【発明の詳細な説明】[Detailed description of the invention]
3、発明の詳細な説明
(イI 産業上の利用分野
本発明は、ポータプル式のビデオテープレコーダ(4T
R)等の電子機器の電源供給装置として用いられるAC
パワーアダプタに用いて好適なバッテリー充電回路に関
する。
(C71従来の技術
従来、複数のバッテリー(例えばN 1o(l電池)を
充電する方法として、この複数のバッテリー(多数のN
1p(1?!池を有するバッテリーバックも含む)を順
次個別に充電するものがちる。この充電に際して、充電
中のバッテリーが満充電状態に達したか否かの判定をし
て、満充電状態になればこのバッテリーの充電を停止し
1次のバッテリーの充電を為す所謂満充電検出回路が必
要となる。
この満充電検出回路としては、特公昭60−18177
号公報に一例が開示されている。
前記従来技術は、バッテリーに充電電圧特性がピーク点
後に漸減する点に着目して、そのピーク点電圧に対して
所定の電圧値(ΔV)が降下し之ことを検知して満充電
を検出する様に構成されたものである。
(ハ)発明が解決しようとする問題点
前記従来技術による満充電検出回路を用いて。
既に満充電状態にある満充電バッテリーを再充電した場
合の充電特性の一例が第2図の一点鎖、腺に示されてお
り、充′r!を開始−分後にピークに達し。
以降直線面に降下していく。この降下途中にΔVの電圧
降下が検知され、充電が停止される。fiた過放電バッ
テリーの充1を特性は第2図の実線に示される様に、ピ
ークに違した後、一旦降下し定常状態に達する。
従って、定常状態に達する過程において、ΔVの電圧降
下が検出され、誤って満充電であると判断されて充電暑
中止してしまう惧れがある。そこで、定常状態に達する
までの期間(第2図では充電開始後5分間)にΔV電圧
降下の検(8)が為されない様に検出禁止時間全延長す
る必要が生じるが検出禁止時間を延長すると満充電バッ
テリーの杏充電時の満充電検出が遅れることになり、過
充電時開が項部し充電不良となる。
に)問題点を解決する念めの手段
本発明は、充′@、開始直後の充電初期電圧により過放
電バッテリーを判別し、ΔV溝充電検出の禁止時間を十
分に長く4定し、検出開始タイミングを遅らせることを
特徴とする。
ネ1作 用
本発明は上述の如く構成したので、バッテリーが過放電
状態であっても、充電開始直後の電圧降下による溝光を
誤判別が防止される。
(へ)実施例
以下1図面に従い本発明の一実施例について説明する。
第1図は本発明の一実施例のプロラグ図である。
(1)は電力源であるACパック(電源回路)であり、
定電圧電源出力を供給する。
(2)はAOパック挿入検出回路である。ACパックは
前述の様に、バッテリーと同一形状であってバッテリー
を用いる機器のバッテリー接続部に収容し℃用いること
ができる。そこで、ACパックとバッテリーとが誤って
充電装置に接続される惧れがあり、定電流回路と異なる
バッテリーがACパックの位置に接続されるとバッテリ
一端子がショートしてい次場合、大電流により充電装置
が破壊される。これを防ぐために所定位置にACバック
(11が接続されたか否かを検出する。
(4)は逆流検出回路であり、バッテリー充電中に停電
等によって電源ライン(5)の電圧が低下すると。
電源ライン(6)側から電源ライン(5)側に電流が逆
流する慣れがあるため1両電源ライン+51(61の電
圧を比較して逆流電流を検出している。
電源電圧制御回路(3)はAOバック挿入検出回路(2
)、逆流電流検出回路(4)からの検出出力により。
ACバックが所定位置に接続されず、また逆流が検出さ
れた場合に、ACパック(1)からの定電流電源出力の
バッテリーへの供給が阻止される。
(71(81(91は後述の順次切換回路0Qからの制
御信号により開閉制御される出力切換スイッチであり。
夫々電源ライン(6)とバッテリーσ11a’aa3間
に介在されている。
■はバッテリー接続検出回路であり、バッテリー (1
11QZQ31が端子(7a)(8a)(9a)K接続
されているか否かの検出を為す。
しは順次切換回路0Qの制御信号3. Detailed Description of the Invention (I) Industrial Application Field The present invention is directed to a portable video tape recorder (4T
AC used as a power supply device for electronic devices such as
The present invention relates to a battery charging circuit suitable for use in a power adapter. (C71 Prior Art) Conventionally, as a method for charging a plurality of batteries (for example, N 1o (l batteries)),
There are some that charge 1p (including battery bags with 1?! battery) individually in sequence. During this charging, a so-called full charge detection circuit determines whether or not the battery being charged has reached a fully charged state, and when it reaches a fully charged state, stops charging the battery and charges the primary battery. Is required. As this full charge detection circuit,
An example is disclosed in the publication No. The conventional technology focuses on the point where the charging voltage characteristic of the battery gradually decreases after a peak point, and detects a drop in a predetermined voltage value (ΔV) with respect to the peak point voltage to detect full charge. It is structured like this. (c) Problems to be Solved by the Invention Using the full charge detection circuit according to the prior art. An example of the charging characteristics when recharging a fully charged battery that is