JPS623074A - Manufacture of silicon nitride base sintered body - Google Patents
Manufacture of silicon nitride base sintered bodyInfo
- Publication number
- JPS623074A JPS623074A JP60142693A JP14269385A JPS623074A JP S623074 A JPS623074 A JP S623074A JP 60142693 A JP60142693 A JP 60142693A JP 14269385 A JP14269385 A JP 14269385A JP S623074 A JPS623074 A JP S623074A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- metal
- sintering
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Silicon Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(発明の分野)
本発明は窒化珪素質焼結体の製造方法に関し、よシ詳細
には、均質で高強度の易焼結性に優れた窒化珪素質焼結
体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a method for manufacturing a silicon nitride sintered body, and more particularly, to a silicon nitride sintered body that is homogeneous, has high strength, and has excellent sinterability. Relating to a manufacturing method.
(従来技術)
窒化珪素質焼結体は原子の結合様式が共有結合を主体と
しているので高強度耐熱性部材、高耐食性部材及び高温
高強度部材などに期待されている。(Prior Art) Silicon nitride sintered bodies are expected to be used as high-strength heat-resistant members, high-corrosion-resistant members, high-temperature high-strength members, etc. because the atomic bonding mode of silicon nitride sintered bodies is mainly covalent bonds.
従来周知の通シ、窒化珪素質焼結体は焼結助剤の添加に
より液相焼結して緻密化するが、その焼結助剤にはMg
oなどのアルカリ土類金属の酸化物、Y2O3などの希
土類金属の酸化物、並びにA4z○3などがあシ、これ
ら焼結助剤と窒化珪素粉末を粉砕混合し、窒化珪素質焼
結体の出発原料に供している。Conventionally, silicon nitride sintered bodies are densified by liquid phase sintering by adding a sintering aid, but the sintering aid contains Mg.
Oxides of alkaline earth metals such as oxides of alkaline earth metals such as Y2O3, oxides of rare earth metals such as Y2O3, and oxides such as A4z○3 are ground and mixed with these sintering aids and silicon nitride powder to form a silicon nitride sintered body. Served as starting material.
しかしながら、前記酸化物系の添加物は窒化珪素や、窒
化珪素粉末の結晶表面に存在する5iOz膜と反応して
粒界相を形成するが、これら原料は十分に粉砕混合して
も、添加物がミクロ的に均一な分布をしておらず、この
粒界相の大きさが不均一となり、その結果、窒化珪素焼
結粒の異常成畏が促進し、これにより出来た厚みの大き
い粒界相が破壊源となっていた。加えて、酸化物を添加
することによりイオン結合性が増大し、窒化珪素本来の
優れた特性が減じられていく。従って、焼結体の緒特性
、特に機械的特性を向上せんがためには非酸化物系焼結
助剤を用いて、史にその助剤の添加量を減少させると共
に均一分散させる必要がある。However, the oxide-based additives react with silicon nitride and the 5iOz film present on the crystal surface of the silicon nitride powder to form a grain boundary phase, but even if these raw materials are sufficiently ground and mixed, the additives is not distributed microscopically uniformly, and the size of this grain boundary phase becomes non-uniform.As a result, abnormal growth of silicon nitride sintered grains is promoted, resulting in thick grain boundaries. The phase was the source of destruction. In addition, the addition of oxides increases ionic bonding, and the original excellent properties of silicon nitride are diminished. Therefore, in order to improve the properties of the sintered body, especially the mechanical properties, it is necessary to use a non-oxide sintering aid, reduce the amount of the additive, and disperse it uniformly. .
(発明が解決しようとする問題点)
このような焼結助剤の均一分散に対し、原料粉末として
の粒径を小さくして超微粉化することにより、分散効率
を上げる試みが一般的に行なわれているが、このような
微粉化された原料粉末を用いて、成形した際には、成形
体の密度、詳しくは圧粉体の嵩密度が低下する傾向にあ
シ、それに伴い、焼結性の低下、収縮量の増大、寸法精
度の悪化および変形等の問題が生じることとなる。(Problems to be Solved by the Invention) In order to uniformly disperse such a sintering aid, attempts are generally made to increase the dispersion efficiency by reducing the particle size of the raw material powder and making it ultra-fine. However, when compacted using such pulverized raw material powder, the density of the compact, more specifically the bulk density of the green compact, tends to decrease, and as a result, the sintering Problems such as a decrease in properties, an increase in the amount of shrinkage, a deterioration in dimensional accuracy, and deformation will occur.
