[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6229540A - Pressurized distillation of methanol plant - Google Patents

Pressurized distillation of methanol plant

Info

Publication number
JPS6229540A
JPS6229540A JP60167410A JP16741085A JPS6229540A JP S6229540 A JPS6229540 A JP S6229540A JP 60167410 A JP60167410 A JP 60167410A JP 16741085 A JP16741085 A JP 16741085A JP S6229540 A JPS6229540 A JP S6229540A
Authority
JP
Japan
Prior art keywords
column
reformed gas
temperature
steam
reboiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60167410A
Other languages
Japanese (ja)
Other versions
JPH0692333B2 (en
Inventor
Kensuke Niwa
丹羽 健祐
Hideaki Nagai
永井 英彰
Kazuhiro Morita
守田 和裕
Katsutoshi Murayama
村山 勝利
Osamu Hashimoto
修 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP60167410A priority Critical patent/JPH0692333B2/en
Publication of JPS6229540A publication Critical patent/JPS6229540A/en
Publication of JPH0692333B2 publication Critical patent/JPH0692333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To reduce the energy consumption of the whole plant, by effectively recovering the thermal energy of a reformed gas obtained by two-stage reforming of a desulfurized hydrocarbon with steam and oxygen. CONSTITUTION:A gas containing a desulfurized hydrocarbon is reformed in two-stage reforming with steam and oxygen to give a reformed gas with a low steam content, and crude methanol synthesized therefrom is distilled under pressure. In the process, the following operation is carried out; (i) An initial distillation column 11 is heated to a temperature (70-115 deg.C) 5-25 deg.C higher than the column bottom temperature with a reboiler 16 for recovering the heat of the reformed gas. (ii) A pressurized distillation column 12 is heated to a temperature (135-225 deg.C) 5-25 deg.C higher than the column bottom temperature with a reboiler 14 for recovering the heat of the reformed gas and a reboiler 17 using steam as a heat source. (iii) An atmospheric-pressure rectifying column 13 is heated to a temperature (110-150 deg.C) 5-25 deg.C higher than the column bottom temperature with a reboiler 15 for recovering the heat of the reformed gas and multiple effect reboiler 18 using the overhead gas of the pressurized rectifying column 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメタノールプラントの加圧蒸留法に関し、特に
プラントのエネルギ原単位を改善すべく、リフオーマ出
ロガスの加圧蒸留プロセスに於いて新規な熱回収技術を
適用した上記蒸留法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a pressurized distillation method for methanol plants, and in particular, to improve the energy consumption of the plant, it is a novel pressurized distillation process for log gas from a reformer. The present invention relates to the above-mentioned distillation method applying heat recovery technology.

(従来の技術) 蒸留プロセスに於けるエネルギ原単位の改善という観点
より、近年加圧蒸留により多重効用を利用した各種のプ
ロセスが検討されている(例えば加6. Eng+Ch
ew、Proceaa DeB、 Dew。
(Prior art) From the perspective of improving the energy consumption rate in the distillation process, various processes that utilize multiple effects through pressurized distillation have been studied in recent years (for example, 6.Eng+Ch).
ew, Proceaa DeB, Dew.

1983.22,175179.  特開昭55−11
2803号公報、%開昭56−123926号公報等)
1983.22, 175179. Japanese Unexamined Patent Publication No. 55-11
Publication No. 2803, Publication No. 1987-123926, etc.)
.

しかしながら、これらは蒸留系内のエネルギ原単位につ
いてのみの検討であり、改質ガスの熱エネルギ利用全考
慮したプラント全体のエネルギ原単位を改善するという
検討はなされていなかった。
However, these studies only considered the energy consumption rate within the distillation system, and did not consider improving the energy consumption rate of the entire plant, taking into account the thermal energy utilization of the reformed gas.

