JPS62296537A - Manufacture of selective oxide film - Google Patents
Manufacture of selective oxide filmInfo
- Publication number
- JPS62296537A JPS62296537A JP14233886A JP14233886A JPS62296537A JP S62296537 A JPS62296537 A JP S62296537A JP 14233886 A JP14233886 A JP 14233886A JP 14233886 A JP14233886 A JP 14233886A JP S62296537 A JPS62296537 A JP S62296537A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- silicon
- film
- selective oxide
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 38
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 32
- 239000010703 silicon Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 25
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000001590 oxidative effect Effects 0.000 claims abstract description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 9
- 230000003647 oxidation Effects 0.000 claims description 23
- 238000007254 oxidation reaction Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 17
- 238000005530 etching Methods 0.000 claims description 9
- 238000001947 vapour-phase growth Methods 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 12
- 238000002955 isolation Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 235000006732 Torreya nucifera Nutrition 0.000 description 2
- 244000111306 Torreya nucifera Species 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Local Oxidation Of Silicon (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
発明の詳細な説明
〔産業上の利用分野〕
本発明は半導体装置の製造工程における素子間分離のな
の選択酸化膜の製造方法に関し、特に選択酸化膜のマス
ク下の横方自店がりを少なくし、段差を少なくした選択
酸化膜の製造方法に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a selective oxide film for isolation between elements in the manufacturing process of a semiconductor device, and in particular to a method for manufacturing a selective oxide film for isolation between elements in the manufacturing process of a semiconductor device. The present invention relates to a method for manufacturing a selective oxide film that reduces burrs and steps.
従来、この種の酸化膜を用いる素子間分離法として、シ
リコン基板上にシリコン窒化膜を形成し、そのシリコン
窒化膜の所望の部分をフォトレジス1〜をマスクにエツ
チングして除去する。次に、フォトレジストを除去した
後、シリコン窒化膜をマスクにシリコン基板を酸化し選
択膜を形成し、素子分離領域を形成する。第2図(a)
〜(C)は従来の選択酸化膜形成方法を説明するために
工程順に示したペレットの縦断面図である。Conventionally, as a device isolation method using this type of oxide film, a silicon nitride film is formed on a silicon substrate, and a desired portion of the silicon nitride film is removed by etching using photoresist 1 as a mask. Next, after removing the photoresist, the silicon substrate is oxidized using the silicon nitride film as a mask to form a selective film, and element isolation regions are formed. Figure 2(a)
- (C) are vertical cross-sectional views of pellets shown in order of steps to explain the conventional selective oxide film forming method.
まず、第2図(a)に示す様にシリコン基板1上に薄い
シリコン酸化膜2を形成し、その上にシリコン窒化膜3
を形成した後、フォトレジスト4を塗布し、リソグラフ
ィ技術を用いてフォトレジスト4をパターニングする。First, as shown in FIG. 2(a), a thin silicon oxide film 2 is formed on a silicon substrate 1, and a silicon nitride film 3 is formed on it.
After forming, a photoresist 4 is applied, and the photoresist 4 is patterned using lithography technology.
その後、2図(1))に示す様にフォトレジスト
窒化膜3をエツチングする。次に、フォトレジスト4を
除去した後、シリコン窒化膜3をマスクにシリコン窒化
膜3の開口部からシリコン基板1を酸化する。この時第
2図(c)に示すように選択酸化膜8が形成されるが、
マスクであるシリコン窒化膜3の下のシリコン基板1の
非酸化領域9と選択酸化膜8においてそれらの表面間に
は段差が生じる。またシリコン窒化膜3をマスクにした
酸化においては、シリコン窒化膜の下のシリコン基板1
がシリコン窒化11り端部を起点として徐々に酸化量は
減少するものの連続して酸化され、その横方向寸法は選
択酸化膜厚とほぼ同程度となる。Thereafter, the photoresist nitride film 3 is etched as shown in FIG. 2(1). Next, after removing the photoresist 4, the silicon substrate 1 is oxidized from the opening of the silicon nitride film 3 using the silicon nitride film 3 as a mask. At this time, a selective oxide film 8 is formed as shown in FIG. 2(c).
A step is created between the surfaces of the non-oxidized region 9 of the silicon substrate 1 and the selective oxide film 8 under the silicon nitride film 3 serving as a mask. In addition, in oxidation using the silicon nitride film 3 as a mask, the silicon substrate 1 under the silicon nitride film
is continuously oxidized starting from the edge of silicon nitride 11, although the amount of oxidation gradually decreases, and its lateral dimension becomes approximately the same as the thickness of the selective oxide film.
