JPS6230602A - Steam modifying furnace - Google Patents
Steam modifying furnaceInfo
- Publication number
- JPS6230602A JPS6230602A JP16744885A JP16744885A JPS6230602A JP S6230602 A JPS6230602 A JP S6230602A JP 16744885 A JP16744885 A JP 16744885A JP 16744885 A JP16744885 A JP 16744885A JP S6230602 A JPS6230602 A JP S6230602A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- tube
- reaction
- double
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/062—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は水蒸気改質炉、特に燃料電池発電用の水素を
製造するに適した高能率でコンパクトな水蒸気改質炉に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam reforming furnace, and particularly to a highly efficient and compact steam reforming furnace suitable for producing hydrogen for fuel cell power generation.
従来の技術
燃料電池発電用の水素を発生するために用いられる水蒸
気改質炉は、その立地条件−し、高能率でコンパクトで
あることが要求されている。2. Description of the Related Art Steam reforming furnaces used to generate hydrogen for fuel cell power generation are required to be highly efficient and compact due to their location.
その代表的なものを第3図により説明すると、触媒を充
填した二重管式反応管1を複数本、炉体2内に並列に設
置し、それらの先端11方向から高温の加熱用ガス(燃
焼ガス)を加熱用ガス人口3から送入して反応管を外部
から加熱し、炭化水素と水蒸気とよりなる原料ガスをラ
イン4から送入して二重管式反応管l内で接触改質反応
を行わせ、分解生成した水素含有ガスをライン5から取
り出す構造になっている。記号6は加熱用ガスの排出口
である。A typical example is explained with reference to FIG. 3. A plurality of double-tube reaction tubes 1 filled with a catalyst are installed in parallel in a furnace body 2, and a high-temperature heating gas ( Combustion gas) is fed from heating gas line 3 to heat the reaction tube from the outside, and raw material gas consisting of hydrocarbons and steam is fed from line 4 to undergo catalytic reforming inside the double-tube reaction tube l. The structure is such that a hydrogen-containing gas produced by decomposition is taken out from a line 5 through a hydrogen-containing reaction. Symbol 6 is a heating gas outlet.
原料ガスは二重管式反応管の外管と内管の間に充填され
た触媒層を、加熱用ガスに対し向流となるように流れる
。The raw material gas flows through the catalyst layer filled between the outer tube and the inner tube of the double-tube reaction tube in a countercurrent manner to the heating gas.
高効率化のためには加熱用ガスの温度を出来る。To improve efficiency, the temperature of the heating gas can be controlled.
だけ高温にすることが望ましいが、このような装置では
、反応管の先端は最も高温の加熱用ガスに曝される一方
、原料が触媒層を加熱用ガスと向流接触しつつ反応して
きた反応管の先端では反応完結間際のため吸熱反応量が
少なく、吸熱量の不足と高温の加熱用ガスからの熱輻射
の影響により温度が急上昇し過熱されるので、反応管の
先端11が焼損する危険が生じ、運転負荷の制限を余儀
なくされる場合がある。However, in such equipment, the tip of the reaction tube is exposed to the highest temperature heating gas, while the raw material reacts with the catalyst layer in countercurrent contact with the heating gas. At the tip of the tube, the amount of endothermic reaction is small because the reaction is about to be completed, and the temperature rises rapidly due to the insufficient amount of heat absorption and the influence of heat radiation from the high-temperature heating gas, resulting in overheating, so there is a risk of burning out the tip 11 of the reaction tube. may occur, forcing restrictions on the operating load.
このような問題を解決するため、反応管に特別な耐熱性
材料を使用すれば設備費が増加する。また加熱用ガスの
温度を下げると効率が低下する。To solve this problem, using a special heat-resistant material for the reaction tube increases equipment costs. Furthermore, lowering the temperature of the heating gas lowers the efficiency.
発 が しようとする混題点
本発明は、上記問題点を解決し、高効率でコンパクトで
、特別な耐熱性材料を使用しなくても長時間安定操業の
できる水蒸気改質炉を提供することを目的とする。The present invention solves the above problems and provides a steam reforming furnace that is highly efficient, compact, and capable of stable operation for a long period of time without using special heat-resistant materials. With the goal.