すなわち、加圧蒸留の採用により、加圧精留塔の塔底温
度が高く、改質ガスの廃熱の低温域がプロセスに回収で
きぬ為、その分高温の熱が心安となり、総合的には最高
でない第5図の如きプロセスが利用されることが多かっ
た。なお、第3図中、12は加圧精留塔、13は常圧精
留塔、14は加圧精留塔改質ガスリボイラ、17は加圧
精留塔水蒸気リボイラ、18は加圧精留塔リスラックス
コンデンサである。
In other words, by adopting pressure distillation, the bottom temperature of the pressure rectification column is high and the low temperature range of the waste heat of the reformed gas cannot be recovered in the process, so the high temperature heat is relieved and the overall The process shown in FIG. 5, which is not the best, was often used. In Fig. 3, 12 is a pressure rectification column, 13 is an ordinary pressure rectification column, 14 is a pressure rectification column reformed gas reboiler, 17 is a pressure rectification column steam reboiler, and 18 is a pressure rectification column. The tower is a slack capacitor.

そしてこの大量の余剰廃熱により、冷却水流量ある一\
はエアクーラ・ファン動力が増加し、さらにエネルギ原
単位全低下させる原因ともなってい友。
And due to this large amount of excess waste heat, there is a large flow of cooling water.
This increases the power of the air cooler fan and causes a total reduction in energy consumption.

(発明が解決しようとする間雇点〕 本発明は、このような低位の余剰廃熱を有効利用し、エ
ネルギ原単位の改善上図るもので、メタノールプラント
の加圧蒸留プロセスに於て、リフオーマ出ロガスの熱エ
ネルギを有効に利用し、低位の廃熱全減少させ、プラン
トのエネルギ原単位を改善する方法全提案するものであ
る。
(The labor problem that the invention seeks to solve) The present invention aims to effectively utilize such low-level surplus waste heat to improve energy consumption. This paper proposes a method for effectively utilizing the heat energy of output log gas, completely reducing low-level waste heat, and improving the energy consumption of the plant.

(問題点を解決するための手段) 本発明は、脱硫された炭化水素含有ガスを50気圧以上
の圧力に於ける水蒸気及び酸素の2段階の改質工程によ
り、水蒸気含有率が単なる水蒸気改質反応により可能な
水蒸気含有率よシも低いメタノール合成原料ガスに改質
し、かつ合成工程にて生成される8〜50@1に%の水
を含む合成粗メタノールが初留塔にてその低沸点副生物
が除去され、続いて常圧塔と加圧塔の2塔から構成され
た硝留部により蒸留される如き改質、合成及び蒸留工程
よりなるメタノールプロセスに於て、 (1)  初留塔の加熱用熱源としては、改質ガスが初
留塔の塔底温度よυも5S25℃高い温度(すなわち7
0〜115℃)まで熱回収されるリボイラによフ賄われ
、 (2)加圧精留塔の加熱用熱源としては、改質ガスが該
精留塔の塔底温度よりも5〜25℃高い温度(すなわち
135へ225℃)まで熱回収されるリボイラ及び水蒸
気を熱源とするリボイラに依り賄われ、 (3)常圧精留塔の加熱用熱源としては、加圧精留塔の
塔頂ガスによる多重効用リボイラ及び改質ガスが該精留
塔の塔底温度よシも5〜25℃高い温度(すなわち、1
10〜150℃)まで熱回収されるリボイラにより賄わ
れる、 上記のうち少くとも2つ全組み合わせることを特徴とす
る、改質ガスの熱エネルギを有効に回収しプラント全体
のエネルギ消費賃金減少させることができるメタノール
プラントの加圧蒸留法に関する。
(Means for Solving the Problems) The present invention uses a two-stage reforming process of steam and oxygen at a pressure of 50 atmospheres or more to desulfurized hydrocarbon-containing gas, so that the steam content is reduced to just steam reforming. The synthetic crude methanol is reformed into methanol synthesis raw material gas with a lower water vapor content than that possible through the reaction, and the synthetic crude methanol containing 8 to 50 @ 1% water is produced in the synthesis process and its low content is reduced in the first distillation column. In the methanol process, which consists of reforming, synthesis, and distillation steps, in which boiling-point byproducts are removed and then distilled in a nitrification section consisting of two columns: an ordinary pressure column and a pressurization column, (1) As a heat source for heating the distillation column, the reformed gas has a temperature higher than the bottom temperature of the initial distillation column by 5S25℃ (i.e., 7
(2) As a heat source for heating the pressurized rectification column, the reformed gas is heated to a temperature of 5 to 25℃ above the bottom temperature of the rectification column. (3) The heat source for heating the atmospheric rectification column is the top of the pressure rectification column. The temperature of the gas-based multiple effect reboiler and reformed gas is 5 to 25°C higher than the bottom temperature of the rectification column (i.e., 1
To effectively recover the thermal energy of the reformed gas and reduce the energy consumption of the entire plant, which is characterized by a combination of at least two of the above. This paper relates to a pressurized distillation method for methanol plants that allows for