この問題点に対し、金属珪素を原料としIIIa族化合
物を添加した後に、金属珪素を窒素雰囲気中で焼結する
ことKよシ窒化した後、さらに焼結を行なう二段焼結法
が提案され、寸法精度、変形に対する改良がなされてき
た。To solve this problem, a two-stage sintering method has been proposed in which silicon metal is used as a raw material, a group IIIa compound is added, the silicon metal is sintered in a nitrogen atmosphere, nitrided, and then sintered. Improvements have been made in terms of dimensional accuracy and deformation.
しかしながら、上述の方法によれば金属珪素を窒化し、
易焼結性のα−313N 4に変性する工程は、焼結温
度1400℃以下で数時間乃至数十時間の時間を要する
ため実際の生産においては、゛効率が悪く、実用的では
ない。However, according to the above method, metal silicon is nitrided,
The process of modifying α-313N4 to easily sinterable α-313N4 requires several hours to several tens of hours at a sintering temperature of 1400° C. or lower, and therefore is inefficient and impractical in actual production.
また、焼結助剤として非酸化物糸、例えば窒化物ReN
(Rθ:周期律表IIIa族金属)は、水分との反応
性が非常に高く、取り扱い中に大気中と水分と反応し窒
化物から酸化物へ変わるため最終的には、上記の問題点
を解決するには至らないのが現状でらった。Also, non-oxide yarns such as nitride ReN can be used as sintering aids.
(Rθ: Group IIIa metal of the periodic table) has a very high reactivity with moisture, and when handled, it reacts with moisture in the atmosphere and changes from a nitride to an oxide, which ultimately solves the above problems. The current situation is that it cannot be resolved.
(発明の目的)
本発明者等は上記問題点に対し研究を重ねだ結果、窒化
珪素a粉末に対する焼結助剤とし°C金属シリコーン周
期律表IIIa窒化処理した複合窒化物を用いることに
よシ、化学的安定性に優れ、しかも焼結効率の改善され
た均質な焼結体が得られることを知見した。(Purpose of the Invention) As a result of repeated research into the above-mentioned problems, the inventors of the present invention have developed a composite nitride that has been nitrided with °C metal silicone IIIa of the periodic table as a sintering aid for silicon nitride a powder. It has been found that a homogeneous sintered body with excellent chemical stability and improved sintering efficiency can be obtained.
従って本発明の目的は、高温高強度特性を達成し得る窒
化珪素質焼結体の製造方法を提供するにある。Therefore, an object of the present invention is to provide a method for manufacturing a silicon nitride sintered body that can achieve high temperature and high strength characteristics.
本発明の他の目的は、易焼結性、均質性に優れた窒化珪
素質焼結体の製造方法を提供するにある。Another object of the present invention is to provide a method for manufacturing a silicon nitride sintered body that is easy to sinter and has excellent homogeneity.
(発明の要旨)
即ち、本発明によれば金属シリコンと周期律表Za族金
属の合金粉末を窒化して得られる複合窒化物を焼結助剤
として窒化珪聚・微粉末と混合して原料組成物を得、こ
れを窒素雰囲気中にて焼結したことを特徴とする法化珪
素質焼結体の製造方法が提供される。(Summary of the Invention) That is, according to the present invention, a composite nitride obtained by nitriding an alloy powder of metallic silicon and a group Za metal of the periodic table is mixed with silicon nitride fine powder as a sintering aid to prepare a raw material. A method for producing a cemented silicon sintered body is provided, which comprises obtaining a composition and sintering it in a nitrogen atmosphere.
(問題を解決するための手段) 以下1本発明の詳細な説明する。(Means to solve the problem) The present invention will be explained in detail below.
