[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62294758A - Suction device of internal combustion engine - Google Patents

Suction device of internal combustion engine

Info

Publication number
JPS62294758A
JPS62294758A JP13816086A JP13816086A JPS62294758A JP S62294758 A JPS62294758 A JP S62294758A JP 13816086 A JP13816086 A JP 13816086A JP 13816086 A JP13816086 A JP 13816086A JP S62294758 A JPS62294758 A JP S62294758A
Authority
JP
Japan
Prior art keywords
oxygen
intake
sensor
suction
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13816086A
Other languages
Japanese (ja)
Inventor
Hideo Kawamura
英男 河村
Hiroshi Matsuoka
寛 松岡
Shinji Hara
真治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP13816086A priority Critical patent/JPS62294758A/en
Publication of JPS62294758A publication Critical patent/JPS62294758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To supply air in optimum oxygen content as well as rate of flow according to the engine operating condition, by controlling a suction throttle valve so that the suction oxygen amount determined from sensor information becomes optimum value according to the engine operating condition. CONSTITUTION:Engine revolving speed, load, suction neg. pres. and temperature are sensed by means of a rotation sensor 11, a load sensor 10, a pressure sensor 12 and a thermo-sensor 14. Thereupon the operating condition of engine is determined, and the suction amount of oxygen is calculated which is optimum according to said determined operating condition. If the suction amount of oxygen is less than the optimum value, a suction throttle valve 6 is throttled to enlarge the suction neg. pres. to be applied to an oxygen enriching device 4, and the amount of oxygen generated thereby is increased so that the optimum value is obtained. If the suction amount of oxygen is larger than the optimum value, said suction throttle valve 6 is opened to lessen the suction neg. pres., and the amount of oxygen generated is decreased so that the optimum value is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃償関の吸気系に酸素富化装置を介設した内
燃機関の吸気装置に係り、特に酸素富化空気の供給mを
改善したものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an intake system for an internal combustion engine in which an oxygen enrichment device is interposed in the intake system of an internal combustion engine, and in particular improves the supply of oxygen-enriched air. related to what was done.

[従来の技術] 酸素富化装置を付加したエンジンにJ3いて、酸素富化
空気の酸素濃度及び空気流量を決定するパラメータの一
つは、酸素富化装置に加えられる斥力であり、通常この
圧力はエンジンの吸気負圧を用いている。
[Prior Art] One of the parameters that determines the oxygen concentration and air flow rate of oxygen-enriched air in a J3 engine equipped with an oxygen enrichment device is the repulsive force applied to the oxygen enrichment device, and normally this pressure uses the engine's intake negative pressure.

したがって、吸気系に取付けた吸気絞り弁の操作によっ
て吸気負圧が変化すると、酸素富化空気のM素濃度及び
空気流量も同時に変化ゴる。それ故、エンジン運転状態
に応じた負圧設定を行わないと必要な酸素富化空気をエ
ンジンに供給することができない。
Therefore, when the intake negative pressure changes by operating the intake throttle valve attached to the intake system, the M element concentration of the oxygen-enriched air and the air flow rate also change at the same time. Therefore, the necessary oxygen-enriched air cannot be supplied to the engine unless the negative pressure is set according to the engine operating state.

ところが、従来の酸素富化装置付エンジンにあっては、
そのような観点からの負圧制1211が行なわれていな
かったため、エンジンに供給される酸素富化空気の酸素
濃度及び空気流開に過不足l1.(あった。
However, with conventional engines equipped with oxygen enrichment devices,
Since negative pressure control 1211 was not carried out from such a point of view, there may be excess or deficiency l1. (there were.