単なるスチーム・リフオーマにより改質されたガス中に
は CH4+ H2O−+ CiO+ 5H2の反応に
よフ多量のH2が含まれる。−万、本発明で採用するス
チーム・リフオーマの後流にオートサーマル・リフオー
マを設置する2段改質工程では、オートサーマル・リフ
オーマに供給する02iにより、メタノール合成に対し
余分のH2を水蒸気に変換することができ、かつ高温下
でのリフオーミングが可能となる為、改質圧力も上げる
ことが可能となる。このH20濃度及び圧力の違いによ
り改質ガス熱回IFy、法が、単なるスチーム・リフオ
ーマによる方法と、2段改質工程を採用する本発明とで
は変わることになる。
A gas reformed by a simple steam reformer contains a large amount of H2 due to the reaction of CH4+ H2O-+ CiO+ 5H2. - In the two-stage reforming process in which an autothermal reformer is installed downstream of the steam reformer adopted in the present invention, excess H2 for methanol synthesis is converted into steam by 02i supplied to the autothermal reformer. Since it is possible to perform reforming at high temperatures, it is also possible to increase the reforming pressure. Due to the difference in H20 concentration and pressure, the reformed gas thermal recovery IFy method differs between a method using a simple steam reformer and the present invention which employs a two-stage reforming process.

そして、本発明によれば、蒸留系外からの熱負荷を最小
とする蒸留プロセスを採用することが、かならずしもプ
ラントのエネルギ原単位を最小とすることにはならぬこ
とがわかる。
According to the present invention, it can be seen that adopting a distillation process that minimizes the heat load from outside the distillation system does not necessarily minimize the energy consumption of the plant.

以下、これを具体例に基き説明する。尚、説明はLs、
/r (Light−5plit/f(eaz−1nt
e@ration−Forwar4 )のプロセスに基
き行うが、本発明はこのL S/Fのみ許シでなく、あ
らゆる加圧蒸留プロセスに対し有効である。
This will be explained below based on a specific example. In addition, the explanation is Ls,
/r (Light-5plit/f(eaz-1nt
The present invention is effective not only for this L S/F but also for all pressure distillation processes.

なお、LS/Fとは、加圧塔に供給し、塔頂から製品を
抜き、塔底at次の常圧塔に供給し、その塔頂から製品
に、 qt底から水を、中間の段から側流を抜出すよう
なフロー(第1〜5回診皿)をいい、1塔目で軽い成分
(製品)の一部を抜き、熱の受授がプロセス全体の流れ
に対して順方向である為、  LS/Fと呼ぶ。
In addition, LS/F is a system in which the product is supplied to a pressurized column, the product is removed from the top of the column, the bottom of the column is supplied to the next atmospheric pressure column, the product is supplied from the top of the column, water is supplied to the product from the bottom of the column, and water is removed from the bottom of the column to the intermediate stage. The flow refers to a flow in which a side stream is extracted from a column (1st to 5th inspection plate), in which a part of light components (products) are extracted in the first column, and the heat transfer is in the forward direction with respect to the flow of the entire process. Therefore, it is called LS/F.

