JPS62299927A - Telecentric ftheta lens - Google Patents
Telecentric ftheta lensInfo
- Publication number
- JPS62299927A JPS62299927A JP61144615A JP14461586A JPS62299927A JP S62299927 A JPS62299927 A JP S62299927A JP 61144615 A JP61144615 A JP 61144615A JP 14461586 A JP14461586 A JP 14461586A JP S62299927 A JPS62299927 A JP S62299927A
- Authority
- JP
- Japan
- Prior art keywords
- positive lens
- component
- lens component
- front group
- chromatic aberration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000001747 pupil Anatomy 0.000 claims abstract description 9
- 230000004075 alteration Effects 0.000 abstract description 43
- 239000002131 composite material Substances 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 201000009310 astigmatism Diseases 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 206010010071 Coma Diseases 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241001333990 Rugopharynx theta Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/0005—Optical objectives specially designed for the purposes specified below having F-Theta characteristic
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
本発明は、レーザープリンター等の光走査装置に用いら
れるfθレンズ系に関する。Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an fθ lens system used in an optical scanning device such as a laser printer.
従来の光走査装置に用いられるfθレンズの多くは、テ
レセンドリンクではないために走査スポットの位置誤差
が生じ易かった。また、例えば特開昭59−19521
1号公報の如く、テレセンドリンクであったとしてもf
θよりのズレが大きく走査の直線性では未だ充分とは言
えなかった。Many of the fθ lenses used in conventional optical scanning devices do not have a telecentering link, so errors in the position of the scanning spot tend to occur. Also, for example, JP-A-59-19521
Even if it is a telecenter link as in Publication No. 1, f
The deviation from θ was large, and the linearity of scanning was still not sufficient.
しかも、色収差の補正がなされていないため、多数のス
ペクトルを含む光を発する光源を用いても、フィルター
等によって特定の1波長のみを選択して使用することが
必要であった。Moreover, since chromatic aberration has not been corrected, even if a light source that emits light including multiple spectra is used, it is necessary to select and use only one specific wavelength using a filter or the like.
このため、1−記の如き従来のテレセントリックrθレ
ンズ系におい′Cは、光源からの出力を充分に利用する
ことができず、効率が低い走査装置にならざるを(1な
かった。For this reason, the conventional telecentric r.theta. lens system as described in 1-C cannot fully utilize the output from the light source, resulting in a scanning device with low efficiency.
そこで、本発明の11的は、テレセントリック性を維持
しつつ走査の直線性を高め、且つ色収差を良好に補正し
、効率良い傍れた走査装置を構成し得るテレセントリッ
ク10レンズ系を提供することにある。Therefore, an eleventh object of the present invention is to provide a telecentric ten lens system that improves scanning linearity while maintaining telecentricity, corrects chromatic aberration well, and can configure an efficient side-by-side scanning device. be.
c問題点を解決するための手段フ
本発明によるテレセントリック10レンズ系は、第1図
に示した第1実施例の如く、入射瞳1i 1)側から順
に、入射瞳側に凹面を向けた負レンズ成分LFNとその
像側に配置された正レンズ成分]4.・とを有する前群
GF、及び像面近傍に配置された正レンズ成分LRPか
らなる後群GRによって構成されている。そして、前群
GF中の負レンズ成分LIのアツベ数をνFN、前群G
、中の正レンズ成分LFPのアツベ数をν12、前記後
群GRとしての正レンズ成分のアツベ数をシロ、全系の
合成焦点距離を1、前記前群GFの焦点距離をfl、前
記後群G工の焦点距離をR8とするとき、
νFN < 35 (1)νFP
> 45 (2)νl >
55 (3)0.8< f
r/f < 1.3 (4)1、
H< rl/(< 2.11 (5)
の各条4/1を満yするものである。c Means for Solving Problems The telecentric 10 lens system according to the present invention, as in the first embodiment shown in FIG. Lens component LFN and positive lens component placed on its image side]4. . . , and a rear group GR including a positive lens component LRP disposed near the image plane. Then, the Atsube number of the negative lens component LI in the front group GF is νFN, and the front group G
, the Abbe number of the positive lens component LFP in the rear group is ν12, the Abbe number of the positive lens component as the rear group GR is 1, the composite focal length of the entire system is 1, the focal length of the front group GF is fl, the rear group When the focal length of the G lens is R8, νFN < 35 (1) νFP
> 45 (2) νl >
55 (3) 0.8< f
r/f < 1.3 (4) 1,
H<rl/(< 2.11 (5)
This satisfies Article 4/1.