なお、先行技術としては、酸素富化空気の酸素濃度を負
荷の増大に応じて減少させ、燃焼温度が異常に高くなら
ないようにしたもの(特開昭58−455242号公報
)、エンジンの負荷域に応じて酸素富化空気と通常の空
気とを切換える際、その作動速度を緩慢にして切換時の
出力ショックを低減したもの(特開昭58−14465
9号公報)がある。
In addition, as a prior art, the oxygen concentration of oxygen-enriched air is reduced according to the increase in load so that the combustion temperature does not become abnormally high (Japanese Patent Application Laid-Open No. 1983-455242), and the engine load range When switching between oxygen-enriched air and normal air according to
Publication No. 9).

[発明が解決しようとする問題点] 上記したように従来のものでは、エンジン運転状態に応
じて必要とする酸素量が異なるにも関わらず、エンジン
運転状態に応じた負圧設定を行っていないため、最適な
酸素濃度及び流量の空気を供給することができなかった
[Problems to be solved by the invention] As mentioned above, in the conventional system, the negative pressure is not set according to the engine operating state, even though the amount of oxygen required varies depending on the engine operating state. Therefore, it was not possible to supply air with optimal oxygen concentration and flow rate.

したがって、本発明の目的は、内燃機関の運転状態に応
じた最適な酸素富化空気を別間に供給することが可能な
内燃別間の吸気装置を提供することである。
Therefore, an object of the present invention is to provide an intake system for an internal combustion engine that can supply optimal oxygen-enriched air to the internal combustion engine depending on the operating state of the engine.

[問題点を解決するための手段] 上記目的に沿う本発明は、吸気系の途中に介設された酸
素富化装置の下流側に、例えば吸気負圧や酸素濃度等の
吸気情報を検出づ゛るセンサを設け、このセンサ情報に
基づいて吸気酸素量を求め、この吸気酸素量が機関運転
状態に応じた最適値となるように吸気絞り弁を制御する
制御手段を設けたちのである。
[Means for Solving the Problems] The present invention, which achieves the above object, detects intake information, such as intake negative pressure and oxygen concentration, on the downstream side of an oxygen enrichment device installed in the middle of the intake system. A control means is provided for determining the amount of intake oxygen based on the sensor information and controlling the intake throttle valve so that the amount of intake oxygen is the optimum value depending on the engine operating state.

[作 用コ 制御手段に機関の運転状態が入力されると、これに応じ
た最適な吸気酸素ωが算出される。センサ情報に基づい
て求めた吸気酸索伶がこの最適値よりも小さいと、吸気
絞り弁が絞られて酸素に化装置に加えられる吸気負圧が
大ぎくなり、酸素富化装置が発生する酸素量を増加させ
、この酸素量を最適値にもっていく。
[Operation] When the operating state of the engine is input to the control means, the optimum intake oxygen ω is calculated accordingly. If the intake oxygen concentration determined based on the sensor information is smaller than this optimal value, the intake throttle valve is throttled and the intake negative pressure applied to the oxygen enrichment device becomes too large, causing the oxygen enrichment device to generate less oxygen. The amount of oxygen is increased to bring this amount of oxygen to the optimal value.

また吸気酸素量が最適値よりも大きいと、吸気絞り弁が
開かれて吸気負圧が小さくなり、発生酸素量を減少させ
、この酸素量を同様に最適値にもっていく。
Furthermore, when the intake oxygen amount is larger than the optimum value, the intake throttle valve is opened and the intake negative pressure is reduced, reducing the generated oxygen amount and bringing this oxygen amount to the optimum value as well.

[実施例] 本発明の実施例を第1図〜第5図に基づいて説明すれば
以下の通りである。
[Example] An example of the present invention will be described below based on FIGS. 1 to 5.

第1図は本発明の内燃機関の吸気装置例を示す。FIG. 1 shows an example of an intake system for an internal combustion engine according to the present invention.