(1)比較嘔れる2プロセス(従来法と本発明法)本発
明法と従来法における加圧蒸留に於ける改質ガス熱量の
回収フローを第1図と第2図に示す。
(1) Comparison of two processes (conventional method and method of the present invention) Figures 1 and 2 show the recovery flow of the reformed gas calorific value in pressurized distillation in the method of the present invention and the conventional method.

第2図は、蒸留系外からの熱負荷の最も少ない(すなわ
ち、蒸留のエネルギ原単位の最も小さい)プロセスにお
けるフローである。
FIG. 2 shows a flow in a process that requires the least heat load from outside the distillation system (that is, the energy consumption unit for distillation is the least).

この熱回収フローは従来の加圧蒸留に於いてよく用いら
れるフローであり、以後これt、1従来法”と称する。
This heat recovery flow is a flow often used in conventional pressurized distillation, and is hereinafter referred to as "conventional method".

従来法では、加圧精留塔12の熱源は、リフオーマ−出
口ガスと水蒸気によるリボイラ14.17により賄われ
、常圧精留塔1S及び初留塔11の熱源は、多重効用に
より、加圧精留塔12リフランクスコンデンサ18゜1
8よシ与えられている。
In the conventional method, the heat source of the pressurized rectification column 12 is provided by the reboiler 14.17 using the reformer outlet gas and steam, and the heat source of the atmospheric rectification column 1S and the initial distillation column 11 is provided by the pressurized rectification column 12 due to multiple effects. Rectification column 12 Reflux condenser 18゜1
8 is given.

第1図は、本発明の一例金示すフローである。本発明法
によれば、精留に必要な熱量は従来法よシ増えるが、低
位の熱回収が増えるためにプラントのエネルギ消amは
少くなる。
FIG. 1 is a flowchart showing an example of the present invention. According to the method of the present invention, the amount of heat required for rectification is increased compared to the conventional method, but the energy consumption of the plant is reduced due to the increase in lower heat recovery.

以後これを1本発明法1と称する。Hereinafter, this will be referred to as Method 1 of the present invention.

本発明法では、初留塔11の加熱用熱源はリフオーマ出
口ガスの廃熱によりボイラ16よシ賄われ、加圧精留塔
12は、す7オーマ出ロガスの廃熱とリボイラ17によ
る水蒸気をその熱源とし常圧精留塔13は、多重効用に
よる加圧精留塔12の塔頂ガス及びリフオーマ出口ガス
によるリボイラ18.15によりその熱源が賄われてい
る。なお、第1図中の20は気液分離器金量している。
In the method of the present invention, the heat source for heating the initial distillation column 11 is provided by the boiler 16 by the waste heat of the reboiler outlet gas, and the pressurized rectification column 12 is supplied with the waste heat of the reboiler output gas and steam from the reboiler 17. The heat source of the atmospheric rectification column 13 is provided by a reboiler 18.15 using the top gas of the pressure rectification column 12 and the reformer outlet gas by multiple effects. Note that 20 in FIG. 1 indicates the amount of gas-liquid separator metal.

(2)  総合エネルギ原単位 水蒸気及び酸素の2段階改質工程より流出する55気圧
の改質ガスの廃熱を熱源の一部とする2 500 t/
dメタノールのLS/F蒸留プロセスを具体例とし、以
下そのエネルギ原単位上、従来法(第2図)と本発明法
(第1図)に基づき比較する。
(2) Total energy consumption: 2 500 t/2,500 t/unit using the waste heat of the reformed gas at 55 atm flowing out from the two-stage reforming process of steam and oxygen as part of the heat source.
Taking the LS/F distillation process of methanol as a specific example, the conventional method (FIG. 2) and the method of the present invention (FIG. 1) will be compared in terms of energy consumption.