本発明によれば原料組成物として、Si、sN4微粉末
に、添加物としてシリコン金属−周期律表■a族金属合
金(以下、単にSi −Ha族金属合金と称する)の複
合窒化物を用いることが重要である。According to the present invention, as a raw material composition, a composite nitride of silicon metal-group A metal alloy of the periodic table (hereinafter simply referred to as Si-Ha group metal alloy) is used in Si and sN4 fine powder as an additive. This is very important.
SL −1[[a族金属合金は、添加成分でるるZa族
金属成分自体が合金状即でシリコン金属中に均一に分散
されている。本発明では、この合金を窒化処理したもの
を用いるが、詳細にはシリコン金属とHa族元素の金属
単体から成る合金を粉砕化して得られた金属粉体を周知
の直接窒化法により合成反応を行なわせることにより得
られる。SL-1[[In the group A metal alloy, the Za group metal component itself, which is an additive component, is uniformly dispersed in silicon metal in the form of an alloy. In the present invention, a nitrided alloy is used. Specifically, metal powder obtained by pulverizing an alloy consisting of silicon metal and a single metal of a Ha group element is subjected to a synthesis reaction by a well-known direct nitriding method. It can be obtained by making people do something.
但し、金属粉体と窒素ガスが直接反応すると発熱が激し
いため、反応を抑制する技術が要求される。例えば、水
素ガス又はアンモニアガスの共存下で加熱速度をコント
ロールしながら反応温度を1300−1400℃に制御
して合成する方法が主として用いられる。However, direct reaction between metal powder and nitrogen gas generates a lot of heat, so technology to suppress the reaction is required. For example, a synthesis method is mainly used in which the reaction temperature is controlled at 1300 to 1400° C. while controlling the heating rate in the coexistence of hydrogen gas or ammonia gas.
この反応により、Sl−11[a族金属合金は1次の式
(1)
%式%)
に従い、複合窒化物が生成される。この窒化物は更に粉
砕工程によって、粒径0.5〜5μmに設定され原料粉
末として提供される。As a result of this reaction, a composite nitride is produced according to the linear formula (1) for Sl-11 [a-group metal alloys]. This nitride is further subjected to a pulverization process to have a particle size of 0.5 to 5 μm and provided as a raw material powder.
得られた原料粉末はシリコン原子と周期律表IIIa族
金属原子と窒素原子が完全に結晶状態になっておらず、
主として歪んだ晶質を含み、いわゆる活性状態になって
いることがX線回折法により確認できた。In the obtained raw material powder, silicon atoms, group IIIa metal atoms of the periodic table, and nitrogen atoms are not completely crystalline.
It was confirmed by X-ray diffraction that it mainly contained distorted crystalline substances and was in a so-called active state.
従って、本発明者は周期律表1[a族金属原子が原子レ
ベルでシリコン原子に分散しており、また格子欠陥を含
むため、かかる原料粉末を窒化珪素a粉末とともに用い
て窒素雰囲気中で焼結するとその焼結を促進すべく内部
エネルギーが大きく寄与して拡散が活性化し、易焼結性
となシ、その結果高強度緻密窒化珪素質焼結体が提供さ
れるものと考える。Therefore, the present inventor proposed that the metal atoms of group 1 of the periodic table [a] are dispersed in silicon atoms at the atomic level and contain lattice defects, so using such raw material powder together with silicon nitride powder and sintering it in a nitrogen atmosphere. It is believed that when sintered, internal energy greatly contributes to promote sintering, activating diffusion and facilitating sintering, resulting in a high-strength, dense silicon nitride sintered body.
本発明によれば、式(1)による生成物MNは、焼結時
、S”1−sN4の表面に存在するSing と反応
し、焼結体の窒化珪素の結晶粒界相に生成するガラス相
の粘性を向上するため、焼結体高温での物性劣化が抑制
される。According to the present invention, the product MN according to formula (1) reacts with Sing present on the surface of S''1-sN4 during sintering, and the glass generated in the grain boundary phase of silicon nitride in the sintered body. Since the viscosity of the phase is improved, deterioration of the physical properties of the sintered body at high temperatures is suppressed.
