a laminated form, exposure is scanned to selectively cure each resin layer (21, 22), thereby forming the photocurable resin layer (21a, 22a) in a laminated form. In the method for forming a three-dimensional shape, each supply resin layer (21, 22) of the liquid photocurable resin material is replaced with at least two types of liquid photocurable resin materials (A, B) having different photocuring threshold characteristics.
is a layered unit layer, and when the next unit resin layer (22) supplied on the unit resin layer (21a) which has already been exposed and scanned and selectively cured is exposed and scanned, the exposure light is A method for forming a three-dimensional shape, characterized in that the effect of the selectively cured resin layer (21a) on the selectively cured resin layer (21a) is controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60171444A JPS6232009A (en) | 1985-08-02 | 1985-08-02 | Method for forming solid shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60171444A JPS6232009A (en) | 1985-08-02 | 1985-08-02 | Method for forming solid shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6232009A true JPS6232009A (en) | 1987-02-12 |
Family
ID=15923224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60171444A Pending JPS6232009A (en) | 1985-08-02 | 1985-08-02 | Method for forming solid shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6232009A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0436352A2 (en) * | 1989-12-29 | 1991-07-10 | E.I. Du Pont De Nemours And Company | Solid imaging method and apparatus |
JPH0760843A (en) * | 1993-08-26 | 1995-03-07 | Olympus Optical Co Ltd | Manufacture of three-dimensional structure |
JPH08127073A (en) * | 1994-10-31 | 1996-05-21 | Mitsubishi Electric Corp | Minute mechanism part and production thereof |
JP2018122571A (en) * | 2017-02-03 | 2018-08-09 | 日本特殊陶業株式会社 | Method for producing ceramic molded body |
-
1985
- 1985-08-02 JP JP60171444A patent/JPS6232009A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0436352A2 (en) * | 1989-12-29 | 1991-07-10 | E.I. Du Pont De Nemours And Company | Solid imaging method and apparatus |
JPH0760843A (en) * | 1993-08-26 | 1995-03-07 | Olympus Optical Co Ltd | Manufacture of three-dimensional structure |
JPH08127073A (en) * | 1994-10-31 | 1996-05-21 | Mitsubishi Electric Corp | Minute mechanism part and production thereof |
JP2018122571A (en) * | 2017-02-03 | 2018-08-09 | 日本特殊陶業株式会社 | Method for producing ceramic molded body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2539435B2 (en) | Equipment for three-dimensional mapping and mold making | |
JP3443365B2 (en) | Method and apparatus for forming a three-dimensional object | |
US5536467A (en) | Method and apparatus for producing a three-dimensional object | |
EP0429196B1 (en) | Improved stereolithographic construction techniques | |
JP3803735B2 (en) | Light solidification modeling device that performs optical scanning simultaneously with recoating | |
JP2000272016A (en) | Stereolithographic method and apparatus for forming three-dimensional object using multiple beams of different diameters | |
WO2017114412A1 (en) | Enhanced digital light processing mask projection stereolithography method and apparatus | |
CA2086157A1 (en) | Stereolithographic apparatus and method of use | |
JPS61114817A (en) | Apparatus for forming solid configuration | |
JP3167821B2 (en) | Stereolithography | |
JPS61225012A (en) | Formation of three-dimensional configuration | |
JPS6232009A (en) | Method for forming solid shape | |
JPS63141725A (en) | Apparatus for forming three dimensional shape | |
JP2912721B2 (en) | 3D object formation method | |
JPH04113828A (en) | Manufacture of large-sized stereo-resin model and device therefor | |
JP4669843B2 (en) | Stereolithography apparatus and stereolithography method | |
JPS61217219A (en) | Three-dimensional configuration forming device | |
JPS63145016A (en) | Device for forming solid shape | |
JPS61116320A (en) | Three-dimensional shape forming device | |
JPS63139729A (en) | Forming device for stereoscopic shape | |
JPS6299753A (en) | Formation of three-dimensional shape | |
JP3490491B2 (en) | Stereolithography product manufacturing method and stereolithography apparatus | |
EP0681906B1 (en) | Stereolithographic construction techniques | |
JPH05269864A (en) | Three dimensional optical shaping device | |
JPS63139730A (en) | Forming device for stereoscopic shape |