発明の構成
、J 占 るための
本発明は、触媒を充填した二重管式反応管を複数本、炉
体内に並列に設置し、それらの先端方向から高温の加熱
用ガスを送入して二重管式反応管を外部から加熱し、炭
化水素と水蒸気とよりなる原料ガスを二重管式反応管内
を通過させて反応を行わせる形式の水蒸気改質炉におい
て、前記並列した二重管式反応管よりも加熱用ガスの炉
体内への入口に近い位置に触媒を充填した予備反応管を
設置して、原料ガスの少なくとも一部がこの予備反応管
を通過してから炉体内に並列に設置された複数本の二重
管式反応管に送入されるように配管した構造を有するこ
とを特徴とする。Structure of the Invention, J The present invention has a plurality of double-tube reaction tubes filled with a catalyst installed in parallel in a furnace body, and high-temperature heating gas is introduced from the tip direction of the tubes. In a steam reforming furnace of the type in which a double tube reaction tube is heated from the outside and a raw material gas consisting of hydrocarbons and steam is passed through the double tube reaction tube to perform a reaction, the double tubes arranged in parallel are A preliminary reaction tube filled with a catalyst is installed at a position closer to the inlet of the heating gas into the furnace body than the type reaction tube, and at least a portion of the raw material gas passes through this preliminary reaction tube before being paralleled in the furnace body. It is characterized by having a piping structure so that the gas is fed into a plurality of double-tube reaction tubes installed in the reactor.
第1図は具体的設計例により本発明を説明する為の図で
、触媒を充填した二重管式反応管lを複数本、炉体2内
に並列に設置し、それらの先端11方向から高温の加熱
用ガス(燃焼ガス)を加熱用ガス人口3から送入して二
重管式反応管lを外部から加熱し、炭化水素と水蒸気と
よりなる原料ガスを二重管式反応管l内を通過させて反
応を行わせる形式の水蒸気改質炉において、並列した二
重管式反応管lよりも加熱用ガスの炉体内への入口に近
い位置に、即ちこの場合は加熱用ガスの炉体内への入口
部分を取り巻くように触媒を充填した環状の予備反応管
7を設置し、原料ガスの少なくとも一部がライン8によ
りこの予備反応管7を通過してから炉体内に並列に設置
された複数本の二重管式反応管1に送入されるように配
管した構造を有している。FIG. 1 is a diagram for explaining the present invention using a specific design example, in which a plurality of double-tube reaction tubes l filled with a catalyst are installed in parallel in a furnace body 2, and their tips 11 are High-temperature heating gas (combustion gas) is fed from the heating gas port 3 to heat the double tube reaction tube l from the outside, and the raw material gas consisting of hydrocarbons and water vapor is fed into the double tube reaction tube l. In a steam reforming furnace in which the reaction is carried out by passing the heating gas through the reactor, the heating gas is placed at a position closer to the inlet of the heating gas into the furnace than the parallel double-tube reaction tubes l, that is, in this case, the heating gas is An annular preliminary reaction tube 7 filled with a catalyst is installed so as to surround the inlet portion into the furnace body, and at least a part of the raw material gas passes through this preliminary reaction tube 7 via a line 8, and then installed in parallel inside the furnace body. It has a piping structure so that it is fed into a plurality of double-tube reaction tubes 1.
二重管式反応管1に原料ガスを直接送入するライン4に
設けた弁10を調節することにより予備反応管7を通過
する原料ガス量を制御する。この弁10を閉鎖すれば、
原料ガスは全量ライン8により予備反応管7を通過して
から炉体内に並列に設置された複数本の二重管式反応管
1に送入される。The amount of raw material gas passing through the preliminary reaction tube 7 is controlled by adjusting the valve 10 provided in the line 4 that directly feeds the raw material gas into the double-tube reaction tube 1 . If this valve 10 is closed,
The raw material gas passes through the pre-reaction tube 7 via a total line 8, and then is fed into a plurality of double-tube reaction tubes 1 installed in parallel inside the furnace body.
第2図は本発明の他の具体的設計例を示したもので、二
重管式反応管1の向きと加熱用ガスの炉体内への入口3
の位置が第1図に示したものと上下が逆になっているが
、木質的に同じ形式の水蒸気改質炉である。Figure 2 shows another specific design example of the present invention, showing the orientation of the double-tube reaction tube 1 and the inlet 3 of the heating gas into the furnace body.
Although the position of the furnace is upside down from that shown in Figure 1, it is a steam reforming furnace of the same type in wood.
炉体内に並列に設置された複数本の二重管式反応管lよ
りも管長が長い触媒を充填した予備反応管9が、これら
二重管式反応管と並列し、几つその先端91がいずれの
二重管式反応管の先端11よりも加熱用ガスの炉体内へ
の入口3に接近して位置するように設置してあり、原料
ガスの少なくとも一部がライン8によりこの予備反応管
9を通過してから炉体内に並列に設置された複数本の二
1重管式反応管lに送入されるように配管した構造を有
している。A preliminary reaction tube 9 filled with a catalyst and having a longer pipe length than the plurality of double-tube reaction tubes 1 installed in parallel in the furnace body is parallel to these double-tube reaction tubes, and its tip 91 is It is installed so that it is located closer to the inlet 3 of the heating gas into the furnace body than the tip 11 of any of the double-tube reaction tubes, and at least a part of the raw material gas is passed through the line 8 to this preliminary reaction tube. The reactor has a piping structure in which it passes through a tube 9 and is fed into a plurality of double tube reaction tubes 1 installed in parallel inside the furnace body.
1」
入口3から炉体内へ送入された高温の加熱用ガス(燃焼
ガス)は、まず並列した二重管式反応管よりも加熱用ガ
スの炉体内への入口に近い位置に触媒を充填した予備反
応管、具体例で言えば加熱用ガスの炉体内への入口部分
を取り巻くように触媒を充填した環状の予備反応v7(
第1図の例)又は先端がいずれの二重管式反応管の先端
よりも加熱用ガスの炉体内への入口に接近して位置する
ように設置してある予備反応管9(第2図の例)に接触
し急冷された後、二重管式反応管1に接触してそれらを
加熱する。1. The high-temperature heating gas (combustion gas) sent into the furnace body from the inlet 3 is first filled with a catalyst at a position closer to the inlet of the heating gas into the furnace body than the parallel double-tube reaction tubes. A specific example is the annular pre-reaction tube V7 filled with a catalyst so as to surround the inlet of the heating gas into the furnace body.
(Example in Figure 1) or the preliminary reaction tube 9 (Figure 2) installed so that its tip is located closer to the inlet of the heating gas into the furnace body than the tip of any of the double-tube reaction tubes. example) and are rapidly cooled, then contact the double-tube reaction tube 1 and heat them.
予備反応管7(第1図の例)又は予備反応管9(第2図
の例)は当然高温の加熱用ガス(燃焼ガス)に直接接触
することになるが、この予備反応管には炭化水素ガスと
水蒸気とのよりなる原料ガスの少なくとも一部、必要と
あれば全量が通過するように配管してあるので、低温の
原料による冷却作用が集中的、効果的に働く、また予備
反応管の中には触媒が充填してあるので、原料の一部は
吸熱反応を起し、その吸熱による冷却効果も加わるので
、予備反応管は過熱されることなく長時間の使用に耐え
る。Naturally, the pre-reaction tube 7 (example in Figure 1) or the pre-reaction tube 9 (example in Figure 2) comes into direct contact with high-temperature heating gas (combustion gas), but this pre-reaction tube is The piping is designed so that at least a portion, and if necessary, the entire amount, of the raw material gas consisting of hydrogen gas and water vapor passes through, so that the cooling effect of the low-temperature raw material is concentrated and effective, and the pre-reaction tube is Since the catalyst is filled inside, a portion of the raw materials undergoes an endothermic reaction, and this endothermic cooling effect is added, allowing the preliminary reaction tube to withstand long-term use without being overheated.
加熱用ガスが二重管式反応管1に接触する詩の温度は低
下しているので、二重管式反応管の先端11の過熱によ
る焼損の恐れはなくなる。Since the temperature at which the heating gas contacts the double-tube reaction tube 1 is lowered, there is no risk of burning out the tip 11 of the double-tube reaction tube due to overheating.
二重管式反応管の外部からの加熱温度は低くなっても、
原料ガスは予備反応管で予熱されてから供給されるので
、二重管式反応管内の平均原料温度は低下することなく
、水蒸気改質反応の進行に支障はない。Even if the heating temperature from the outside of the double-tube reaction tube is lower,
Since the raw material gas is preheated in the preliminary reaction tube and then supplied, the average raw material temperature in the double tube reaction tube does not decrease, and there is no problem with the progress of the steam reforming reaction.
比較例1 第3図に示した4I造の水蒸気改質炉において。Comparative example 1 In the 4I steam reforming furnace shown in Fig. 3.
加熱用ガスとして1300℃の燃焼ガスを使用して、4
50℃に予熱された炭化水素と水蒸気とよりなる原料ガ
スを供給した時の各部の温度を測定したところ、加熱用
ガス出口温度=640℃、二重管式反応、管の触媒層入
口における原料ガス温度:450℃、触媒層出口におけ
る原料ガス温度=865℃、反応管基部における表面温
度:550℃1反応管先端における表面温度: 101
0℃であった。Using 1300℃ combustion gas as heating gas, 4
When the temperature of each part was measured when a raw material gas consisting of hydrocarbon and steam preheated to 50 °C was supplied, the heating gas outlet temperature = 640 °C, double tube reaction, raw material at the catalyst layer inlet of the tube. Gas temperature: 450°C, raw material gas temperature at catalyst layer outlet = 865°C, surface temperature at the base of the reaction tube: 550°C, surface temperature at the tip of the reaction tube: 101
It was 0°C.
実施例1
比較例1で使用した水蒸気改質炉を第1図のように改造
して、加熱用ガスの炉体内への入口部分を取り巻くよう
に触媒を充填した環状の予備反応管を設置し、原料ガス
が全部この予備反応管を通過してから炉体内に並列に設
置された複数本の二重管式反応管に送入されるようにし
た。Example 1 The steam reforming furnace used in Comparative Example 1 was modified as shown in Figure 1, and an annular preliminary reaction tube filled with a catalyst was installed to surround the inlet of the heating gas into the furnace body. After all of the raw material gas passed through this preliminary reaction tube, it was fed into a plurality of double-tube reaction tubes installed in parallel inside the furnace body.
比較例1と、同様に、加熱用ガスとして1300℃の燃
焼ガスを使用し、450℃に予熱された炭化水素と水蒸
気とよりなる原料ガスを予備反応管に供給した時の各部
の温度を測定したところ、加熱用ガス出口温度:620
℃、二重管式反応管の触媒層入口における原料ガス温度
:488℃、触媒層出口における原料ガス温度=830
℃、二重管式反応管基部における表面温度=550℃1
反応管先端における表面温度=910℃であった。Similarly to Comparative Example 1, 1300°C combustion gas was used as the heating gas, and the temperature of each part was measured when a raw material gas consisting of hydrocarbons and steam preheated to 450°C was supplied to the preliminary reaction tube. As a result, the heating gas outlet temperature: 620
°C, raw material gas temperature at the catalyst layer inlet of the double tube reaction tube: 488 °C, raw material gas temperature at the catalyst layer outlet = 830
°C, surface temperature at the base of the double tube reaction tube = 550 °C1
The surface temperature at the tip of the reaction tube was 910°C.
比較例1の場合、触媒層出口における原料ガス温度が8
65℃であっても1反応管先端の最高温部において原料
ガスを最後に(触媒層出口で)急加熱することになるた
め、その熱量は反応熱としてよりも出口ガスの加熱のた
めに多く使用されてしまい、実際に得られる出口ガス組
成(炭化水素の転化率)は800℃における平衡ガス組
成値と同じであった。In the case of Comparative Example 1, the raw material gas temperature at the outlet of the catalyst layer was 8.
Even at 65°C, the raw material gas is rapidly heated at the end (at the outlet of the catalyst layer) at the highest temperature point at the tip of one reaction tube, so the amount of heat is more for heating the outlet gas than for reaction heat. The actually obtained outlet gas composition (hydrocarbon conversion rate) was the same as the equilibrium gas composition value at 800°C.
これに対し実施例1の場合は、比較例1に比し二重管式
反応管先端における表面温度は100℃低下し910℃
になったため、反応管に通常の材質を使用しても焼損す
る恐れはなくなった。しかも触媒層出口における原料ガ
ス温度が830℃であっても、触媒層入口における原料
ガス温度が比較例1の場合よりも高い(488℃=45
0℃)ため触媒層における反応の進行に時間的余裕があ
り、実際に得られる出口ガス組成は815°Cにおける
平衡ガス組成値と同じであった。On the other hand, in the case of Example 1, the surface temperature at the tip of the double-tube reaction tube was lowered by 100°C to 910°C compared to Comparative Example 1.
As a result, there is no longer any risk of burnout even if normal materials are used for the reaction tube. Moreover, even if the raw material gas temperature at the catalyst bed outlet is 830°C, the raw material gas temperature at the catalyst bed inlet is higher than that of Comparative Example 1 (488°C = 45°C).
0°C), there was time for the reaction to proceed in the catalyst layer, and the exit gas composition actually obtained was the same as the equilibrium gas composition value at 815°C.
え几立盈ス
従来から使用されている二重管式反応管を用いた水蒸気
改質炉をベースとして、コンパクトで、より高効率で、
運転信頼性のある水蒸気改質炉が得られる。Based on the traditionally used steam reforming furnace using double tube reaction tubes, it is compact, has higher efficiency,
A steam reforming furnace with operational reliability can be obtained.
第1図は本発明による水蒸気改質炉の具体的設計例を示
す図、第2図は他の具体的設計例を示す図、第3図は従
来の水蒸気改質炉の構造の説明図である。Fig. 1 is a diagram showing a specific design example of a steam reforming furnace according to the present invention, Fig. 2 is a diagram showing another specific design example, and Fig. 3 is an explanatory diagram of the structure of a conventional steam reforming furnace. be.
Claims (1)
並列に設置し、それらの先端方向から高温の加熱用ガス
を送入して二重管式反応管を外部から加熱し、炭化水素
と水蒸気とよりなる原料ガスを二重管式反応管内を通過
させて反応を行わせる形式の水蒸気改質炉において、前
記並列した二重管式反応管よりも加熱用ガスの炉体内へ
の入口に近い位置に触媒を充填した予備反応管を設置し
て、原料ガスの少なくとも一部がこの予備反応管を通過
してから炉体内に並列に設置された複数本の二重管式反
応管に送入されるように配管した構造を有する水蒸気改
質炉。 2 加熱用ガスの炉体内への入口部分を取り巻くように
環状の予備反応管を設置してある特許請求の範囲第1項
記載の水蒸気改質炉。 3 炉体内に並列に設置された複数本の二重管式反応管
よりも管長が長い予備反応管を、二重管式反応管と並列
し且つその先端がいずれの二重管式反応管の先端よりも
加熱用ガスの炉体内への入口に接近して位置するように
設置してある特許請求の範囲第1項記載の水蒸気改質炉
。[Claims] 1 A plurality of double-tube reaction tubes filled with a catalyst are installed in parallel in a furnace body, and high-temperature heating gas is fed from the tip direction of the double-tube reaction tubes. In a steam reforming furnace in which a raw material gas consisting of hydrocarbons and steam is passed through a double-tube reaction tube to carry out a reaction, the heating is higher than that of the parallel double-tube reaction tubes. A preliminary reaction tube filled with a catalyst is installed near the inlet of the raw material gas into the furnace body, and at least a part of the raw material gas passes through this preliminary reaction tube. A steam reforming furnace with a structure in which the piping is arranged so that the water is fed into a double-tube reaction tube. 2. The steam reforming furnace according to claim 1, wherein an annular preliminary reaction tube is installed so as to surround the inlet portion of the heating gas into the furnace body. 3. A pre-reaction tube having a longer tube length than the multiple double-tube reaction tubes installed in parallel in the furnace body is placed in parallel with the double-tube reaction tubes and its tip is connected to either of the double-tube reaction tubes. The steam reforming furnace according to claim 1, wherein the steam reforming furnace is located closer to the inlet of the heating gas into the furnace body than the tip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16744885A JPS6230602A (en) | 1985-07-31 | 1985-07-31 | Steam modifying furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16744885A JPS6230602A (en) | 1985-07-31 | 1985-07-31 | Steam modifying furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6230602A true JPS6230602A (en) | 1987-02-09 |
Family
ID=15849887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16744885A Pending JPS6230602A (en) | 1985-07-31 | 1985-07-31 | Steam modifying furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6230602A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6463195B1 (en) | 1999-05-31 | 2002-10-08 | Fujikura Ltd. | Method of manufacturing polarization-maintaining optical fiber coupler |
JP2006001816A (en) * | 2004-06-21 | 2006-01-05 | Mitsubishi Heavy Ind Ltd | Apparatus and method for manufacturing hydrogen |
US7050672B1 (en) | 1999-08-20 | 2006-05-23 | Fujikura Ltd. | Polarization-maintaining optical fiber and polarization-maintaining optical fiber component |
JP2009530219A (en) * | 2006-03-17 | 2009-08-27 | イエフペ | Internal combustion exchange reactor for fixed bed endothermic reaction |
-
1985
- 1985-07-31 JP JP16744885A patent/JPS6230602A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6463195B1 (en) | 1999-05-31 | 2002-10-08 | Fujikura Ltd. | Method of manufacturing polarization-maintaining optical fiber coupler |
US7050672B1 (en) | 1999-08-20 | 2006-05-23 | Fujikura Ltd. | Polarization-maintaining optical fiber and polarization-maintaining optical fiber component |
JP2006001816A (en) * | 2004-06-21 | 2006-01-05 | Mitsubishi Heavy Ind Ltd | Apparatus and method for manufacturing hydrogen |
JP2009530219A (en) * | 2006-03-17 | 2009-08-27 | イエフペ | Internal combustion exchange reactor for fixed bed endothermic reaction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6299994B1 (en) | Process for providing a pure hydrogen stream for use with fuel cells | |
US6280864B1 (en) | Control system for providing hydrogen for use with fuel cells | |
US6190623B1 (en) | Apparatus for providing a pure hydrogen stream for use with fuel cells | |
US3541729A (en) | Compact reactor-boiler combination | |
CA2038289C (en) | Endothermic reaction apparatus | |
KR100445183B1 (en) | Plate Type Steam Reformer | |
EP0360505B1 (en) | Hydrocarbon reforming apparatus | |
JPH04214001A (en) | Manufacture of hydrogen-containing gas stream | |
JP2004171989A (en) | Hydrogen generator for fuel cell | |
CA2323660A1 (en) | Apparatus for generation of pure hydrogen for use with fuel cells | |
NO812856L (en) | PROCEDURE FOR THE PREPARATION OF GAS MIXTURES CONTAINING HYDROGEN AND NITROGEN. | |
EP0272282B1 (en) | Steam reformer with internal heat recovery | |
EP0770269B1 (en) | Fuel processing apparatus having a furnace for fuel cell power plant | |
JPS59203372A (en) | Fuel reformer for fuel cell | |
JPS6230602A (en) | Steam modifying furnace | |
JPS5826002A (en) | Steam reforming method and reaction tube for steam reforming | |
US3120431A (en) | Method for converting hydrocarbons | |
KR101846969B1 (en) | Fuel reforming divice | |
JPH05269369A (en) | Endothermic reaction process | |
JP4147521B2 (en) | Self-oxidation internal heating type reforming method and apparatus | |
JPS63197534A (en) | Reaction device | |
JPS63126539A (en) | Fuel reformer | |
JPS5823168A (en) | Fuel cell power generating system | |
JP2601707B2 (en) | Catalytic reactor | |
JP3094435B2 (en) | Insulated reformer |