1はエンジンであり、これにエアクリーナ2を介して一
般の空気を供給する吸気管3が連結されている。この吸
気管3の途中には酸素富化装置4が介設され、エンジン
吸気負圧を利用して送風ファン5から供給された新気よ
り酸素富化空気を発生して、一般の空気と合流させてエ
ンジン1内に供給するようになっている。酸素富化装置
4に加えるエンジン供給負圧はこれより上流側の吸気管
3に取り付けた吸気絞り弁6の弁開度を調整することに
より可変できるようになっている。この吸気絞り弁6の
弁開度は、コントローラ7から出力される作動信号によ
り作動する絞り弁用アクチュエータ8によって調整され
る。
1 is an engine, to which an intake pipe 3 for supplying general air via an air cleaner 2 is connected. An oxygen enrichment device 4 is interposed in the middle of this intake pipe 3, and generates oxygen-enriched air from fresh air supplied from a blower fan 5 using engine intake negative pressure, and merges it with general air. It is designed to be supplied into the engine 1. The engine supply negative pressure applied to the oxygen enrichment device 4 can be varied by adjusting the valve opening degree of an intake throttle valve 6 attached to the intake pipe 3 on the upstream side. The opening degree of the intake throttle valve 6 is adjusted by a throttle valve actuator 8 that is operated by an operation signal output from a controller 7.

コン1〜ローラ7の入力側には、インジェクションポン
プから負荷を検出づ−る負荷センサ10.エンジン回転
速度を検出づ−る回転センザ11.M素富化装置4の下
流側の吸気管3内に取り付(プられて8素冨化装置4に
加えられる吸気負圧を検出−づ−る圧力センサ12及び
エンジン1内に供給される合流空気の酸素濃度を検出す
る酸素濃度セン→)−13、そして酸素富化装置4の新
気導入路に取り付けられ新気の温度を検出する温度セン
サ14が接続され、これら各種センサから得られる情報
にもとづいて、上記アクチュエータ用の作動信号を出力
するようになっている。なお、上記酸素濃度センサ13
は必須のものではない。
On the input side of the controller 1 to the roller 7, there is a load sensor 10 that detects the load from the injection pump. Rotation sensor 11 for detecting engine rotation speed. A pressure sensor 12 is installed in the intake pipe 3 on the downstream side of the M element enrichment device 4 and is supplied to the engine 1. An oxygen concentration sensor →)-13 that detects the oxygen concentration of the combined air, and a temperature sensor 14 that is attached to the fresh air introduction path of the oxygen enrichment device 4 and detects the temperature of the fresh air are connected, and the temperature obtained from these various sensors is connected. Based on the information, an actuation signal for the actuator is output. Note that the oxygen concentration sensor 13
is not required.

上記コントローラ7の諸機能は第2図に示ず通りである
The various functions of the controller 7 are as shown in FIG.

ところで、このように構成された吸気装置において、酸
素°畠化装置4を吸気管3に介設したシステム全体と°
しての特性は第4図及び第5図に示す通りであり、酸素
富化装置4よりも下流側で得られる合流空気の酸素濃度
及び流出はエンジン吸気負圧(絶対圃)によって決定さ
れるとともに、これらは送風ファン5により供給される
空気温度によっても決められる。
By the way, in the intake device configured in this way, the entire system in which the oxygen concentration device 4 is interposed in the intake pipe 3 is
Its characteristics are as shown in Figures 4 and 5, and the oxygen concentration and outflow of the combined air obtained downstream of the oxygen enrichment device 4 are determined by the engine intake negative pressure (absolute field). These are also determined by the temperature of the air supplied by the blower fan 5.

さて、上記のような構成及び諸機能にJ3りる作用を第
2図に沿って説llI]する。
Now, the effects of the above-mentioned configuration and various functions will be explained with reference to FIG.

エンジン運転状態を表わすエンジン回転速度N及びエン
ジン負荷しは各々回転センサ11.負荷センサ10によ
り検出され、その検出データがコントローラ7に入力さ
れる。また、酸素富化装置4に加えられる吸気負圧P及
び酸素富化装@4に供給される新気温度Tは、各々圧力
センサ12及び温度センサ14により検出され、その検
出データもコントローラ7に入力される。これらのデー
タは通常行われるように一定周期で入力される。
The engine rotation speed N and engine load, which represent the engine operating state, are each detected by a rotation sensor 11. It is detected by the load sensor 10, and the detection data is input to the controller 7. In addition, the intake negative pressure P applied to the oxygen enrichment device 4 and the fresh air temperature T supplied to the oxygen enrichment device @4 are detected by the pressure sensor 12 and temperature sensor 14, respectively, and the detected data is also input to the controller 7. be done. These data are input at regular intervals as is normally done.