また、同時にマスクであるシリコン窒化膜端部は、シリ
コン窒化膜端部下のシリコン基板の酸化によりその部分
は体f/llij張し、持ち上げられその量は選択酸化
膜8の膜厚量の50〜60%の量となる。At the same time, the end of the silicon nitride film, which is a mask, is lifted up by the oxidation of the silicon substrate under the end of the silicon nitride film, and the amount thereof is 50 to 50% of the film thickness of the selective oxide film 8. The amount will be 60%.
上述した従来のシリコン窒化膜をマスクとした選択酸化
層による素子分離法は、酸化領域の酸化において、酸化
膜の体積膨張があり、酸化領域の表面は非酸化領域の表
面より高くなる為、それらの間に段差が生じる。この酸
化領域と非酸化領域の段差は素子の微細化において酸化
領域近傍の非酸化領域に所望の微細フォトレジス!〜パ
ターンを形成しようとする時そのパターンが所望の寸法
通り形成されず、酸化領域から充分に離れた領域に形成
したパターン寸法と酸化領域近傍の非酸化領域に形成し
たパターン寸法が異なり、寸法精度の低下を招き、また
酸化のマスクとして用いたシリコン窒化膜のマスク部の
下まで酸化され、その横方向寸法値は選択酸化膜厚とほ
ぼ同等となり今後の微細素子領域形成において対応でき
ないという欠点がある。In the conventional element isolation method using a selective oxidation layer using a silicon nitride film as a mask, the volume of the oxide film expands when the oxidized region is oxidized, and the surface of the oxidized region becomes higher than the surface of the non-oxidized region. There is a step between the two. This step difference between the oxidized region and the non-oxidized region is used to create the desired fine photoresist in the non-oxidized region near the oxidized region when miniaturizing the device! ~ When trying to form a pattern, the pattern is not formed to the desired dimensions, and the dimensions of the pattern formed in an area sufficiently far away from the oxidized area are different from the dimensions of the pattern formed in the non-oxidized area near the oxidized area, resulting in poor dimensional accuracy. In addition, the silicon nitride film used as an oxidation mask is oxidized to the bottom of the mask, and its lateral dimension is almost the same as the selective oxide film thickness, making it unsuitable for future fine element region formation. be.
本発明の目的は、シリコン窒化膜をマスクとして選択酸
化膜を形成するに際し、シリコン基板の横方向への酸化
の進行を防ぎ、非選択酸化領域のシリコン基板表面の高
さと選択酸化領域の表面の高さをほぼ同一にし、選択酸
化領域及び非選択酸化領域に形成される711〜レジス
ト寸法の大幅な相違を防止できる選択酸化膜の製造方法
を提供することにある。An object of the present invention is to prevent the progress of oxidation in the lateral direction of the silicon substrate when forming a selective oxide film using a silicon nitride film as a mask, and to prevent the height of the silicon substrate surface of the non-selective oxidation region and the surface of the selective oxidation region from increasing. It is an object of the present invention to provide a method for manufacturing a selective oxide film that can have substantially the same height and prevent large differences in the dimensions of the resist 711 formed in selectively oxidized regions and non-selectively oxidized regions.
本発明の選択酸化膜の製造方法は、シリコン基板上に形
成したシリコン窒化膜及び下地シリコン酸化膜を、フォ
トリソグラフィ技術を用いてパターニングし、フォトレ
ジストをマスクにエツチングし、シリコン基板をドライ
エツチングによりエツチングし、シリコン基板溝部を形
成する工程と、シリコン基板を溝部深さの1/2程度酸
化する工程と、気相成長法を用いて多結晶シリコン膜を
成長する工程と、多結晶シリコン膜を酸化すると共に下
地シリコン酸化膜を選択酸化する工程と、シリコン窒化
膜表面の多結晶シリコンの酸化膜をエツチングして除去
すると共に選択酸化膜厚を所望の膜厚にする工程と、酸
化のマスクとして用いたシリコン窒化膜を除去する工程
とを含んで構成される。The selective oxide film manufacturing method of the present invention involves patterning a silicon nitride film and a base silicon oxide film formed on a silicon substrate using photolithography, etching the silicon substrate using a photoresist as a mask, and dry etching the silicon substrate. A process of etching to form a silicon substrate groove, a process of oxidizing the silicon substrate to about 1/2 of the depth of the groove, a process of growing a polycrystalline silicon film using a vapor phase growth method, and a process of growing a polycrystalline silicon film using a vapor phase growth method. A process of selectively oxidizing the base silicon oxide film at the same time as etching, a process of etching and removing the polycrystalline silicon oxide film on the surface of the silicon nitride film and making the selective oxide film a desired thickness, and using it as an oxidation mask. The method includes a step of removing the silicon nitride film used.