上記の如く、入射瞳側から順に、負レンズ成分と正レン
ズ成分とで11:目ffを構成し、像面の近傍に像側で
テレセントリックとするための後群を配置する構成とし
たことによって、1−記(1)〜(3)の条件によって
色収差補正を良k(になすと共に、上記(4) 、 (
5)の条件に、Lって県南なテレセンドリンク性の維持
をul能としている。As mentioned above, the negative lens component and the positive lens component form an 11: eye ff in order from the entrance pupil side, and the rear group is arranged near the image plane to make it telecentric on the image side. , 1- (1) to (3), the chromatic aberration correction is made good (), and the above (4), (
Under the condition 5), L has the ability to maintain the telesend link property in the southern part of the prefecture.
(1)式の条1′目、[、倍率の色収差と軸上の色収差
を同時に袖1[する為の条件であり、この条件を外れる
場合には、軸1の色収差の補1Fが可能ではあってもM
i+ J!Y中の11ミレンズ成分から発生ずる倍率の
色収差を良好に補正することが困難となる。The 1st line of equation (1) is a condition for simultaneously compensating for lateral chromatic aberration and axial chromatic aberration, and if this condition is not met, compensation for axis 1 chromatic aberration is not possible. M even if there is
i+J! It becomes difficult to satisfactorily correct the chromatic aberration of magnification generated from the 11 mm lens component in Y.
(2)式の条件は、前群中の負レンズ成分が(1)式の
条件を満足する場合に、コマ収差を良好に保ちながら、
倍率の色収差を補正するためのものである。この条件を
外れると、前群中の負レンズ成分及び正レンズ成分の屈
折力が強くなり過ぎるため良好な収差補正を行うことが
難しくなる。The condition of equation (2) is that when the negative lens component in the front group satisfies the condition of equation (1), while maintaining coma aberration well,
This is for correcting chromatic aberration of magnification. If this condition is not met, the refractive powers of the negative lens component and the positive lens component in the front group become too strong, making it difficult to perform good aberration correction.
(3)式の条件は、倍率色収差の補正に関して、rii
J群の負担をできるだけ軽くするためのものである。こ
の条(′1を外れる場合には、前群での色収差補正の負
担が増し、前群を構成するレンズ数が多(なっ“ζしま
い簡単な構成とすることが困難となる。The condition of equation (3) is that rii
This is to reduce the burden on Group J as much as possible. If this condition ('1) is exceeded, the burden of chromatic aberration correction on the front group increases, and the number of lenses constituting the front group increases, making it difficult to have a simple configuration.
(4)式の条件は、後群を像面の近くに配置してテレセ
ンドリンク性を達成すると共に、後群としての収差補正
の負担を軽くするための条件である。The condition of equation (4) is a condition for arranging the rear group near the image plane to achieve telescend linkage and to lighten the burden of aberration correction on the rear group.
この条件の下限を外れる場合には、前群のパワー負lf
iが増えるため前群の収差補正が難しくなり、また全長
が長くなる傾向にある。他方、上限を越える場合には、
後群のパワー負担が増大するためコマ収差発生の原因と
なり、後群を単レンズ成分で構成することが難しくなる
。尚、この条件の上限が、1.1以下である場合にはよ
りi好な補正が可能となる。If the lower limit of this condition is exceeded, the power of the front group is negative lf
As i increases, it becomes difficult to correct aberrations in the front group, and the overall length tends to increase. On the other hand, if the upper limit is exceeded,
The increased power burden on the rear group causes coma aberration, making it difficult to construct the rear group from a single lens component. Note that if the upper limit of this condition is 1.1 or less, more favorable correction becomes possible.
また、(5)式の条件はテレセンドリンク性を良好に維
持するための条件である。この条件の上限を越える場合
には、像面に入射する主光線が垂直ではなくなり、像面
の光軸方向の変位に対して走査スボントの位置が不安定
となり、正確な走査に支障をきたす恐れが生ずる。他方
、下限を外れる場合には、コマ収差が発生するため後群
を単一成分で構成することが難しくなる。Further, the condition of equation (5) is a condition for maintaining good telesend link properties. If the upper limit of this condition is exceeded, the principal ray incident on the image plane will no longer be perpendicular, and the position of the scanning spont will become unstable with respect to displacement of the image plane in the optical axis direction, which may impede accurate scanning. occurs. On the other hand, if the lower limit is exceeded, coma aberration occurs, making it difficult to configure the rear group with a single component.