これら各センサからの検出データが入力されたうえで、
エンジン回転速度Nがゼロか否かを判断し、エンジン1
が回転しているときだけ絞り弁制御をするため次のステ
ップに進みエンジン運転状態に応じた酸素濃度設定を行
う。この酸素′a度段設定、本実施例では検出したエン
ジン負荷りが、第3図のマツプから所定1iaLo以上
のときは高濃度の酸素濃度Aに、LO未渦のときは中濃
度の酸素濃度Bとなるように、エンジン負荷状態により
2種類設定するようになっているが、濃度設定の種類を
更に増やしても、或はエンジン回転数を設定条件に加え
てもよい。
After inputting the detection data from each of these sensors,
It is determined whether the engine rotational speed N is zero or not, and the engine 1
Since the throttle valve is controlled only when the engine is rotating, proceed to the next step and set the oxygen concentration according to the engine operating state. In this embodiment, the oxygen 'a stage setting is set to a high oxygen concentration A when the detected engine load is greater than a predetermined 1iaLo from the map shown in FIG. B, two types are set depending on the engine load condition, but the number of types of concentration settings may be further increased, or the engine speed may be added to the setting conditions.

なお、酸素濃度がA又はBのいずれに設定されても、設
定後の作動の流れは共通するので、ここでは酸素濃度A
に設定された場合について引き続き述べる。
Note that regardless of whether the oxygen concentration is set to A or B, the operation flow after setting is the same, so here we will use the oxygen concentration A.
I will continue to discuss the case where it is set to .

酸素濃度△を設定した後、一般の空気とM累富化空気と
が合流した、エンジン1へ供給されるトータルの吸入空
気ff1Qを吸気負圧Pに基づいて算出する。また、エ
ンジン回転速度Nとエンジン負荷りとからエンジン1に
必要な酸素mo2oを計g1する。そして、これらと第
4図及び第5図の特性データマツプから酸素富化装置4
の運転条件である吸気負圧PAを決定する。この決定は
次のようになされる。
After setting the oxygen concentration Δ, the total intake air ff1Q, which is a mixture of general air and M-enriched air and is supplied to the engine 1, is calculated based on the intake negative pressure P. Further, the oxygen mo2o required for the engine 1 is calculated g1 from the engine speed N and the engine load. Then, from these and the characteristic data maps shown in FIGS. 4 and 5, the oxygen enrichment device 4
Determine the intake negative pressure PA, which is the operating condition. This decision is made as follows.

エンジン1に供給される現状の吸入空気の酸素濃度をA
と仮定すると、エンジン1に供給されるMNFlr02
は、算出結果の吸入空気fmQに基づぎ02=QXA 
          <1)となる。ところが、酸素濃
度Aは第4図及び第5図の特性から A=f (P) Q (T)       (21と表
わせる。したがって(1)式に(2)式を代入して02
  =Qf  (P)  Q  (T)       
(3]を得る。
The oxygen concentration of the current intake air supplied to engine 1 is A
Assuming that, MNFlr02 supplied to engine 1
is 02=QXA based on the calculated intake air fmQ
<1). However, the oxygen concentration A can be expressed as A = f (P) Q (T) (21) from the characteristics shown in Figures 4 and 5. Therefore, by substituting formula (2) into formula (1),
=Qf (P) Q (T)
(3) is obtained.