次に、本発明の実施例について図面を参照して説明する
。第1図(a)〜(g)は本発明の一実施例を説明する
ために工程順に示したペレッl〜の縦断面図である。Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(g) are longitudinal cross-sectional views of pellets 1 to 1 shown in order of process for explaining one embodiment of the present invention.
まず、第1図(a)に示すように、シリコン基板1を酸
化炉で酸化し、200〜300人の薄いシリコン酸化膜
2を形成し、その表面に気相成長法を用いて、シリコン
窒化膜3を1500〜2500人の厚さで成長させる。First, as shown in FIG. 1(a), a silicon substrate 1 is oxidized in an oxidation furnace to form a thin silicon oxide film 2 of 200 to 300 layers, and a silicon nitride layer is formed on the surface using a vapor phase growth method. Film 3 is grown to a thickness of 1500 to 2500 nm.
次に、フォトレジストを塗布し、フォトリングラフィ技
術を用いてフォトレジスト4に所望のパターンを形成す
る。Next, a photoresist is applied, and a desired pattern is formed on the photoresist 4 using photolithography technology.
次に、第1図(b)に示すように、形成しなフォトレジ
スト
イエツチング装置を用いてシリコン窒化膜をエツチング
除去し、フッ酸水溶液を用いてシリコン酸化膜2をエツ
チング除去する。次いで、所望のパターンが形成された
フォトレジスト4、シリコン窒化膜3及びシリ:ノン酸
化膜2をマスクとして、シリコン基板1をドライエツチ
ング装置を用いて約2000〜3000人エツチングす
る。するとシリコン基板1にはシリコン湯部5が形成さ
れ、次いでマスクとして用いたフォトレジスト素プラズ
マ剥離装;6で除去する。Next, as shown in FIG. 1(b), the silicon nitride film is etched away using a photoresist etching device, and the silicon oxide film 2 is etched away using a hydrofluoric acid aqueous solution. Next, using the photoresist 4, silicon nitride film 3, and silicon:non-oxide film 2 having a desired pattern as masks, the silicon substrate 1 is etched by about 2,000 to 3,000 times using a dry etching apparatus. Then, a silicon hot water portion 5 is formed on the silicon substrate 1, which is then removed by a photoresist plasma stripper 6 used as a mask.
次に、第1図(C)に示すように、シリコン講部5を1
000〜1130℃の高圧酸化炉又は常圧酸化炉を用い
て酸素及び水素ガス下で約3000〜4000人の第1
if!i択酸化脱酸化膜6する。Next, as shown in FIG.
Approximately 3,000 to 4,000 people were oxidized under oxygen and hydrogen gas using a high-pressure oxidation furnace or a normal-pressure oxidation furnace at a temperature of 000 to 1,130°C.
If! i Selective oxidation deoxidation film 6.
次に、第1図(cl )に示すように、減圧気相成長装
置を用いて膜厚約3000人の多結晶シリコン層7を成
長させる。Next, as shown in FIG. 1 (cl), a polycrystalline silicon layer 7 having a thickness of about 3000 wafers is grown using a reduced pressure vapor phase growth apparatus.
次に、第1図(e)に示すように、多結晶シリコン層7
及び第1選択酸化膜6模6を1000〜1300℃の高
圧酸化炉又は常圧酸化炉を用いて酸素及び水素ガス丁で
酸化し、マスクとしてのシリコン窒化膜3」−には多結
晶シリコン層7の多結晶シリコンが残らない様にし、か
つ第1選択酸化膜6と第1選択酸化膜」二の多結晶シリ
コン酸化膜層とが充分に酸化され、緻密な酸化膜とし、
その厚さが1.2μm程度になる様にする。これにより
シリコン窒化膜端部は多結晶シリコン層で充分におさえ
られ、基板の横方向への酸化が減少し、またマスクとし
てのシリコン窒化膜3のパターン端部での持ち」二かり
も側壁に多結晶シリコンがなく、かつ窒化股上を多結晶
シリコンで覆っていない、従来のシリコン窒化膜のパタ
ーン端部での持ち」二かり量より減少し、約半分量とな
る。Next, as shown in FIG. 1(e), a polycrystalline silicon layer 7
Then, the first selective oxide film 6 is oxidized with oxygen and hydrogen gas using a high-pressure oxidation furnace or a normal-pressure oxidation furnace at 1000 to 1300°C, and a polycrystalline silicon layer is formed on the silicon nitride film 3 as a mask. 7 so that no polycrystalline silicon remains, and the first selective oxide film 6 and the polycrystalline silicon oxide film layer 2 of the first selective oxide film are sufficiently oxidized to form a dense oxide film,
The thickness should be approximately 1.2 μm. As a result, the edges of the silicon nitride film are sufficiently suppressed by the polycrystalline silicon layer, reducing oxidation in the lateral direction of the substrate, and also preventing the silicon nitride film 3, which serves as a mask, from being held at the edge of the pattern from forming on the sidewalls. The retention at the pattern end of a conventional silicon nitride film that does not contain polycrystalline silicon and does not cover the nitride top with polycrystalline silicon is reduced to approximately half the amount.