already in a fully charged state is shown by the dot chain and gland in Figure 2. starts - reaches its peak after minutes. After that, it descends in a straight line. During this drop, a voltage drop of ΔV is detected and charging is stopped. As shown by the solid line in FIG. 2, the characteristics of an over-discharged battery during charging reach a peak, then drop once and reach a steady state. Therefore, in the process of reaching a steady state, a voltage drop of ΔV is detected, and there is a risk that it will be erroneously determined that the battery is fully charged and that charging will be halted. Therefore, it is necessary to extend the entire detection prohibition time so that the ΔV voltage drop is not detected (8) during the period until the steady state is reached (5 minutes after the start of charging in Figure 2), but if the detection prohibition time is extended, When charging a fully charged battery, the detection of full charge will be delayed, and the battery will open when overcharged, resulting in a charging failure. 2) A precautionary measure to solve the problem The present invention distinguishes an over-discharged battery based on the initial charge voltage immediately after the start of charging, sets a sufficiently long period of time during which ΔV groove charge detection is prohibited, and waits until the start of detection. It is characterized by delayed timing. 1. Effects Since the present invention is constructed as described above, even if the battery is in an over-discharged state, misjudgment of groove light due to a voltage drop immediately after the start of charging can be prevented. (F) Example An example of the present invention will be described below with reference to one drawing. FIG. 1 is a prologue diagram of one embodiment of the present invention. (1) is an AC pack (power supply circuit) that is a power source,
Provides constant voltage power output. (2) is an AO pack insertion detection circuit. As mentioned above, the AC pack has the same shape as the battery, and can be housed in the battery connection part of a device using the battery and used at ℃. Therefore, there is a risk that the AC pack and battery may be connected to the charging device by mistake, and if a battery that is different from the constant current circuit is connected to the AC pack, one terminal of the battery may be short-circuited. The charging device is destroyed. In order to prevent this, it detects whether the AC back (11) is connected to a predetermined position. (4) is a reverse current detection circuit, and if the voltage of the power line (5) drops due to a power outage etc. while charging the battery. Since we are accustomed to the current flowing backwards from the line (6) side to the power line (5) side, we detect the reverse current by comparing the voltages of both power lines +51 (61).The power supply voltage control circuit (3) AO back insertion detection circuit (2