一方、現在必要な酸素囲は、既述したように計算結果か
らも求まり、 02=020            (4)であるか
ら、(3)式と(4)式とを等しいとおいてf (P)
 =020/Q−Q (T)   (5)を得る。この
式を満たす吸気負圧が求める吸気負圧P=PAとなる。
On the other hand, the currently required oxygen envelope can be found from the calculation results as mentioned above, and is 02=020 (4), so assuming that equations (3) and (4) are equal, f (P)
=020/Q-Q (T) (5) is obtained. The intake negative pressure that satisfies this equation is the required intake negative pressure P=PA.

したがって、(5)式より PA = f” (020/Q−Q (T) )  (
6+が1りられる。なお、Q (T>は新気温度Tが検
出されているので既知である。
Therefore, from equation (5), PA = f'' (020/Q-Q (T) ) (
6+ gets 1. Note that Q (T> is known because the fresh air temperature T has been detected.

このようにして、現状の吸入空気ff1Qが変わらない
として、その酸素濃度をAにするには吸気負圧P=PA
に決定する必要がある。
In this way, assuming that the current intake air ff1Q does not change, in order to make the oxygen concentration A, the intake negative pressure P=PA
It is necessary to decide.

上述したように吸気負圧PAが決定されると、コン1〜
ローラ7は絞り弁用アクチュエータ8に作動信号を出力
した後、吸気負圧Pが決定吸気負圧PA以上か否かを判
断し、否のときはアクチュエータ作動とこれに続く上記
判断を繰り返し、以上のときは次のステップへ進み酸素
濃度が設定値の酸素濃度Δになっているか否かを判断す
る。この酸素濃度は酸素濃度センtす13によって検出
されたものである。Aになったとき本制御は終了して最
初の検出データを読み込むルーチンに戻るが、否のとぎ
はアクチュエータ作動のステップまで戻ってそれ以降の
ステップを繰り返ず。
When the intake negative pressure PA is determined as described above, controllers 1 to 1
After outputting an activation signal to the throttle valve actuator 8, the roller 7 determines whether or not the intake negative pressure P is equal to or higher than the determined intake negative pressure PA.If not, the actuator is activated and the subsequent determination described above is repeated. In this case, the process proceeds to the next step and determines whether the oxygen concentration has reached the set value of oxygen concentration Δ. This oxygen concentration is detected by the oxygen concentration sensor 13. When A is reached, this control ends and returns to the routine of reading the first detection data, but if not, the process returns to the actuator actuation step and does not repeat the subsequent steps.

即ち、コントローラ7の作動信号によってアクチュエー
タが作動し、これにより吸気絞り弁6の弁開度が調整さ
れると、これに応じて酸素富化装置4に加わる吸気負圧
が制御される。この制り0された吸気負圧P (<O)
が決定吸気負圧pA(<0)よりも大ぎいとぎ、即ち絞
り吊がまだ足りずPAに達していないどきは、PAに達
する前に既に酸素濃度が設定値Aになっているか否かを
兇i々め、Δになっていないとぎは更に吸気絞り弁6の
弁開度を絞っていくようにして、P=PAになる前に目
標の酸素濃度Aが(qられる場合には過浪4工吸気絞り
を行なわないようにしている。
That is, when the actuator is actuated by an actuation signal from the controller 7 and the valve opening degree of the intake throttle valve 6 is adjusted thereby, the intake negative pressure applied to the oxygen enrichment device 4 is controlled accordingly. This reduced intake negative pressure P (<O)
is determined to be greater than the negative intake pressure pA (<0), that is, when the aperture is still insufficient and PA has not been reached, check whether the oxygen concentration has already reached the set value A before reaching PA. In each case, if Δ is not reached, the valve opening of the intake throttle valve 6 is further reduced, and the target oxygen concentration A is reached before P=PA (if I try not to perform 4-engine intake throttling.

逆に、制御された吸気負圧PがPAよりも小さいときは
、吸気絞り弁6の弁開度を開いていき、P=PAとする
ことによって同様に目標の酸素濃度Aにもっていくよう
にするのである。
On the other hand, when the controlled intake negative pressure P is smaller than PA, the valve opening of the intake throttle valve 6 is opened, and by setting P=PA, the target oxygen concentration A is similarly reached. That's what I do.