次に、第1図(f)に示すように、シリコン窒化膜3の
表面及び側壁に形成した多結晶シリコン層の酸化膜を除
去する為、フッ酸水溶液でシリコン窒化膜上の多結晶シ
リコン層の酸化膜は完全に除去しかつ第2選択酸化膜8
の領域の表面を少々エツチング除去し、選択酸化膜厚を
所望の厚さにする。Next, as shown in FIG. 1(f), in order to remove the oxide film of the polycrystalline silicon layer formed on the surface and sidewalls of the silicon nitride film 3, a hydrofluoric acid aqueous solution is used to remove the polycrystalline silicon layer on the silicon nitride film. The oxide film 8 is completely removed and the second selective oxide film 8 is removed.
The surface of the area is slightly etched away to make the selective oxide film thickness to the desired thickness.
次に、160℃前後のリン酸液でマスクとして用いたシ
リコン窒化M3を除去し、第1図(g>に示す様な第2
選択酸化膜8及び非選択酸化膜領域9を形成する。Next, the silicon nitride M3 used as a mask was removed with a phosphoric acid solution at around 160°C, and a second
A selective oxide film 8 and a non-selective oxide film region 9 are formed.
以上説明したように本発明は、酸化のマスクとしてのシ
リコン窒化膜の表面及びシリコン基板溝部の側壁に多結
晶シリコン層を形成し、シリコン窒化膜下のシリコン基
板の横方向に酸化が進むのを防止してシリコン窒化膜の
開口部を酸化することにより、シリコン基板の横方向へ
の酸化の進行を従来方法の約半分とし、また非選択酸化
領域のシリコン基板表面の高さと、選択酸化領域の表面
の高さをほぼ同一にすることができる効果がある。また
、次工程において表面層にフォトレジストを塗布しパタ
ーニングした場合、選択酸化領域及び非選択酸化領域で
形成されたフォトレジス1〜寸法が大幅に異なることを
防止できる効果がある。As explained above, the present invention forms a polycrystalline silicon layer on the surface of the silicon nitride film as an oxidation mask and on the sidewalls of the silicon substrate groove to prevent oxidation from progressing in the lateral direction of the silicon substrate under the silicon nitride film. By preventing the openings in the silicon nitride film from oxidizing, the progress of oxidation in the lateral direction of the silicon substrate is reduced to about half that of the conventional method, and the height of the silicon substrate surface in the non-selective oxidation region and the selective oxidation region are reduced. This has the effect of making the surface heights almost the same. Furthermore, when a photoresist is applied and patterned on the surface layer in the next step, it is possible to prevent the dimensions of the photoresist 1 formed in the selectively oxidized region and the non-selectively oxidized region from being significantly different.
第1図(a)〜(g>は本発明の一実施例を説明するた
めに工程順に示したベレットの縦断面図、第2図(a)
〜(c)は従来の選択酸化膜の形成方法を説明するため
に工程順に示したペレットの縦断面図である。
1・・・シリコン基板、2・・・薄いシリコン酸化膜、
3・・・シリコン窒化膜、4・・・フォトレジスト、5
・・・シリコン湯部、6・・・第1選択酸化膜、7・・
・多結晶シリコン層、8・・・第2選択酸化膜、9・・
非選択酸化領域。
−10=
茅 l 図
茅 2 図FIGS. 1(a) to (g>) are longitudinal cross-sectional views of a pellet shown in the order of steps for explaining one embodiment of the present invention, and FIG. 2(a)
-(c) are vertical cross-sectional views of pellets shown in order of steps to explain a conventional method of forming a selective oxide film. 1... Silicon substrate, 2... Thin silicon oxide film,
3... Silicon nitride film, 4... Photoresist, 5
... Silicon hot water part, 6... First selective oxide film, 7...