上記の如き本発明の構成において、後群によるテレセン
ドリンク性を維持した状態においてfθの特性を整える
ために、後群としての正レンズ成分の入射瞳側レンズ面
の曲率半径をRa、該正レンズ成分の像側レンズ面の曲
率半径をR1とするとき、
IR,l>lRb l (6)の条件を満
足することが望ましい。この条件から外れる場合には、
歪曲収差が正に大きくなるためfθの特性からはずれ、
走査の直線性が悪化することになる。In the configuration of the present invention as described above, in order to adjust the characteristics of fθ while maintaining the telescend link property by the rear group, the radius of curvature of the entrance pupil side lens surface of the positive lens component as the rear group is set as Ra, and the radius of curvature of the lens surface on the entrance pupil side of the positive lens component as the rear group is When the radius of curvature of the image-side lens surface of the component is R1, it is desirable to satisfy the following condition: IR,l>lRb l (6). If this condition deviates from the
Since the distortion becomes positively large, it deviates from the characteristics of fθ,
The linearity of scanning will deteriorate.
本発明による第1実施例は、第1図の光路Hに示す如く
、入射瞳FP側から順に、1個θ月″ルンズからなる負
レンズ成分LFNと2個の正レンズからなる正レンズ成
分LFPとで前群GFが+14成され、像面Iの近傍に
配置された正レンズ成分158.で後RY c mが構
成されたテレセントリックfθレンズ系である。後群と
しての正レンズ成分は、大引瞳側が平面となった平凸レ
ンズである。In the first embodiment according to the present invention, as shown in the optical path H in FIG. This is a telecentric fθ lens system in which the front group GF is made up of +14, and the rear RY cm is made up of a positive lens component 158. placed near the image plane I.The positive lens component as the rear group is made up of +14. It is a plano-convex lens with a flat pupil side.
尚、光路図には軸上光束(実線)とJiJ人画角の光束
(破線)の光路のみを示した。Note that the optical path diagram shows only the optical paths of the axial light flux (solid line) and the light flux at the JiJ angle of view (broken line).
第2実施例は、第2図に示すとおり、前群G。The second embodiment is a front group G, as shown in FIG.
が2個の負レンズからなる負レンズ成分17.Nと2個
の正レンズからなる正レンズ成分1−FPとで構成され
たものである。is a negative lens component 17 consisting of two negative lenses. N and a positive lens component 1-FP consisting of two positive lenses.
第3実施例は、第3図に示す如く、前Jffは上記第2
実施例とほぼ同様の構成を存し、後Iffは両凸形状の
正レンズ成分からなっているものである。In the third embodiment, as shown in FIG.
It has almost the same configuration as the embodiment, and the rear Iff is composed of a biconvex positive lens component.
上記の各実施例は、中心波長λ+ =488nm 、短
波長側λm =476.5nm 、長波長側λ2−44
16.5nmに対して色収差の補正がなされている。In each of the above embodiments, the center wavelength λ+ = 488 nm, the short wavelength side λm = 476.5 nm, and the long wavelength side λ2-44.
Chromatic aberration has been corrected for 16.5 nm.
以下の表1、表2、表3にそれぞれ、第1、第2及び第
3のh実施例の虐り元を小ず。Tables 1, 2, and 3 below list the sources of distortion for the first, second, and third h embodiments, respectively.
表中、左端の数字は物体側からの順序を表し、屈折率は
波長41111nmに対する埴であり、アツベ敗はd線
(λ−587.6nm)に対する稙である。また、d、
は入射瞳から最先レンズ面頂点までの距離である。In the table, the leftmost number represents the order from the object side, the refractive index is the value for the wavelength of 41111 nm, and the refractive index is the value for the d-line (λ-587.6 nm). Also, d,
is the distance from the entrance pupil to the tip of the lens surface.
f、 /f = 1.02
f、/f=2.48
f * / f = 2.42
上記第1、第2及び第3実施例についての諸収差図を、
それぞれ第4、第5及び第6図に示す。f, /f = 1.02 f, /f = 2.48 f * / f = 2.42 Various aberration diagrams for the above first, second and third embodiments are shown below.
They are shown in FIGS. 4, 5 and 6, respectively.