さらに、Sl−1Wa族金属の合金粉末を窒化して得ら
れる複合窒化物は、各々の単体もしくは、その窒化物と
比較して極めて安定であり、調合から焼結までの工程管
理に、湿度、水分などに対する配慮が不要となる。また
、調合の際、3族金属が均一分散しているために、超漱
扮化の必要性がないことから、成形体の圧粉体としての
嵩密度の低下を防ぐことができる。Furthermore, the composite nitride obtained by nitriding alloy powder of Sl-1Wa group metals is extremely stable compared to each element or its nitride, and it is suitable for process control from blending to sintering. There is no need to consider moisture etc. In addition, since the Group 3 metal is uniformly dispersed during compounding, there is no need for super-soaking, so it is possible to prevent a decrease in the bulk density of the compact as a green compact.
本発明によれば、Si −ffa族金属の合金粉末を窒
化して得られる複合窒化物は、窒化珪素微粉末に対して
、複合窒化物の組成を変えることにより、所望の量を配
合することが可能であるが、焼結時、助剤的働きをする
複合窒化物中のMNは所定款以上が必要となるため、複
合窒化物は全原料粉末中、1重量%以上配合することが
望ましい。即ち、複合窒化物の量が1重量%未瀦である
と焼結性に及ぼす本発明の効果が達成されない。According to the present invention, the composite nitride obtained by nitriding the Si-ffa group metal alloy powder can be blended in a desired amount with respect to the silicon nitride fine powder by changing the composition of the composite nitride. However, during sintering, the amount of MN in the composite nitride that acts as an auxiliary agent is required to be at least a specified amount, so it is desirable that the composite nitride be blended at 1% by weight or more in the total raw material powder. . That is, if the amount of composite nitride is unsintered by 1% by weight, the effect of the present invention on sinterability cannot be achieved.
また、Si、 −ff1a族金属合金の重量組成比はS
l:IIIa族金属が1:lO乃至NO:1.特に1:
5 乃至lO:1が好ま+、 < 、IIIa族金属
成分が上記範囲よりも大きいと、■a族金属粉体の酸化
が進み易くなるとともに取り扱いも不便となるヶ一方、
Stの量が上記範囲を越えると、Za族の添加による
効果がなくなり、焼結の進行が困難と力;る。Moreover, the weight composition ratio of Si, -ff1a group metal alloy is S
1: Group IIIa metal is 1:1O to NO:1. Especially 1:
5 to lO: 1 is preferable + <, If the IIIa group metal component is larger than the above range, ■ the oxidation of the a group metal powder will proceed easily and handling will be inconvenient;
If the amount of St exceeds the above range, the effect of the addition of the Za group will be lost and sintering will be difficult to proceed.
本発明において用いられるこの周期律表1![a、族金
属原子としては希土類元素であるSc、Y、La、 C
e、 Pr、 Nd、 Pm、 Sm、 ’Fm、 C
d、 Tb、 Iy、 Ho、 Er、 Tm、 Yb
、 Luから選択される1種以上のものが望ましい。か
かる元素51例えばYとシリコン金属と合金化させて窒
化処理して成る窒化珪素原料粉末はSi、 −N −Y
又はS:L −Y −Nのいずれかの結合を含むことを
レーザーフ゛マン及びESCA法によシ確認した。This periodic table 1 used in the present invention! [a, group metal atoms include rare earth elements Sc, Y, La, C
e, Pr, Nd, Pm, Sm, 'Fm, C
d, Tb, Iy, Ho, Er, Tm, Yb
, Lu is preferable. Such element 51, for example, silicon nitride raw material powder made by alloying Y with silicon metal and nitriding it is Si, -N -Y
It was confirmed by laser fibremanship and ESCA that it contained either the bond S:L-Y-N or S:L-Y-N.