), by the detection output from the reverse current detection circuit (4). If the AC back is not connected to the predetermined position and reverse current is detected, constant current power output from the AC pack (1) is blocked from being supplied to the battery. (71 (81 (91) is an output changeover switch whose opening and closing are controlled by a control signal from a sequential changeover circuit 0Q, which will be described later. They are respectively interposed between the power line (6) and the battery σ11a'aa3. ■ is the battery connection It is a detection circuit and a battery (1
It is detected whether or not 11QZQ31 is connected to terminals (7a), (8a), (9a)K. Control signal of sequential switching circuit 0Q
【よりリセットされ1
例えば60分で急速充電が完了する様なバッテリーの場
合に、70分後位にタイマー出力を発して、誤動作によ
り溝光1を後も過充電が続くことを防ぐ念めの保護用タ
イマー回路である。
tiF3は端子(7”)(8a)(9a)にショートバ
ッテリーが接続された場合に、端子電圧が異宮に低下す
るのを検知するショート検出回路である。
0′nは端子(7a)(8a)(91に誤ッテACパッ
ク(1)が接続されていないかをメカ的に検知するバッ
テリー挿入検出スイッチである。
順次切換回路filはバッテリー接続検出回路(141
゜保護用タイマー回路+151.ショート検出回路α阻
バッテリー挿入検出スイッチ+1η及び後述の満充電検
出回路08の各出力に基いて制御信号を発する。即ち、
バッテリー接続検出回路(141により、制御信号を発
すべき出力切換スイッチ(7)(81+9)の選択が為
され、満充電検出回路0印により充電中のバッテリーの
充電が完了したことが判定されて、バッテリー接続検出
回路a4により接続状態であると判断される別のバッテ
リーに充電動作が移行し、更にショート検出回路ae及
びバッテリー挿入検出スイッチσ力によシ、ショートバ
ッテリーやACIパックが誤って接続されていると判断
される端子に電源出力が供給されるのが防止される。
次に満充電検出回路(1口とそれに付随する制御回路に
ついて説明する。
αjは初期電圧検出回路(判別手段)であり、電源ライ
ン(6)の電圧値の検出を行っている。順次切換回路α
Qから制御信号が発せられ、出力切換スイッチ(73(
81(9)のいずれかが閉路され充電される充電開始直
’& (200〜500 m a e o 後)に初期
電圧が予め設定され九一定レベルのしきい値(5〜6v
程度)よりも低い場合に、充電を開始し念バッテリーは
過放電バッテリーであると判定し、その判定出力をタイ
マー切換回路■に入力する。
タイマー切換回路のは判定出力により過放電バッテリー
であると判定された場合に、タイマーC!■出力t、そ
れ以外の場合にタイマー−出力Z後段のΔV検出初期禁
止回路囚に供給する。
タイマー■の設定時間【T1】は十分長く(例えば第2
図の例では5分)設定され、これによりΔV検出禁止期
間が延び、第2図実碌の過放電ノ(ツテリーの充電特性
でみられるピークから定常状態に移行する間のΔゞl降
下を無視できることになる。
タイマー211の設定時間(t2)はタイマー■に比べ
遥に短く(第1図の例では約2分)設定される。尚0両
タイマー■CD共に順次切換回路αQからの制御信号の
立上りによりリセットされる。 ・タイマー切換回路
Q3は前述の如く、過放電バッテリーである場合にタイ
マーCGが選択されて、充電開始して時間T1後に、ま
た過放電バッチIJ +ででない場合(満充電バッテリ
ーか未満充電バッテリーである)には時間T2後に後段
のΔV検出初期禁止回路のにタイマー出力が発せられ、
このタイマー出力が発せられるまでの期間、ΔV検出初
期禁止回路のは満充電検出出力酩によるΔV降下検出が
阻止される。従って、過放電バッテリーについては充電
電圧のΔV降下検出は定常状態に達するまで阻止され6
未満充電や満充電バッテリーについてはタイマー(2D
にて設定される時間T2(初期禁止時間)後に直ちにΔ
V降下検出が為され満充電の検出が為される。バッテリ
ーカ満充電になると満充電検出回路tiBより満充電検
出出力が発せられ、順次切換回路(1Gに入力され、こ
れを受けて1次のバッテリーの充電が開始される。尚、
初期電圧検出回路■の検出は出力切換スイッチ(7)(
8)(9)の切換直後、200〜5QQmaec間は切
換時のノイズによる影響を防ぐために検出は為されず、
また、過放電バッテリーでない場合にも。
T2なる初期禁止時間を付与するのは1通常のバッテリ
ー(過放電バッテリーでない)の場合、放電状態であれ
ば充電初期のΔV降下特性が極めて初期に出現する可能
性があるなめである。
第3図は本実施例の具体的な回路図である。lIn次切
換回路1(+1からの出力切換スイッチ(7)(811
9)の夫々の開閉用の制御信号はANDゲートC慢、コ
ンデンサ(311を経てインバータの唖に供給され反転
後タイマー■12Dのリセット端子に入力される。タイ
マーrACI!11の出力はインバータCW4)を経て
トランジスタ(Ql)のベースに供給され特にタイマー
(2Dの出力は前述のタイマー切換回路のに相当するス
イッチ■を介している。更にトランジスタ(Ql)のコ
レクタはトランジスタ(Ql)のベースに接続される。
ここでトランジスタ(Ql)(Ql)によってΔV検出
初期禁止回路が構成される。
トランジスタ(Ql)のコレクタはコンデンサ(C1)
の+側端子、第1.第20Fアンプ東l37)の−側端
子に接続される。第10Pアンプ弼の+側入力には、電
源ライン(6)、抵抗(I’1l)(’R2)(R5)
による分圧回路の抵抗(R3)の端子電圧が印加されて
いる。また、抵抗(R1)(R2)の両端には第2ツエ
ナーダイオード(Zn2)が接続されている。第10P
アンプ国の出力と一側入力の間には、抵抗(R4)とダ
イオードCD’1)による帰還回路が形成されている。
この−側端子の電圧がコンデンサ(01)’<充電する
。
結局、第10FアンプC刑は、バッファアンプとして利
用されていて、ホールドコンデy f (Q 1)には
、抵抗(R5)の端子′JL王のピーク値がホールドさ
れる。尚、抵抗(R4)とアース間に介在されたコンデ
ンサ(C2〕は充電特に振動等により充電端子の接触抵
抗が変化し、充電電圧が双動する事による一満充電検出
回路の誤動作防止用である。
$20FアンプGηは比較回路として用いられ。
+側端子は抵抗(R1)(R2)の接続点に、−側端子
はホールドコンデンサ(01)の端子電圧が接続されて
いる。第2opアンプc3ηの出力は順次切換回路α臼
に供給される。
初期電圧検出回路(19のエミ・ツタ7オロアのトラン
ジスタ(Q3)のベースに電源ライン(6)が第1ツエ
ナーダイオード(ZDl)を介して接続されコレクタ出
力がスイッチ(至)の開閉制御を為す。尚第1ツエナー
ダイオード(ZDl)のツェナー電圧は、過放電が否か
の判定を為すしきい値Vl(例えば5〜6v程度)であ
る。充電開始直後の充!電圧が、しきい値vpより高い
場合には、トランジスタ(Q3〕が導通し、スイッチ(
至)への開閉制御信号はLOWとなり、スイッチ(ト)
は閉路される。
タイマー■(2υは順次切換回路(Lqからの制御信号
の立上りにてリセットされる。即ち充電開始と同時にリ
セットされる。タイマー121J出力は時間T2後にL
−e!(となりインバーターにて反転される為トランジ
スタ(Ql)(Q2)は共に導通し、ホールドコンデン
サ(01)の電荷は放電される。
バッテリーの充電中には、 +ql源ライン(6)は。
バッテリ一端子電圧の変化に応じて上昇してゆく。
そこで、1lG2opアンプC17)の+側入力の電圧
が一側入力よシも高いので、第20Fアンプ出力はHレ
ベルである。ところが、充電が完了して、バッテリーの
端子電圧が低下すると、−個入力の方が高くなって、第
20Fアンプ0″71出力はLレベルとなる。この変化
により順次切換回路001は充電を中止し1次のバッテ
リーの充電を開始する。
過放電バッテリーの場合には、充電初期電圧はツェナー
ダイ万一ド(ZDl)のツェナー電圧よシも低い為、ト
ランジスタ(Q3)は非導通となり、スイッチ(至)は
開路される。従って、充電開始後の時間T1後にタイマ
ー翰よ多出力が発せられ。
トランジスタ(Ql ) (Q2 )が導通する。以下
ΔV満充電検出動作については過放電バッテリーの場合
と同一である。尚、@2図に示した充電特性では満充電
と過放電のバッテリーについてのみ示されているが1未
満充電バッテリーについては充電開始@後はしきい値v
pより高く、以後ピーク値を過ぎてもΔVより小さな電
圧降下をした後定富状態となるため、ΔV満充電検出の
開始タイミングは満充電バッテリーの場合と同様に充電
開始から時間T2後となる。
(ト)発明の効果
上述の如く本発明によれば、過放電バッテリーの充電時
には、充電開始直後に生じる電圧降下域での満充電の検
出が禁止されて満充電の誤検出が防止され、満充電バッ
テリーや未満充電バッテリーの充電時には早急に満充電
検出が開始され、過充電が防止され有効である。[Reset from 1
For example, in the case of a battery that can be quickly charged in 60 minutes, this protective timer circuit will issue a timer output after 70 minutes to prevent overcharging from continuing even after Mizo Hikari 1 due to malfunction. be. tiF3 is a short-circuit detection circuit that detects a sudden drop in the terminal voltage when a short battery is connected to the terminals (7") (8a) (9a). 0'n is the terminal (7") (7") ( 8a) (91) This is a battery insertion detection switch that mechanically detects whether or not the AC pack (1) is connected by mistake. The sequential switching circuit fil is the battery connection detection circuit (141
゜Protection timer circuit +151. A control signal is generated based on the outputs of a short circuit detection circuit α, a battery insertion detection switch +1η, and a full charge detection circuit 08, which will be described later. That is,
The battery connection detection circuit (141) selects the output changeover switch (7) (81+9) that should issue the control signal, and the full charge detection circuit determines that the charging of the battery being charged is completed by the 0 mark. The charging operation is transferred to another battery that is determined to be connected by the battery connection detection circuit a4, and the short battery or ACI pack is mistakenly connected due to the short circuit detection circuit ae and battery insertion detection switch σ. This prevents the power output from being supplied to the terminals that are judged to be in contact.Next, we will explain the full charge detection circuit (one port) and its accompanying control circuit.αj is the initial voltage detection circuit (discrimination means). Yes, the voltage value of the power line (6) is detected.Sequential switching circuit α
A control signal is issued from Q, and the output selector switch (73(
81 (9) is closed and charged immediately after the start of charging (after 200 to 500 m ae o), the initial voltage is preset and the threshold voltage at a constant level (5 to 6 v
If the battery is lower than the battery level), charging is started and the battery is determined to be an over-discharged battery, and the output of the determination is input to the timer switching circuit (■). When the judgment output of the timer switching circuit determines that the battery is over-discharged, the timer C! (2) Output t, otherwise supplied to the ΔV detection initial inhibition circuit at the subsequent stage of the timer-output Z. The setting time [T1] of the timer ■ is sufficiently long (for example, the second
This extends the ΔV detection prohibition period and prevents the ΔΔl drop during the transition from the peak to the steady state seen in the actual overdischarge characteristics shown in Figure 2 (the charging characteristics of the battery). This can be ignored.The set time (t2) of the timer 211 is much shorter than that of the timer (2) (approximately 2 minutes in the example shown in Figure 1).Both timers (0 and 211) and CD are controlled by the sequential switching circuit αQ. It is reset by the rising edge of the signal. - As mentioned above, the timer switching circuit Q3 is activated when the timer CG is selected when the battery is over-discharged, and after time T1 after starting charging, and when the battery is not over-discharged batch IJ+ ( If the battery is fully charged or less charged, a timer output is issued to the subsequent ΔV detection initial inhibition circuit after time T2.
During the period until this timer output is issued, the ΔV detection initial inhibition circuit is inhibited from detecting a ΔV drop due to the full charge detection output. Therefore, for over-discharged batteries, detection of a ΔV drop in charging voltage is blocked until a steady state is reached.
For less than or fully charged batteries, the timer (2D
Δ immediately after the time T2 (initial prohibition time) set in
V drop is detected and full charge is detected. When the battery is fully charged, a full charge detection output is issued from the full charge detection circuit tiB, which is sequentially input to the switching circuit (1G), and in response to this, charging of the primary battery is started.
Detection of the initial voltage detection circuit ■ is performed using the output selector switch (7) (
8) Immediately after switching in (9), no detection is performed between 200 and 5QQmaec to prevent the influence of noise during switching.
Also, if the battery is not over-discharged. The reason why the initial inhibition time T2 is given is that in the case of a normal battery (not an over-discharged battery), if it is in a discharged state, the ΔV drop characteristic at the beginning of charging may appear very early. FIG. 3 is a specific circuit diagram of this embodiment. lIn next switching circuit 1 (output switching switch (7) from +1 (811
The control signals for opening and closing of each of 9) are supplied to the inverter via the AND gate C and the capacitor (311), and after inversion are input to the reset terminal of the timer 12D.The output of the timer rACI!11 is the inverter CW4). The output of the timer (2D) is supplied to the base of the transistor (Ql) through Here, the transistor (Ql) constitutes a ΔV detection initial inhibition circuit. The collector of the transistor (Ql) is a capacitor (C1).