- Polycrystalline silicon layer, 8... second selective oxide film, 9...
Non-selective oxidation region. -10= Kaya l Figure Kaya 2 Figure
Claims (1)
コン酸化膜を、フォトリソグラフィ技術を用いてパター
ニングし、フォトレジストをマスクにエッチングし、シ
リコン基板をドライエッチングによりエッチングし、シ
リコン基板溝部を形成する工程と、シリコン基板を溝部
深さの1/2程度酸化する工程と、気相成長法を用いて
多結晶シリコン膜を成長する工程と、多結晶シリコン膜
を酸化すると共に下地シリコン酸化膜を選択酸化する工
程と、シリコン窒化膜表面の多結晶シリコンの酸化膜を
エッチングして除去すると共に選択酸化膜厚を所望の膜
厚にする工程と、酸化のマスクとして用いたシリコン窒
化膜を除去する工程とを含むことを特徴とする選択酸化
膜の製造方法。Patterning the silicon nitride film and base silicon oxide film formed on the silicon substrate using photolithography technology, etching the photoresist as a mask, etching the silicon substrate by dry etching, and forming a silicon substrate groove. , a step of oxidizing the silicon substrate to about 1/2 of the trench depth, a step of growing a polycrystalline silicon film using a vapor phase growth method, and a step of oxidizing the polycrystalline silicon film and selectively oxidizing the underlying silicon oxide film. a step of etching and removing the polycrystalline silicon oxide film on the surface of the silicon nitride film and making the selective oxide film thickness a desired thickness; and a step of removing the silicon nitride film used as an oxidation mask. A method for producing a selective oxide film, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14233886A JPS62296537A (en) | 1986-06-17 | 1986-06-17 | Manufacture of selective oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14233886A JPS62296537A (en) | 1986-06-17 | 1986-06-17 | Manufacture of selective oxide film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62296537A true JPS62296537A (en) | 1987-12-23 |
Family
ID=15313032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14233886A Pending JPS62296537A (en) | 1986-06-17 | 1986-06-17 | Manufacture of selective oxide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62296537A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH021916A (en) * | 1988-06-10 | 1990-01-08 | Mitsubishi Electric Corp | Formation of isolated oxide film |
JPH04282878A (en) * | 1991-03-11 | 1992-10-07 | Sumitomo Electric Ind Ltd | Superconductor element allowing easy integration and production thereof |
-
1986
- 1986-06-17 JP JP14233886A patent/JPS62296537A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH021916A (en) * | 1988-06-10 | 1990-01-08 | Mitsubishi Electric Corp | Formation of isolated oxide film |
JPH04282878A (en) * | 1991-03-11 | 1992-10-07 | Sumitomo Electric Ind Ltd | Superconductor element allowing easy integration and production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0216574B2 (en) | ||
JP2006120715A (en) | Manufacturing method for semiconductor wafer | |
JPS62296537A (en) | Manufacture of selective oxide film | |
US6265286B1 (en) | Planarization of LOCOS through recessed reoxidation techniques | |
JPH0531819B2 (en) | ||
JPS5835938A (en) | Manufacture of semiconductor device | |
JPS6288343A (en) | Manufacture of semiconductor device | |
JPS63204746A (en) | Manufacture of semiconductor device | |
JPS6231492B2 (en) | ||
JPS6213047A (en) | Manufacture of semiconductor device | |
JPS59181639A (en) | Manufacture of semiconductor device | |
JPH01179431A (en) | Manufacture of semiconductor device | |
JPS63287024A (en) | Manufacture of semiconductor device | |
JPH05121656A (en) | Manufacture of semiconductor device | |
JPS6260231A (en) | Manufacture of semiconductor device | |
JPS63258020A (en) | Formation of element isolation pattern | |
JPS62183139A (en) | Manufacture of substrate for formation of semiconductor device | |
JPS6260232A (en) | Manufacture of semiconductor device | |
JPH10313049A (en) | Semiconductor device and manufacture of the same | |
TWI242810B (en) | Manufacturing method for forming bit line spacer with fine rectangular contour | |
JPS6271247A (en) | Manufacture of semiconductor device | |
JPS58157137A (en) | Manufacture of semiconductor device | |
JPH08288480A (en) | Manufacture of silicon quantum dot | |
JPH01162351A (en) | Manufacture of semiconductor device | |
JPS62247530A (en) | Method for forming mask pattern |