なお、本発明の焼結体を製造する際の成形工程では周知
の成形方法、例えば金型プレス成形、鋳込み成形射出成
形、押出成形等のいずれでも搭用し得る。成形後の焼結
工程は、1700℃以上の温度で実質的に酸素を含有し
ない、窒素雰囲気中で行なうのが望ましい。In the molding process for manufacturing the sintered body of the present invention, any known molding method such as die press molding, cast molding injection molding, extrusion molding, etc. can be used. The sintering step after forming is preferably carried out at a temperature of 1700° C. or higher in a nitrogen atmosphere that does not substantially contain oxygen.
なお、本発明によれば、窒化処理されたsi、−III
a族金属合金の他にAt!gos 、 YzOs 、
MgO等の焼結助剤を更に加えることも可能である。According to the present invention, nitrided Si, -III
In addition to group a metal alloys, At! gos, YzOs,
It is also possible to further add sintering aids such as MgO.
本発明を以下の例で説明する。The invention is illustrated by the following example.
金属シリコン粉末と希土類金属粉末を混合してから14
00〜1600℃の温度範囲で融解して合金を得た。こ
の合金をボールミ/I/等の周知の方法にょシ平均粒径
2μ調程度にまで粉砕し、この粉体を最高1250〜1
450℃の窒素ガス雰囲気中で窒化反応を行ない、残留
シリコン量を極力少なくした。14 after mixing metal silicon powder and rare earth metal powder
An alloy was obtained by melting in a temperature range of 00 to 1600°C. This alloy is pulverized by a well-known method such as Ball Mill/I/ to an average particle size of about 2 μm, and this powder is
A nitriding reaction was carried out in a nitrogen gas atmosphere at 450° C. to minimize the amount of residual silicon.
得られた塊を粗砕し、次いで微粉砕して平均粒径1μm
以下に設定した。組成は第1表に示す。The obtained lump was coarsely crushed and then finely crushed to an average particle size of 1 μm.
It was set as below. The composition is shown in Table 1.
次に得られた窒化物とα−S13N 4 および、そ
の他の添加物を第1表に示す量比で調合し、5isN4
製ボール振動ミルにて、粉砕後成形し、第1表の焼結条
件で焼結し、窒化珪素質焼結体を得た。Next, the obtained nitride, α-S13N 4 and other additives were mixed in the ratio shown in Table 1, and 5isN4
After pulverization, the mixture was molded using a vibrating ball mill, and sintered under the sintering conditions shown in Table 1 to obtain a silicon nitride sintered body.
また、他の添加物は平均粒径1.0μmのものを使用し
た。Further, other additives having an average particle size of 1.0 μm were used.
得られた焼結体に対して、アA/キメデス法により比重
を、JIS R1601に従って4点曲げ(試験片:
4 X 3 X 42 IIIar )により抗折強度
を測定した。The specific gravity of the obtained sintered body was determined by the A/Kimedes method and 4-point bending according to JIS R1601 (test piece:
The bending strength was measured by 4 X 3 X 42 IIIar).
測定の結果、第1表からも明らかなようにいずれも、比
J1.強度共に高い値を示した。As a result of the measurement, as is clear from Table 1, the ratio J1. Both strengths showed high values.
比較例
実施例において、添加物として窒化処理されたSi、
−IEra族金属合金のかわりに、粒径1.Q /J#
lのYtOs 、 1Ultos 、 YN 、 を用
イテ第1表に基づき調合し、焼結体轟6乃至&8を得、
同様に特性の測定を行なった。結果は第1表に示す。Comparative Example In the example, nitrided Si as an additive,
- Instead of IEra group metal alloys, grain size 1. Q/J#
1 YtOs, 1 Ultos, YN, were prepared based on Table 1 to obtain sintered bodies Todoroki 6 to &8.
Characteristics were measured in the same manner. The results are shown in Table 1.
第1表からも明らかなように、比重および、強度共に本
発明と比重して、いずれも劣るものであった。As is clear from Table 1, both the specific gravity and strength were inferior to those of the present invention.