各蒸留塔11〜13のリボイラー熱量及び多重効用され
る加圧精留塔12のリフラックスコンデンサ18熱tt
ヲ示したのが第1表である。
The reboiler heat amount of each distillation column 11 to 13 and the reflux condenser 18 heat of the pressure rectification column 12 which is used for multiple effects tt
Table 1 shows this.

第1表 Δ印は1プロセスに熱を与える(負の消費熱:tit)
”であること金示す。
The mark Δ in Table 1 gives heat to one process (negative heat consumption: tit)
”It shows that it is gold.

上表よシ明らかな如く蒸留系外からの熱負荷、すなわち
蒸留のエネルギ消費量だけを比較すると、本発明法よシ
も従来法の蒸留プロセスの方が10.9 MMKcal
/h  だけ優っている。
As is clear from the table above, when comparing only the heat load from outside the distillation system, that is, the energy consumption of distillation, the distillation process of the present invention and the conventional method are 10.9 MMKcal.
/h is better.

しかしながら各蒸留塔の改質ガスリボイラ及び水蒸気リ
ボイラ熱量と改質ガスリボイラ後流に設置される脱気器
給水予熱器19の熱量、そしてプロセスには回収されな
い改質ガスの余剰エネルギを示している第2表より明ら
かな如く本発明法では改質ガスの低温廃熱が効果的に利
用されたことによフ水蒸気すボイラの熱量は逆に17.
9 MMCcal/hr少くなっている。さらに、本発
明法では、従来、余剰廃熱として回収されなかった熱量
が18.8MM K c a 1/h rも少くなジ、
冷却水所要量の低下、あるいはエアクーラのファン動力
の低下金もたらす。
However, the heat amount of the reformed gas reboiler and steam reboiler of each distillation column, the heat amount of the deaerator feed water preheater 19 installed downstream of the reformed gas reboiler, and the surplus energy of the reformed gas that is not recovered in the process are shown in the second column. As is clear from the table, in the method of the present invention, the low-temperature waste heat of the reformed gas is effectively utilized, so that the amount of heat in the steam boiler is 17.
9 MMCcal/hr is decreasing. Furthermore, with the method of the present invention, the amount of heat that was conventionally not recovered as surplus waste heat is reduced by 18.8MM K ca 1/hr.
This results in lower cooling water requirements or lower air cooler fan power.

第2表 以上のように、本発明法は従来広と比し、蒸留原単位だ
け比べれば劣っているものの総合的には改質ガス熱−t
at−効果的に回収することができ、省エネルギ型のプ
ロセスとなっていることがわかる。
As shown in Table 2 and above, although the method of the present invention is inferior to the conventional method when only the distillation consumption rate is compared, overall the reformed gas heat -t
It can be seen that it can be effectively recovered and is an energy-saving process.

上記の比較は、55気圧の改質ガスよシ熱回収すること
全設定したが、この改質圧力が下がる程、その露点も下
がる為、ますます低温域の余剰熱量が増し、したがって
、本発明法によるエネルギ原単位の改善度はますます大
きくなる。
In the above comparison, all settings were made to recover heat from the reformed gas at 55 atm, but as the reforming pressure decreases, the dew point also decreases, so the amount of surplus heat in the low temperature range increases. The degree of improvement in energy consumption by the law will continue to increase.

尚、第1図のフローは、本発明に基くプロセスの一例で
あり、蒸留系の加圧度、改質系の圧力や熱回収法により
3つの改質ガス−リボイラ14〜16のうちの1つを省
くことも可能である。
The flow shown in Fig. 1 is an example of the process based on the present invention, and one of the three reformed gas reboilers 14 to 16 is controlled depending on the degree of pressurization of the distillation system, the pressure of the reforming system, and the heat recovery method. It is also possible to omit one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明蒸留プロセスの一例金示すフロー図、第
2図及び第3図は多重効用を利用した加圧蒸留に於いて
従来よく使用されるフローの一例を示す図である。
FIG. 1 is a flow diagram showing an example of the distillation process of the present invention, and FIGS. 2 and 3 are diagrams showing an example of a flow commonly used conventionally in pressurized distillation using multiple effects.

Claims (1)

【特許請求の範囲】 脱硫された炭化水素含有ガスを30気圧以上の圧力に於
ける水蒸気及び酸素の2段階の改質工程により、水蒸気
含有率が単なる水蒸気改質反応により可能な水蒸気含有
率よりも低いメタノール合成原料ガスに改質し、かつ合
成工程にて生成される8〜30重量%の水を含む合成粗
メタノールが初留塔にてその低沸点副生物が除去され、
続いて常圧塔と加圧塔の2塔から構成された精留部によ
り蒸留される如き改質、合成及び蒸留工程よりなるメタ
ノールプロセスに於て、 (1)初留塔の加熱用熱源としては、改質ガスが初留塔
の塔底温度よりも5〜25℃高い温度(すなわち70〜
115℃)まで熱回収されるリボイラにより賄われ、 (2)加圧精留塔の加熱用熱源としては、改質ガスが該
精留塔の塔底温度よりも5〜25℃高い温度(すなわち
135〜225℃)まで熱回収されるリボイラ及び水蒸
気を熱源とするリボイラに依り賄われ、 (3)常圧精留塔の加熱用熱源としては、加圧精留塔の
塔頂ガスによる多重効用リボイラ及び改質ガスが該精留
塔の塔底温度よりも5〜 25℃高い温度(すなわち、110〜150℃)まで熱
回収されるリボイラにより賄われる、 上記のうち少くとも2つを組み合わせることを特徴とす
る、改質ガスの熱エネルギを有効に回収しプラント全体
のエネルギ消費量を減少させることができるメタノール
プラントの加圧蒸留法。
[Claims] A two-stage reforming process using steam and oxygen at a pressure of 30 atmospheres or more is carried out on desulfurized hydrocarbon-containing gas so that the steam content is lower than that possible through a simple steam reforming reaction. Synthetic crude methanol containing 8 to 30% by weight of water produced in the synthesis process is reformed into methanol synthesis raw material gas with low content, and its low-boiling byproducts are removed in a first distillation column.
In the methanol process, which consists of reforming, synthesis, and distillation steps, which are then distilled in a rectification section consisting of two columns, a normal pressure column and a pressurization column, (1) As a heat source for heating the initial distillation column. In this case, the temperature of the reformed gas is 5 to 25 °C higher than the bottom temperature of the initial distillation column (i.e., 70 to 25 °C).
(2) As a heat source for heating the pressure rectification column, the reformed gas is heated to a temperature 5 to 25C higher than the bottom temperature of the rectification column (i.e. (135 to 225℃) and a reboiler that uses steam as a heat source. A combination of at least two of the above, in which the reformed gas is supplied with a reboiler whose heat is recovered to a temperature 5 to 25 degrees Celsius higher than the bottom temperature of the rectification column (i.e., 110 to 150 degrees Celsius). A pressurized distillation method for a methanol plant that can effectively recover the thermal energy of reformed gas and reduce the energy consumption of the entire plant.
JP60167410A 1985-07-31 1985-07-31 Pressure distillation method of methanol plant Expired - Lifetime JPH0692333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167410A JPH0692333B2 (en) 1985-07-31 1985-07-31 Pressure distillation method of methanol plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167410A JPH0692333B2 (en) 1985-07-31 1985-07-31 Pressure distillation method of methanol plant

Publications (2)