各収差図には、基準波長としてのλ1・−48)Inf
fIについての球面収差、非点収差、歪曲収差を示し、
短波長光λz −476,5nm及び長波長光λ、、
=496゜5n+aについての色収差の補正状態を示す
ために、各波長についての球面収差、非点収差と倍率の
色収差を示した。尚、歪曲収差は走査スポットの直線性
を表すために「0に対する変位量をパーセントにて示し
たものである。Each aberration diagram shows λ1・-48)Inf as the reference wavelength.
Indicates spherical aberration, astigmatism, and distortion for fI,
Short wavelength light λz -476,5 nm and long wavelength light λ,,
In order to show the correction state of chromatic aberration for =496°5n+a, spherical aberration, astigmatism, and lateral chromatic aberration for each wavelength are shown. Note that the distortion aberration is expressed as a percentage of the amount of displacement with respect to 0 in order to express the linearity of the scanning spot.
各収差図から、いずれの実施例も諸収差が良好に補正さ
れており、特に色収差並びに歪曲収差が良好に補正され
ていることが明らかである。From each aberration diagram, it is clear that various aberrations are well corrected in each example, and in particular, chromatic aberration and distortion aberration are well corrected.
一般に色収差の補正がなされていない光学系を用いる場
合には、アルゴンレーザーの如く多波長の光を同時に発
振できるレーザーを光源として使用するとしても、単波
長発振させるかフィルター等を用いて単波長のみを選択
しなければならず、争−波長のエネルギーしか利用する
ことができなかった。色収差が補正された光学系を用い
る場合には、その補正範囲の波長域については有効に利
用することが可能である。どの波長域に対して色収差の
補正を行うかは、光源からの各発振波長の出力、感光材
料及び受光器等の感度特性によって決定さるものである
。アルゴンレーザーの多波長同時発振における各スペク
トル強度と、感光材料の相対感度比の例を第7図に示し
た。上記の各実施例においては、第7図の如き特性を有
するアルゴンレーザーを光源とし、図示した特性の感光
材料を用いるものである。従って、中心波長λ11−4
88nだけを使用する場合に比べて光源からのエネルギ
ーを約2倍有効に利用することができる。Generally, when using an optical system that has not been corrected for chromatic aberration, even if a laser that can emit light at multiple wavelengths simultaneously, such as an argon laser, is used as a light source, it is necessary to emit light at a single wavelength or use a filter, etc. to only emit light at a single wavelength. had to choose, and could only utilize the energy of the conflict wavelength. When using an optical system in which chromatic aberration has been corrected, it is possible to effectively utilize the wavelength range within the correction range. The wavelength range for which chromatic aberration correction is to be performed is determined by the output of each oscillation wavelength from the light source, the sensitivity characteristics of the photosensitive material, the light receiver, etc. FIG. 7 shows an example of each spectrum intensity in simultaneous multi-wavelength oscillation of an argon laser and the relative sensitivity ratio of the photosensitive material. In each of the above embodiments, an argon laser having the characteristics as shown in FIG. 7 is used as a light source, and a photosensitive material having the characteristics shown is used. Therefore, the center wavelength λ11-4
The energy from the light source can be used approximately twice as effectively as compared to the case where only 88n is used.
尚、本発明によるこのようなこの色収差の補正方法は、
fθレンズ系に達するまでの光学系で発生した色収差を
考慮して行う場合にも有効である。Incidentally, the method of correcting this chromatic aberration according to the present invention is as follows:
This is also effective when taking into consideration the chromatic aberration that occurs in the optical system up to the fθ lens system.
以上の如く、本発明によればテレセンドリンク性を維持
しつつ走査の直線性に優れ、且つ色収差が良好に補正さ
れたテレセントリックrθレンズ系が達成される。そし
て、色収差が比較的広い波長域にわたってなされている
ため、光源からの広い波長域の光を効率良く集光して走
査し得るため、走査装置としての効率を向上さ一1!得
るものである。As described above, according to the present invention, it is possible to achieve a telecentric rθ lens system that maintains telecenter linkability, has excellent scanning linearity, and has chromatic aberrations well corrected. Since chromatic aberration occurs over a relatively wide wavelength range, light in a wide wavelength range from the light source can be efficiently focused and scanned, improving the efficiency of the scanning device! It's something you get.