+ side terminal, 1st. Connected to the - side terminal of the 20th F amplifier east l37). The + side input of the 10th P amplifier is connected to the power supply line (6) and the resistor (I'1l) ('R2) (R5).
A terminal voltage of the resistor (R3) of the voltage dividing circuit is applied. Further, a second Zener diode (Zn2) is connected to both ends of the resistors (R1) and (R2). 10th page
A feedback circuit including a resistor (R4) and a diode CD'1) is formed between the output of the amplifier and one side input. The voltage at this negative terminal charges the capacitor (01)'. After all, the 10F amplifier C is used as a buffer amplifier, and the peak value of the terminal 'JL' of the resistor (R5) is held in the hold capacitor y f (Q1). The capacitor (C2) interposed between the resistor (R4) and the ground is used to prevent the full charge detection circuit from malfunctioning due to double fluctuations in the charging voltage due to changes in the contact resistance of the charging terminal during charging, especially due to vibrations, etc. The $20F amplifier Gη is used as a comparison circuit. The + side terminal is connected to the connection point of the resistors (R1) (R2), and the - side terminal is connected to the terminal voltage of the hold capacitor (01). 2nd op amp The output of c3η is sequentially supplied to the switching circuit α.The power supply line (6) is connected to the base of the initial voltage detection circuit (19 emitter-7or transistors (Q3) through the first Zener diode (ZDl). The collector output controls the opening/closing of the switch (to).The Zener voltage of the first Zener diode (ZDl) is the threshold value Vl (for example, about 5 to 6 V) for determining whether or not there is overdischarge. If the charge voltage immediately after the start of charging is higher than the threshold value vp, the transistor (Q3) becomes conductive and the switch (
The opening/closing control signal to (to) becomes LOW, and the switch (to)
is closed. Timer ■ (2υ is reset at the rise of the control signal from the sequential switching circuit (Lq). In other words, it is reset at the same time as charging starts. The output of timer 121J becomes L after time T2.
-e! (Then, since it is inverted by the inverter, both transistors (Ql) and (Q2) become conductive, and the charge in the hold capacitor (01) is discharged. While the battery is being charged, the +ql source line (6) is connected to the battery. It increases in accordance with the change in the terminal voltage.Then, since the voltage at the + side input of the 11G2 op amp C17) is higher than the one side input, the 20F amplifier output is at H level. However, when charging is completed and the terminal voltage of the battery decreases, the negative input becomes higher and the 20F amplifier 0''71 output becomes L level. Due to this change, the sequential switching circuit 001 stops charging. Then, charging of the primary battery starts. In the case of an over-discharged battery, the initial charge voltage is lower than the Zener voltage of the Zener diode (ZDl), so the transistor (Q3) becomes non-conductive and the switch ( (to) is opened. Therefore, after time T1 after the start of charging, multiple outputs are issued from the timer screen. The transistor (Ql) (Q2) becomes conductive. Below, the ΔV full charge detection operation will be explained as in the case of an over-discharged battery. The charging characteristics shown in Figure @2 are shown only for fully charged and over-discharged batteries, but for batteries with a charge of less than 1, the threshold value v after the start of charging is shown.
p, and even after passing the peak value, the voltage drops smaller than ΔV and then reaches a constant state, so the start timing of ΔV full charge detection is after time T2 from the start of charging, as in the case of a fully charged battery. . (G) Effects of the Invention As described above, according to the present invention, when charging an over-discharged battery, detection of full charge is prohibited in the voltage drop region that occurs immediately after the start of charging, thereby preventing erroneous detection of full charge. When charging a charged battery or a partially charged battery, full charge detection is immediately started, which is effective in preventing overcharging.
【図面の簡単な説明】[Brief explanation of the drawing]
図面は全て本発明の一実施例(C係り、第1図は回路ブ
ロック図、第2図は充電特性図、第6図は回路図である
。
(ll・・・A Oハフ ’) 、 (lit(121
u3= /Z ツfリー; aS−・・満充電検出回路
、 (11・・・初期電圧検出回路(判別手段〕。The drawings all relate to one embodiment of the present invention (C), Fig. 1 is a circuit block diagram, Fig. 2 is a charging characteristic diagram, and Fig. 6 is a circuit diagram. lit(121
u3= /Z tree; aS-... Full charge detection circuit, (11... Initial voltage detection circuit (discrimination means).