Publication Number Publication Date
JPS6229540A true JPS6229540A (en) 1987-02-07
JPH0692333B2 JPH0692333B2 (en) 1994-11-16

Family

ID=15849176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167410A Expired - Lifetime JPH0692333B2 (en) 1985-07-31 1985-07-31 Pressure distillation method of methanol plant

Country Status (1)

Country Link
JP (1) JPH0692333B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034659A (en) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd Method for producing methanol
CN1317248C (en) * 2005-10-27 2007-05-23 天津大学 Energy saving equipment of double effect rectification for methanol, and method
CN100378051C (en) * 2006-06-13 2008-04-02 天津大学 Rectifying tech. and equipment of high purity methanol
CN113082756A (en) * 2021-04-30 2021-07-09 华能(广东)能源开发有限公司海门电厂 Methanol rectification unit waste heat cascade utilization co-production heat supply system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016338A (en) * 1973-06-18 1975-02-20
JPS5379807A (en) * 1976-12-22 1978-07-14 Ici Ltd Process for preparing methanol
JPS53112803A (en) * 1977-03-11 1978-10-02 Ici Ltd Method of rectfying methanol
JPS5545637A (en) * 1978-09-28 1980-03-31 Continental Oil Co Methanol plant
JPS56123926A (en) * 1980-03-06 1981-09-29 Toyo Eng Corp Purification of methanol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016338A (en) * 1973-06-18 1975-02-20
JPS5379807A (en) * 1976-12-22 1978-07-14 Ici Ltd Process for preparing methanol
JPS53112803A (en) * 1977-03-11 1978-10-02 Ici Ltd Method of rectfying methanol
JPS5545637A (en) * 1978-09-28 1980-03-31 Continental Oil Co Methanol plant
JPS56123926A (en) * 1980-03-06 1981-09-29 Toyo Eng Corp Purification of methanol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034659A (en) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd Method for producing methanol
CN1317248C (en) * 2005-10-27 2007-05-23 天津大学 Energy saving equipment of double effect rectification for methanol, and method
CN100378051C (en) * 2006-06-13 2008-04-02 天津大学 Rectifying tech. and equipment of high purity methanol
CN113082756A (en) * 2021-04-30 2021-07-09 华能(广东)能源开发有限公司海门电厂 Methanol rectification unit waste heat cascade utilization co-production heat supply system and method

Also Published As

Publication number Publication date
JPH0692333B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
CA1297911C (en) Methanol production
US4650814A (en) Process for producing methanol from a feed gas
US5346593A (en) Intermediate reboiler for a methanol plant
US11292717B2 (en) Method for producing methanol from synthesis gas without the emission of carbon dioxide
US6258860B1 (en) Process for the production of methanol
US3950369A (en) Methanol production
KR102217256B1 (en) Method and apparatus for producing carbon monoxide
JPS60500448A (en) Distillation separation using bottom oil additives
US3743699A (en) Process for ammonia manufacture
US4428799A (en) Production of concentrated alcohol and distillery slop
US4274850A (en) Rectification of natural gas
US3597465A (en) Production of synthetic methanol
EP0875486A2 (en) Process producing ammonia and recovering argon using low purity oxygen
US3531266A (en) Production of synthetic methanol
GB2186870A (en) Ammonia synthesis
JPS6229540A (en) Pressurized distillation of methanol plant
EP1597341B1 (en) Improved process for shift conversion
EP0089105B1 (en) Multi stage methanation
US20190128601A1 (en) Process and plant for the combination production of a mixture of hydrogen and nitrogen and also of carbon monoxide by cryogenic distillation and cryogenic scrubbing
EP3844135B1 (en) Method and system for synthesizing methanol
JPS6229539A (en) Pressurized distillation of methanol plant
JP2002193864A (en) Method for producing dimethyl ether
US2864772A (en) Gas processing
GB2033882A (en) Production of ammonia
RU2724085C1 (en) High concentration methanol production device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term