第1図は本発明による第1実施例のレンズ構成を示す光
路図、第2図は本発明による第2実施例のレンズ構成を
示す光路図、第3図は本発明による第3実施例のレンズ
構成を示す光路図、第4図は第1実施例についての諸収
差図、第5図は第2実施例についての諸収差図、第6図
は第3実施例についての諸収差図、第7図は本発明によ
る各実施例の使用に当たって用いられるレーザー光源か
らの発光スペクトルと感光材料の感度特性を例示する図
である。
〔主要部分の符号の説明〕
EP・・・入射瞳
GF・・・前群
Gll・・・後群
LFN・・・前群中の負レンズ成分
LFP・・・前群中の正レンズ成分
LIIP・・・後群中の正レンズ成分
出願人 日本光学工業株式会社
代理人 弁理士 渡 辺 隆 男
第8
図
図
球面収差 非点収差
第
一−−−−48;in/I+
−−−d76、、’;ytttt
−−4’?6. 、’l’ II 111球面収差
非点収差
歪曲収差 倍率色収差
歪曲収差 倍率色収差FIG. 1 is an optical path diagram showing the lens configuration of the first embodiment according to the present invention, FIG. 2 is an optical path diagram showing the lens configuration of the second embodiment according to the invention, and FIG. 3 is an optical path diagram showing the lens configuration of the second embodiment according to the present invention. An optical path diagram showing the lens configuration, FIG. 4 is a diagram of various aberrations for the first embodiment, FIG. 5 is a diagram of various aberrations for the second embodiment, and FIG. 6 is a diagram of various aberrations for the third embodiment. FIG. 7 is a diagram illustrating the emission spectrum from the laser light source and the sensitivity characteristics of the photosensitive material used in the use of each embodiment according to the present invention. [Explanation of symbols of main parts] EP... Entrance pupil GF... Front group Gll... Rear group LFN... Negative lens component in the front group LFP... Positive lens component in the front group LIIP. ...Positive lens component in the rear group Applicant Nippon Kogaku Kogyo Co., Ltd. Agent Patent attorney Takashi Watanabe No. 8 Figure Spherical aberration Astigmatism No. 1 ---48; in/I+ ---d76,, ';ytttt --4'? 6. , 'l' II 111 Spherical aberration
Astigmatism Distortion Lateral Chromatic Aberration Distortion Lateral Chromatic Aberration
Claims (1)
分とその像側に配置された正レンズ成分とを有する前群
、及び像面近傍に配置された正レンズ成分からなる後群
によって構成され、前記前群中の負レンズ成分のアッベ
数をν_F_N、該前群中の正レンズ成分のアッベ数を
ν_F_P、前記後群中の正レンズ成分のアッベ数をν
_R、全系の合成焦点距離をf、前記前群の焦点距離を
f_F、前記後群の焦点距離をf_Rとするとき、 ν_F_N<35(1) ν_F_P>45(2) ν_R>55(3) 0.8<f_F/f<1.3(4) 1.8<f_R/f<2.8(5) の各条件を満足することを特徴とするテレセントリック
fθレンズ系。[Scope of Claims] In order from the entrance pupil side, a front group includes a negative lens component with a concave surface facing the entrance pupil side and a positive lens component located on the image side thereof, and a positive lens located near the image plane. The Abbe number of the negative lens component in the front group is ν_F_N, the Abbe number of the positive lens component in the front group is ν_F_P, and the Abbe number of the positive lens component in the rear group is ν.