(発明の効果)
本発明の製造方法によれば、α−8i、3N4の阪粉末
に対して、窒化処理したSL −ff1a族金属合金を
用いることにより、粉体の調整時の水分等に対して考慮
する必要がない、、また成形時の密度を低下させること
なく、均質な且つ、高強度の焼結体を得ることができる
とともに、易焼結性をも向上することが可能となる。(Effects of the Invention) According to the manufacturing method of the present invention, by using a nitrided SL-ff1a group metal alloy for the α-8i, 3N4 Saka powder, it is possible to prevent moisture etc. during powder preparation. It is not necessary to take this into consideration, and it is possible to obtain a homogeneous and high-strength sintered body without reducing the density during molding, and it is also possible to improve the ease of sintering.
Claims (1)
化して得られる複合窒化物を焼結助剤として窒化珪素微
粉末と混合して原料組成物を得、これを窒素雰囲気中に
て焼結したことを特徴とする窒化珪素質焼結体の製造方
法。A composite nitride obtained by nitriding an alloy powder of metallic silicon and a group IIIa metal of the periodic table is mixed with silicon nitride fine powder as a sintering aid to obtain a raw material composition, which is sintered in a nitrogen atmosphere. A method for manufacturing a silicon nitride sintered body, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60142693A JPH0633173B2 (en) | 1985-06-28 | 1985-06-28 | Method for manufacturing silicon nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60142693A JPH0633173B2 (en) | 1985-06-28 | 1985-06-28 | Method for manufacturing silicon nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS623074A true JPS623074A (en) | 1987-01-09 |
JPH0633173B2 JPH0633173B2 (en) | 1994-05-02 |
Family
ID=15321334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60142693A Expired - Lifetime JPH0633173B2 (en) | 1985-06-28 | 1985-06-28 | Method for manufacturing silicon nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0633173B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6001759A (en) * | 1997-09-09 | 1999-12-14 | Sumitomo Electric Industries, Ltd. | Silicon nitride sintered body, method of preparing the same and nitrided compact |
-
1985
- 1985-06-28 JP JP60142693A patent/JPH0633173B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6001759A (en) * | 1997-09-09 | 1999-12-14 | Sumitomo Electric Industries, Ltd. | Silicon nitride sintered body, method of preparing the same and nitrided compact |
Also Published As
Publication number | Publication date |
---|---|
JPH0633173B2 (en) | 1994-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4716133A (en) | Method for production of silicon nitride sintered body | |
JPH0255263A (en) | Silicon nitride sintered body and production thereof | |
JPH0222175A (en) | Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder | |
JPS623074A (en) | Manufacture of silicon nitride base sintered body | |
JPH0826815A (en) | Rare earth compound oxide-based sintered compact and its production | |
JP2687632B2 (en) | Method for producing silicon nitride sintered body | |
JPS623076A (en) | Manufacture of silicon nitride base sintered body | |
JPH0259471A (en) | Silicon nitride-based sintered body having high strength at high temperature and production thereof | |
JPS63103867A (en) | Manufacture of silicon nitride base sintered body | |
JPS61227908A (en) | Preparation of raw material powder for sintered silicon nitride | |
JPS6317210A (en) | Production of aluminum nitride powder | |
JPS58161975A (en) | Manufacture of silicon nitride sintered body | |
JP3116701B2 (en) | Method for producing silicon nitride sintered body | |
JPH0692270B2 (en) | Silicon nitride sintered body | |
JPH06279124A (en) | Production of silicon nitride sintered compact | |
JP2534213B2 (en) | Method for producing silicon nitride based sintered body | |
JPS60186469A (en) | Manufacture of silicon nitride sintered body | |
JPS63147867A (en) | Manufacture of silicon nitride sintered body | |
JP2746760B2 (en) | Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same | |
JPH0633169B2 (en) | Method for manufacturing silicon nitride sintered body | |
JP2671539B2 (en) | Method for producing silicon nitride sintered body | |
JP2746759B2 (en) | Silicon nitride sintered body | |
JP3144178B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPS61247665A (en) | Beta silicon nitride base oxynitride sintered body and manufacture | |
JP2946593B2 (en) | Silicon nitride sintered body and method for producing the same |