このようにして、吸気負圧をフィードバック制御すると
ともに、酸素濃度のフィードバック制御もこれに補足的
に加えるようにしたので、常に最適な酸素冨化空気即ち
、必要な酸素量をエンジンに供給することができる。
In this way, in addition to feedback control of the intake negative pressure, feedback control of the oxygen concentration is also supplementary to this, so that the optimal oxygen-enriched air, that is, the necessary amount of oxygen, is always supplied to the engine. Can be done.

なお、酸素濃度センサ13を使わない場合には、第2図
のフローチャートにおいて、吸気負圧の判断を単にP=
PAか否かに変更し濃度判断を省略すればよい。
Note that when the oxygen concentration sensor 13 is not used, the intake negative pressure is simply determined by P=
It is sufficient to change it to PA or not and omit the concentration determination.

また、上記実施例では、基本的には、吸気負圧で酸素量
を間接制御するようにしているが、圧力センサ12に代
えて酸素濃度センサ13を積極的に使用し、これにより
検出される酸素濃度が設定温度となるように絞り弁用ア
クチュエータ8を直接1iIII21!するようにして
もよい。
Furthermore, in the above embodiment, basically, the oxygen amount is indirectly controlled by the intake negative pressure, but instead of the pressure sensor 12, the oxygen concentration sensor 13 is actively used, and the oxygen concentration sensor 13 is used to detect the oxygen concentration. Directly adjust the throttle valve actuator 8 so that the oxygen concentration reaches the set temperature 1iIII21! You may also do so.

[発明の効果] 以上要するに本発明によれば、センサ情報から求めた吸
気酸素量が機関運転状態に応じた最適値となるように吸
気絞り弁を制御するように構成したことにより、酸素富
化装置が発生する酸素量を決定する吸気負圧が適正に調
節されるので、tlf3[]運転状態に応じた最適な酸
素濃度及び流量の空気を供給することができる。
[Effects of the Invention] In short, according to the present invention, the intake throttle valve is controlled so that the amount of intake oxygen determined from sensor information becomes the optimum value according to the engine operating condition, thereby achieving oxygen enrichment. Since the intake negative pressure, which determines the amount of oxygen generated by the device, is appropriately adjusted, air can be supplied with the optimal oxygen concentration and flow rate according to the tlf3[] operating state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る内燃改関の吸気装置の
構成図、第2図は第1図に示すコントローラの諸機能を
説明するフローチャート、第3図は第2図のフローチャ
ートで採用した別間の運転状態に応じて最適な酸素濃度
を得るためのプログラム内容を示した負荷特性図、第4
図及び第5図は吸気系に介設した酸素富化装置の特性図
である。 図中、1はエンジン、3は吸気管、4は酸素富化装置、
6は吸気絞り弁、7.8は制御手段を構成するコントロ
ーラ及び絞り弁用アクチュエータ、12.13は吸気情
報を検出する圧力センサ及び酸素濃度センサである。
Fig. 1 is a block diagram of an intake system for an internal combustion engine reformer according to an embodiment of the present invention, Fig. 2 is a flowchart explaining various functions of the controller shown in Fig. 1, and Fig. 3 is a flowchart of Fig. 2. Load characteristic diagram showing the contents of the program to obtain the optimum oxygen concentration according to the operating condition of the adopted engine, Part 4
5 and 5 are characteristic diagrams of an oxygen enrichment device installed in the intake system. In the figure, 1 is the engine, 3 is the intake pipe, 4 is the oxygen enrichment device,
6 is an intake throttle valve; 7.8 is a controller and throttle valve actuator constituting a control means; 12.13 is a pressure sensor and an oxygen concentration sensor for detecting intake information.

Claims (3)

【特許請求の範囲】[Claims] (1)吸気系に介設された酸素富化装置の下流側にその
吸気情報を検出するセンサを設け、センサ情報から求め
た吸気酸素量が機関運転状態に応じた最適値となるよう
に吸気絞り弁を制御する制御手段を設けた内燃機関の吸
気装置。
(1) A sensor is installed on the downstream side of the oxygen enrichment device installed in the intake system to detect the intake air information, and the intake air is adjusted so that the amount of intake oxygen determined from the sensor information is the optimal value according to the engine operating condition. An intake system for an internal combustion engine that is equipped with a control means for controlling a throttle valve.
(2)上記センサが酸素富化装置に加えられる吸気負圧
を検知する圧力センサである特許請求の範囲第1項記載
の内燃機関の吸気装置。
(2) The intake system for an internal combustion engine according to claim 1, wherein the sensor is a pressure sensor that detects intake negative pressure applied to the oxygen enrichment device.
(3)上記センサが酸素富化装置の下流側を流れる吸入
空気中の酸素濃度を検知する酸素濃度センサである特許
請求の範囲第1項記載の内燃機関の吸気装置。
(3) The intake system for an internal combustion engine according to claim 1, wherein the sensor is an oxygen concentration sensor that detects the oxygen concentration in intake air flowing downstream of the oxygen enrichment device.
JP13816086A 1986-06-16 1986-06-16 Suction device of internal combustion engine Pending JPS62294758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13816086A JPS62294758A (en) 1986-06-16 1986-06-16 Suction device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13816086A JPS62294758A (en) 1986-06-16 1986-06-16 Suction device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62294758A true JPS62294758A (en) 1987-12-22

Family

ID=15215422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13816086A Pending JPS62294758A (en) 1986-06-16 1986-06-16 Suction device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62294758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072739A (en) * 2010-09-29 2012-04-12 Honda Motor Co Ltd Internal combustion engine control apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095150A (en) * 1983-10-28 1985-05-28 Mitsubishi Electric Corp Air-fuel ratio control device for internal-combustion engine
JPS62199958A (en) * 1986-02-28 1987-09-03 Hitachi Ltd Control method for oxygen concentration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095150A (en) * 1983-10-28 1985-05-28 Mitsubishi Electric Corp Air-fuel ratio control device for internal-combustion engine
JPS62199958A (en) * 1986-02-28 1987-09-03 Hitachi Ltd Control method for oxygen concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072739A (en) * 2010-09-29 2012-04-12 Honda Motor Co Ltd Internal combustion engine control apparatus

Similar Documents

Publication Publication Date Title
JPS61171843A (en) Throttle-valve controller for engine
JPS62294758A (en) Suction device of internal combustion engine
JPH10238414A (en) Control device for egr
JPH0777092A (en) Method and device for controlling air-fuel ratio of internal combustion engine
JPS60198348A (en) Engine controller
JPS5862337A (en) Control device of number of revolution in internal- combustion engine
JPS62229311A (en) Control valve
JPH0826786B2 (en) Engine controller
JPS6319709B2 (en)
JPH10132265A (en) Control method of pressure in furnace
JPH0211858A (en) Exhaust gas recycling control unit
JP3235313B2 (en) Open / close control device for swirl control valve
JPH0734938A (en) Air ratio control method and device for lean burn engine
JPH06288267A (en) Air-fuel ratio control method of gas engine
JPS6138341B2 (en)
KR100305818B1 (en) Device and method for compensating air amount by air temperature
JPH03168343A (en) Idle rotation controller of engine
JPH029923A (en) Fuel controller for engine
JPH0230947A (en) Duty solenoid control device
JPH0223240A (en) Fuel control device of engine
JPH07189708A (en) Swirl control valve opening/closing control device
JPH04269361A (en) Air-fuel ratio control method in exhaust emission control system using three way catalyst
KR19990020424A (en) Air volume control device and method in power steering operation
JPS6043142A (en) Control method for the time when trouble is caused with differential-pressure sensor used in electronically controlled fuel supplying apparatus
JPS60249638A (en) Air-fuel ratio control for engine