_R, the combined focal length of the entire system is f, the focal length of the front group is f_F, and the focal length of the rear group is f_R, then ν_F_N<35(1) ν_F_P>45(2) ν_R>55(3) A telecentric fθ lens system that satisfies the following conditions: 0.8<f_F/f<1.3(4) 1.8<f_R/f<2.8(5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61144615A JPH0812324B2 (en) | 1986-06-20 | 1986-06-20 | Telecentric fθ lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61144615A JPH0812324B2 (en) | 1986-06-20 | 1986-06-20 | Telecentric fθ lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62299927A true JPS62299927A (en) | 1987-12-26 |
JPH0812324B2 JPH0812324B2 (en) | 1996-02-07 |
Family
ID=15366149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61144615A Expired - Fee Related JPH0812324B2 (en) | 1986-06-20 | 1986-06-20 | Telecentric fθ lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0812324B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0360233A2 (en) * | 1988-09-20 | 1990-03-28 | Dainippon Screen Mfg. Co., Ltd. | Telecentric f-theta lens system |
JPH02163720A (en) * | 1988-12-16 | 1990-06-25 | Dainippon Screen Mfg Co Ltd | Light beam scanning lens |
EP0412037A2 (en) * | 1989-08-01 | 1991-02-06 | International Business Machines Corporation | Multiple laser beam scanning optics |
JPH0365917A (en) * | 1989-08-04 | 1991-03-20 | Canon Inc | Optical scanner |
US5475484A (en) * | 1993-05-26 | 1995-12-12 | Kabushiki Kaisha Toshiba | Image forming apparatus |
JP2015526763A (en) * | 2012-08-01 | 2015-09-10 | イエーノプティーク オプティカル システムズ ゲーエムベーハー | Achromatic scanning device with monochromatic F-θ lens |
EP2919053A4 (en) * | 2012-10-31 | 2016-08-03 | Hans Laser Technology Ind Group Co Ltd | ULTRAVIOLET HIGH LASER RADIATION LASER MARKING LENS SCREEN AND LASER PROCESSING DEVICE |
CN112558274A (en) * | 2020-12-15 | 2021-03-26 | 江门英讯通光电科技有限公司 | Telecentric laser field lens and laser scanning system thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59195211A (en) * | 1983-04-19 | 1984-11-06 | Asahi Optical Co Ltd | Telecentric ftheta lens system of four-element constitution |
-
1986
- 1986-06-20 JP JP61144615A patent/JPH0812324B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59195211A (en) * | 1983-04-19 | 1984-11-06 | Asahi Optical Co Ltd | Telecentric ftheta lens system of four-element constitution |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0360233A2 (en) * | 1988-09-20 | 1990-03-28 | Dainippon Screen Mfg. Co., Ltd. | Telecentric f-theta lens system |
JPH02163720A (en) * | 1988-12-16 | 1990-06-25 | Dainippon Screen Mfg Co Ltd | Light beam scanning lens |
JPH07113706B2 (en) * | 1988-12-16 | 1995-12-06 | 大日本スクリーン製造株式会社 | Optical beam scanning lens |
EP0412037A2 (en) * | 1989-08-01 | 1991-02-06 | International Business Machines Corporation | Multiple laser beam scanning optics |
JPH0365917A (en) * | 1989-08-04 | 1991-03-20 | Canon Inc | Optical scanner |
US5475484A (en) * | 1993-05-26 | 1995-12-12 | Kabushiki Kaisha Toshiba | Image forming apparatus |
JP2015526763A (en) * | 2012-08-01 | 2015-09-10 | イエーノプティーク オプティカル システムズ ゲーエムベーハー | Achromatic scanning device with monochromatic F-θ lens |
EP2919053A4 (en) * | 2012-10-31 | 2016-08-03 | Hans Laser Technology Ind Group Co Ltd | ULTRAVIOLET HIGH LASER RADIATION LASER MARKING LENS SCREEN AND LASER PROCESSING DEVICE |
CN112558274A (en) * | 2020-12-15 | 2021-03-26 | 江门英讯通光电科技有限公司 | Telecentric laser field lens and laser scanning system thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0812324B2 (en) | 1996-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006330194A (en) | Objective lens for endoscope | |
JPS63249119A (en) | F-theta lens | |
JPH0933803A (en) | Image forming lens | |
JP2000089107A (en) | Image reading lens | |
JPH10509812A (en) | Integrated optical system for endoscopes | |
JPS62299927A (en) | Telecentric ftheta lens | |
JP2002055275A (en) | Telephotographic lens | |
JPS5862608A (en) | Wide angle lens having short-overall length | |
JP3964533B2 (en) | Medium telephoto lens | |
JP4488263B2 (en) | f ・ θ lens | |
JPH07113952A (en) | Optical system for infrared ray | |
JPS61132901A (en) | Achromatic optical system | |
JPH0462562B2 (en) | ||
US4182549A (en) | Compact wide angle lens | |
JP4552248B2 (en) | Microscope objective lens | |
US20220019072A1 (en) | Endoscope objective optical system and endoscope | |
JP4765229B2 (en) | Imaging optics | |
JPH0798430A (en) | F-theta lens | |
JP4214726B2 (en) | Imaging optics | |
JPH08234097A (en) | Optical lens system | |
JPS62262812A (en) | Ftheta lens | |
JPH0850238A (en) | Wide angle lens | |
JPS63305315A (en) | Apochromatic lens | |
JPH11316337A (en) | Image-formation lens | |
JP3590439B2 (en) | Endoscope objective lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |