[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62282407A - Manufacture of voltage nonlinear resistance element - Google Patents

Manufacture of voltage nonlinear resistance element

Info

Publication number
JPS62282407A
JPS62282407A JP61126072A JP12607286A JPS62282407A JP S62282407 A JPS62282407 A JP S62282407A JP 61126072 A JP61126072 A JP 61126072A JP 12607286 A JP12607286 A JP 12607286A JP S62282407 A JPS62282407 A JP S62282407A
Authority
JP
Japan
Prior art keywords
layer
main component
mol
sintered body
agent containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61126072A
Other languages
Japanese (ja)
Inventor
雅昭 勝又
高見 昭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61126072A priority Critical patent/JPS62282407A/en
Publication of JPS62282407A publication Critical patent/JPS62282407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は酸化亜鉛を主成分とし、それ自身が電圧非直線
性を有する焼結体の側面に、高抵抗層を形成した電圧非
直線抵抗体素子の製造方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention forms a high-resistance layer on the side surface of a sintered body containing zinc oxide as a main component and having voltage nonlinearity itself. The present invention relates to a method of manufacturing a voltage nonlinear resistor element.

従来の技術 電圧非直線抵抗体素子は一般にバリスタと呼ばれ、電圧
安定化やサージ吸収素子として用いられている。なかで
も、酸化亜鉛を主成分とし、これに少量のBi、、O,
、Co2O3,MnO,、、5b20. 、Cr2O3
などの金属酸化物を添加した酸化亜鉛バリスタは、その
大きなサージ電流耐量と優れた電圧非直線性から、近年
ギャップレスアレスタ用の素子として従来のシリコンカ
ーバイトバリスタにとって代わり広く利用されている。
BACKGROUND ART A voltage nonlinear resistor element is generally called a varistor, and is used as a voltage stabilizing or surge absorbing element. Among them, zinc oxide is the main component, and small amounts of Bi, O,
, Co2O3, MnO, , 5b20. , Cr2O3
Zinc oxide varistors doped with metal oxides have recently been widely used as elements for gapless arresters in place of conventional silicon carbide varistors due to their large surge current withstand capacity and excellent voltage nonlinearity.

酸化亜鉛バリスタをアレスタ素子として用いる場合、極
めて重要な特性要素が2つある。第1は、放電耐量特性
である。これはJ E C−187−1973に規定さ
れている4×10μsの衛撃電流を5分間隔で2回印加
し、素子が耐え得るピーク電流の限界値である。第2に
課電寿命特性で、これは規定の交流電圧を印加した際に
、アレスタ素子が熱暴走に至るまでの時間である。通常
は、周囲温度21o O”C以上、ntJ (v印加電
圧×100/v、!IIA)を90%以上に設定し、加
速試験を行う。近年、高放電耐量、長寿命のアレスタ素
子の開発が市場から強く望まれている。
When using a zinc oxide varistor as an arrester element, there are two extremely important characteristic factors. The first is discharge endurance characteristics. This is the limit value of the peak current that the device can withstand when a 4×10 μs satellite current specified in JEC-187-1973 is applied twice at 5-minute intervals. The second is the energization life characteristic, which is the time it takes for the arrester element to reach thermal runaway when a specified alternating current voltage is applied. Normally, accelerated tests are performed at an ambient temperature of 21o O"C or higher and ntJ (v applied voltage x 100/v,!IIA) set to 90% or higher. In recent years, arrester elements with high discharge resistance and long life have been developed. is strongly desired by the market.

従来より、電圧非直線抵抗体素子(以下アレスタ素子)
の製造方法として、特開昭56−69804号公報、特
公昭8Q−16128号公報などが知られている。前者
は、酸化亜鉛形のアレスタ素子(D成形体マタハ仮焼体
)Ill 面K、3102 、 Z n y Sbz 
0,2 。
Conventionally, voltage nonlinear resistor elements (hereinafter referred to as arrester elements)
As a manufacturing method, Japanese Unexamined Patent Publication No. 56-69804, Japanese Patent Publication No. 8Q-16128, etc. are known. The former is a zinc oxide type arrester element (D molded body calcined body) Ill surface K, 3102, Zny Sbz
0,2.

Bi2O,などの混合物を塗布した後、焼結し、側面だ
高抵抗層を有するアレスタ素子’rM造するものである
。後者は、同様の成形体を焼成する際、焼成容器内KS
b20. 、 Bi2O3,5in2すどカラナル混合
物を配置し、気−固相反応により、側面に高抵抗層を有
するアレスタ素子を製造するものである。
After coating a mixture of Bi2O, etc., it is sintered to produce an arrester element having a high resistance layer on the side surfaces. When firing a similar molded body, the latter is
b20. , Bi2O3, 5in2 sudocaranal mixture is disposed, and an arrester element having a high resistance layer on the side surface is manufactured by gas-solid phase reaction.

発明が解決しようとする問題点 このような前者の方法では、側面高抵抗層の構造が不安
定で素子と側面剤との密着性が悪く、放電耐量が低いと
いう欠点を有していた。また、後者の方法では、焼成容
器内部に適当に配置した5b20. 、 Bi2O,な
どからなる塗布剤の蒸気と成形体と全反応させるため、
側面高抵抗層の厚みが充分とれず、放電耐量が低いばか
りでなく、同一焼成容器中で焼成可能な素子数が限られ
、量産性に欠けるという欠点を有していた。
Problems to be Solved by the Invention The former method has disadvantages in that the structure of the side high resistance layer is unstable, the adhesion between the element and the side surface agent is poor, and the discharge withstand capacity is low. In addition, in the latter method, 5b20. , Bi2O, etc., in order to cause the vapor of the coating agent to react completely with the molded body.
The high-resistance layer on the side surface was not thick enough, resulting in a low discharge withstand capacity, and the number of elements that could be fired in the same firing container was limited, making it difficult to mass-produce.

本発明は、このような開閉点を解決するもので、アレス
タとしての酸化亜鉛バリスタの高性能化、すなわち放電
耐量特性1課電寿命特性の大巾な向上を目的とするもの
である。
The present invention solves such switching points and aims to improve the performance of a zinc oxide varistor as an arrester, that is, to significantly improve the discharge withstand characteristics 1 and the charging life characteristics.

問題点を解決するための手段 本発明では、前記の問題点を解決するため、酸化亜鉛を
主成分とするアレスタ素子の成形体または仮焼体の側面
に2種1の成分の異なった側面剤を塗布することにより
、焼結体側面に2層の高抵抗層を形成したものである。
Means for Solving the Problems In the present invention, in order to solve the above-mentioned problems, a side surface agent having two types of different components is applied to the side surface of a molded or calcined body of an arrester element containing zinc oxide as a main component. Two high-resistance layers are formed on the side surface of the sintered body by coating the sintered body.

作用 本発明の電圧非直線抵抗体素子の製造方法は、酸化亜鉛
バリスタ素子の成形体または仮焼体の側面に、Sin、
、 f主成分とじZ n 7 S b z 012を添
加した第1の側面剤を塗布し、その上部にZn25iO
4’i主成分としBi2O,を添加した第2の側面剤を
塗布した後、焼成し、バリスタ素子側面に高抵抗層を形
成するため、高抵抗層下層部にZ n y S b 2
01□。
Function The method for manufacturing a voltage nonlinear resistor element of the present invention includes adding a layer of Sin,
, f Main component binding Zn7S b z 012 was added to the first side surface agent, and Zn25iO was applied on top of it.
After applying the second side surface agent containing Bi2O as the main component of 4'i, it is fired to form a high resistance layer on the side surface of the varistor element.
01□.

Zn25in4の混合相、同上層部にZn25iO4相
の安定な2層構造を得ることができる。このことがらバ
リスタ素体−高抵抗層間の密着性が増し放電耐量が向上
し、高抵抗層上部のZn、、 S工04のカバーリング
効果にエリバリスタ素体からのBi2O,飛散を怪減し
、課電寿命特性を大巾に向上させることができる。
A stable two-layer structure can be obtained with a mixed phase of Zn25in4 and a Zn25iO4 phase in the upper layer. This increases the adhesion between the varistor body and the high-resistance layer, improves the discharge capacity, and significantly reduces the scattering of Bi2O from the varistor body due to the covering effect of Zn on the top of the high-resistance layer and S-04. , the charging life characteristics can be greatly improved.

実施例 以下、本発明の製造方法およびそれによって得られた電
圧非直線抵抗体素子について実施例に基づき詳細に説明
する。
EXAMPLES Hereinafter, the manufacturing method of the present invention and the voltage nonlinear resistor element obtained thereby will be explained in detail based on examples.

まず、ZnOの粉末に、合計量に対しBi2O,0,5
層ル% 、 Co20.0.6モル% 、 MnO20
,5層ル% 。
First, add Bi2O,0,5 to the total amount of ZnO powder.
layer%, Co20.0.6 mol%, MnO20
, 5 layers%.

5b2051.0モル% 、 Cr2O,0,6モル%
 、Ni00,6モル%を加え、充分に粉砕、混合した
後、造粒して原料粉を得た。この原料粉を直径4011
LllL、厚さ30駄の大きさに圧縮成形した。このよ
うにして得られた成形体を900°C,2時間焼成し冷
却して仮焼体を得た。
5b2051.0 mol%, Cr2O, 0.6 mol%
, 0.6 mol % of Ni were added, thoroughly crushed and mixed, and then granulated to obtain a raw material powder. This raw material powder has a diameter of 4011 mm.
It was compression molded to a size of 30cm thick. The thus obtained molded body was fired at 900°C for 2 hours and cooled to obtain a calcined body.

一方、側面高抵抗層用のペーストは、Zn7Sb2O1
2゜Zn25in4. Bi□O,、Sin□ffz適
当な割合−cm合した原料粉と、エチルセルロース25
wt%、プチルカルピトール75 wt%からなるバイ
ンダートラ、重量比で1対3の割合で配合し、均一にな
るように混練して作成した。本発明では、この側面高抵
抗層用のペーストは、5in2. Zn、5b201□
からなる下層用と、Z n 2 S iO4f:主成分
とする上層用の2種類がある。
On the other hand, the paste for the side high resistance layer is Zn7Sb2O1
2゜Zn25in4. Bi□O,, Sin□ffz suitable ratio - cm combined raw material powder and ethyl cellulose 25
A binder containing 75 wt% of butylcarpitol was mixed in a weight ratio of 1:3, and kneaded uniformly. In the present invention, the paste for the side high resistance layer is 5in2. Zn, 5b201□
There are two types: one for the lower layer consisting of Zn2SiO4f and the other for the upper layer consisting of Zn2SiO4f as the main component.

前述の仮焼体側面に下層用のペーストラ塗布し、乾燥さ
せてから、上層用のペーストを塗布し、再度乾燥後、空
気中において1200°Cで焼結させた。このようにし
て得られた焼結体の両端面を研磨し、アルミニウムの溶
射電極を形成した。
A paste for the lower layer was applied to the side surface of the above-mentioned calcined body, and after drying, a paste for the upper layer was applied, and after drying again, it was sintered at 1200°C in the air. Both end faces of the sintered body thus obtained were polished to form sprayed aluminum electrodes.

第1図は上述したようにして得た電圧非直線抵抗体素子
の断面図であり、1はZnOを主成分とする焼結体、2
はZn7Sb2O12.Zn25io4相の混在する側
面高抵抗層第1層(下層)、3ばZn25104を主成
分とする側面高抵抗層第2層(上層)、4はアルミニウ
ム溶射により形成された電極である。
FIG. 1 is a cross-sectional view of the voltage nonlinear resistor element obtained as described above, in which 1 is a sintered body mainly composed of ZnO, 2 is a sintered body mainly composed of ZnO,
is Zn7Sb2O12. A first layer (lower layer) of a side high resistance layer containing a mixture of Zn25io4 phases, a second layer (upper layer) of a side high resistance layer mainly composed of Zn25104, and 4 are electrodes formed by aluminum spraying.

なお、側面高抵抗層2,3の成分はX線回折により確認
された。また、X線マイクロアナライザーによる分析か
ら、第1層(下層)2にはun、Go。
The components of the side high resistance layers 2 and 3 were confirmed by X-ray diffraction. Furthermore, analysis using an X-ray microanalyzer revealed that un and Go were present in the first layer (lower layer) 2.

Or などが固溶し、第2層(上層)3には主としてG
oが固溶していることが確認された。
Or etc. are dissolved in solid solution, and the second layer (upper layer) 3 mainly contains G.
It was confirmed that o was dissolved in solid solution.

下記の第1表は、側面高抵抗層第1層お:び第2層用の
側面剤の組成表である。第1層用側面剤はSin、、 
、 Zn、5b20.□からなり、第2層用I11 固
剤はZn25in4. Bi□O,からなる。
Table 1 below is a composition table of side coating materials for the first and second layers of the side high resistance layer. The side surface agent for the first layer is Sin.
, Zn, 5b20. The solid agent for the second layer is Zn25in4. Consisting of Bi□O.

この側面剤を仮焼体に第1層用側面剤、第2層用側面剤
の順に塗布し、焼結させた後、人!メタリコン電極を付
け、’/4mA /B、 ”/、 、)、/V、 o、
、A 、外観などを調べた。この結果を下記の第2表に
示すと共に第1層用、第2層用の側面剤の組合せを種々
変えた場合について示している。比較のため従来例1 
トLテBi2O3,Zn、5b2O12.5in2iそ
れぞれ10モルチ、10モル%、soモルチ含む側面剤
を含む側面剤を仮焼体に塗布した場合、従来例2とシテ
B12O3,5b20.ヲそれぞれ10モル%。
This side surface agent was applied to the calcined body in the order of the first layer side surface agent and the second layer side surface agent, and after sintering, the surface layer was sintered. Attach metallicon electrode, '/4mA /B, ''/, , ), /V, o,
, A. We investigated the appearance, etc. The results are shown in Table 2 below, and also show cases in which the combinations of side surfaces for the first layer and the second layer were varied. Conventional example 1 for comparison
When the calcined body was coated with a surfacing agent containing 10 molti, 10 mol%, and so molti of Bi2O3, Zn, 5b2O12.5in2i, respectively, Conventional Example 2 and Bi2O3, 5b20. 10 mol% each.

90モルチ含む塗布剤を焼成容器内に配置し、気−固相
反応により側面高抵抗層を形成した場合のデータを追記
した。ここで、v1Tnム/Bは第2層用側面剤中のB
i2O5濃度が増、+10するにつれて低下傾向を示し
、逆にvtm人/vto□よは向上する傾向がある。し
かし、第2層側面剤中の812O5濃度が30モル%を
超えると側面剤の流れが発生し、vI mA/ v、 
a 7□えは逆にわずかに上昇する。また、第1層側面
剤中のZn、5b2O12@度が増すにつれ、’I  
 /V    は向上している。
Data for the case where a coating agent containing 90 molti was placed in a firing container and a side high resistance layer was formed by gas-solid phase reaction was added. Here, v1Tnmu/B is B in the side surface agent for the second layer.
As the i2O5 concentration increases and increases by +10, it shows a decreasing tendency, and conversely, vtm person/vto□yo tends to increase. However, when the 812O5 concentration in the second layer side agent exceeds 30 mol%, flow of the side agent occurs, and vI mA/v,
a7□E, on the contrary, increases slightly. In addition, as the Zn, 5b2O12@ content in the first layer side additive increases, 'I
/V has improved.

1mA   10/jA く第1表〉 単位二モルチ 〈第3人〉 第2図〜第7図に本発明および参考例の製造方法による
電圧非直線抵抗体素子の放電耐量特性、課電寿命特性の
結果を示す。図中の横軸は、第2層側面剤中のB1□o
3濃度である。ここで、放電耐量試験はJICC−18
7−1973に規定された4X10μsの衝撃電流を同
一方向に5分間隔で2回印加し、外観異常などをチェッ
クした。また、試験は10に人毎のステップアップ方式
で行い、図中には黒丸印で示した。そして、2回の衝撃
電流に耐えなかった試料に関しては印加電流から5KA
 i減じて示した。さらに、課電寿命試験は周囲温度1
30°C1課電率95%(60H2AC)の条件で行い
、漏れ電流が10mAに達した時点で熱暴走と判定し、
それに要した時間を図中に白丸印で示した。上記の第3
表に従来例1お工び2の放電耐量特性、課電寿命特性を
示した。ここで、Bi2O,、Zn、5b20.2.5
in2  系側固剤塗布方式(従来例1)では、放電耐
量SOX人1回、課電寿命29 時間、Bi2O,、5
b203気−固相反応系(従来例2)では、放電耐量5
QKA2回、課電寿命31時間の性能を有していた。
1mA 10/jA (Table 1) Unit: 2 molti (3rd person) Figures 2 to 7 show the discharge withstand characteristics and energized life characteristics of voltage nonlinear resistor elements manufactured by the manufacturing methods of the present invention and reference examples. Show the results. The horizontal axis in the figure is B1□o in the second layer side surface agent.
3 concentrations. Here, the discharge withstand test is JICC-18
An impact current of 4×10 μs as specified in 7-1973 was applied twice in the same direction at an interval of 5 minutes, and abnormalities in appearance were checked. Further, the test was conducted in a step-up manner for each person in 10 days, and is indicated by a black circle in the figure. For samples that did not withstand two shock currents, the applied current was increased by 5 KA.
Shown by subtracting i. Furthermore, the energized life test was performed at an ambient temperature of 1
It was conducted under the conditions of 30°C, 95% charge rate (60H2AC), and thermal runaway was determined when the leakage current reached 10mA.
The time required for this is indicated by a white circle in the figure. 3rd above
The table shows the discharge withstand characteristics and energized life characteristics of Conventional Example 1 and Process 2. Here, Bi2O,, Zn, 5b20.2.5
In2 system side solid agent application method (conventional example 1), discharge withstand capacity SOX once, energized life 29 hours, Bi2O, 5
b203 gas-solid phase reaction system (conventional example 2) has a discharge capacity of 5
It had the performance of 2 QKAs and 31 hours of power application life.

第2図から第7図を比較すると、第1層側面剤中のZn
7Sb2o、2濃度が0.1モルチより低い領域および
30モルチより高い領域で放電耐量特性、課電寿命特性
とも低レベルにあるが、0.1〜30モルチの領域では
両特性とも優れていることがわかる。また、第2層側面
剤中の812O.濃度が増加するに従い課電寿命特性は
向上し、20モル係でピークに達し、3oモル%を越え
た場合には再び低下する。これは側面高抵抗層の一部が
焼結反応の過程で、B12O.が過多であることにエリ
流れ落ち、逆にアレスタ素子からのB12o3が飛散し
易くなるためと考えられる。一方、放電耐量特性はB1
2O.濃度が20〜30モルチまでは一定で、その後急
激に低下する。これはB工、、o、m度が高いため側面
高抵抗層の一部が流れ落ちたり、上層に形成されるzn
2S104相の粒界にBi2O,が残存するためと考え
られる。そして、第1層側面剤に前記側面剤人5、第2
層側面剤に前記側面剤83を用いた場合、放電耐量特性
は90KA、課電寿命特性は326時間の性能を有し、
従来例と比較し著しい高特性が得られることがわかる。
Comparing Figures 2 to 7, it can be seen that Zn in the first layer sidewall
7Sb2o, 2 concentration is lower than 0.1 molti and higher than 30 molti, the discharge withstand characteristics and charging life characteristics are at low level, but in the range of 0.1 to 30 molti, both characteristics are excellent. I understand. In addition, 812O. As the concentration increases, the charged life characteristics improve, reaching a peak at 20 mol %, and decrease again when it exceeds 30 mol %. This is due to the process of sintering reaction in which a part of the side high resistance layer is B12O. This is thought to be because too much B12o3 flows down, and conversely, B12o3 from the arrester element becomes more likely to scatter. On the other hand, the discharge withstand characteristic is B1
2O. The concentration remains constant until 20 to 30 molt, and then decreases rapidly. This is due to the high degree of B, o, m, so that part of the side high resistance layer may run off or the Zn formed on the upper layer may run off.
This is thought to be because Bi2O remains at the grain boundaries of the 2S104 phase. Then, the side layer 5 is applied to the first layer side layer, and the second side layer layer is
When the above-mentioned side surface agent 83 is used as the layer side surface agent, the discharge capacity characteristic is 90 KA, the electrification life characteristic is 326 hours,
It can be seen that significantly higher characteristics can be obtained compared to the conventional example.

以上のように、本発明の製造方法による電圧非直線抵抗
体素子が、放電耐量特性、課電寿命特性ともに高性能を
示す理由は、以下のように推定される。すなわち、従来
のBi□O,、Zn、5b2O12(Sb20. ) 
、 5in2からなる成分単層側面剤を用いた場合、そ
の生成物は単にZn7Sb2O12とzn2S104の
混在系であるのに対し、2層塗布方式の側面剤を用いた
場合、第1層(下層)にZn7Sb2O12゜Zn25
104相が生成し、第2層(上層)にZn25104相
が生成して構造が極めて安定となる。この工うにして生
成した下層の特にZn7Sb2O12  相は高抵抗で
バリスタ素子との密着性が高く放電耐量の向上に寄与し
、上層のZn25104相はバリスタ素子からのB12
O.飛散を軽減し課電寿命特性の向上に寄与していると
考えられる。
As described above, the reason why the voltage nonlinear resistor element manufactured by the manufacturing method of the present invention exhibits high performance in both discharge withstand characteristics and energized life characteristics is presumed as follows. That is, conventional Bi□O,, Zn, 5b2O12 (Sb20.)
, When a single-layer side surface agent consisting of 5in2 is used, the product is simply a mixed system of Zn7Sb2O12 and zn2S104, whereas when a two-layer side surface agent is used, the first layer (lower layer) Zn7Sb2O12゜Zn25
104 phase is generated, and Zn25104 phase is generated in the second layer (upper layer), making the structure extremely stable. The lower layer, especially the Zn7Sb2O12 phase, produced in this way has high resistance and has high adhesion with the varistor element, contributing to improving the discharge withstand capacity, while the upper layer, the Zn25104 phase,
O. It is thought that this reduces scattering and contributes to improving the charging life characteristics.

本実施例においては側面高抵抗層用の2種類の側面剤を
仮焼体に塗布した場合についてのみ記載し次が、第1層
、第2層用側面剤をともに成形体に塗布した場合、また
第1層用側面剤を成形体に、第2層用側面剤を仮焼体に
塗布した場合にも同様の効果があることを確認した。ま
た、本発明においては側面高抵抗層用の材料として5i
n2. Zn2SiO4゜Zn、5b2O12. Bi
2O,2用いたが、これらにアレスタ素子の粒界層の構
成要素である成分、すなわちBi O、Co O、Cr
2O,、MnO□、 NiO,MgOなどを添加しても
本発明の効果に変わりはないものである。
In this example, only the case where two types of side surface agents for the side high resistance layer are applied to the calcined body is described. Next, the case where both the side surface agents for the first layer and the second layer are applied to the molded body, It was also confirmed that similar effects were obtained when the first layer side surface agent was applied to the molded body and the second layer side surface agent was applied to the calcined body. In addition, in the present invention, 5i is used as a material for the side high resistance layer.
n2. Zn2SiO4゜Zn, 5b2O12. Bi
2O,2 was used, but these also contain components that are the constituent elements of the grain boundary layer of the arrester element, namely BiO, CoO, and Cr.
Even if 2O, MnO□, NiO, MgO, etc. are added, the effects of the present invention will not change.

発明の効果 以上のように本発明によれば、酸化亜鉛形バリスタ素子
の成形体または仮焼体の側面に5in2゜Zn7Sb2
o、2  からなる第1の側面剤を塗布し、その上層に
Zn25in4. Bi2O3  からなる第2の側面
剤を塗布後、焼結させることに工り、放電耐量特性0課
電寿命特性が非常に優れた電圧非直線抵抗体素子を製造
することができる。
Effects of the Invention As described above, according to the present invention, a 5in2゜Zn7Sb2
A first side coating consisting of Zn25 in 4. By applying the second side surface agent made of Bi2O3 and then sintering it, it is possible to manufacture a voltage non-linear resistor element having very excellent discharge withstand characteristics and 0-charge life characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法による電圧非直線抵抗体素子
の断面図、第2図〜第7図は本発明お工び参考例の製造
方法による電圧非直線抵抗体素子の放電耐量特性および
課電寿命特性を示す図である。 1・・・・・・酸化亜鉛形バリスタ素子、2・・・・・
・側面高抵抗層第1層(下層)、3・・・・・・側面高
抵抗層第2層(上層)、4・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 ト N の +        N づ第3図 →8 t 20 s 1u覧(モ)し% )第4図 Bi 2 (lla ’XfiL (モルヅ・)第5図 → 9t203 う恵11ζし代ルプ、)第6図 第7図
FIG. 1 is a cross-sectional view of a voltage nonlinear resistor element produced by the manufacturing method of the present invention, and FIGS. 2 to 7 show the discharge withstand characteristics and FIG. 3 is a diagram showing charging life characteristics. 1... Zinc oxide type varistor element, 2...
- Side high resistance layer 1st layer (lower layer), 3... Side high resistance layer 2nd layer (upper layer), 4... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure N + N Zu Figure 3 → 8 t 20 s 1u View (mo) % ) Figure 4 Bi 2 (lla 'XfiL (Moruzu・) Figure 5 → 9t203 Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体を700〜1150
0℃の温度範囲で仮焼し、得られた仮焼体の側面にSi
O_2を主成分としZn_7Sb_2O_1_2を0.
1〜30モル%含む第1の側面剤を塗布し、前記第1の
側面剤の上部にZn_2SiO_4を主成分としBi_
2O_3を0〜30モル%含む第2の側面剤を塗布した
後、焼結し、焼結体側面に高抵抗層を形成する電圧非直
線抵抗体素子の製造方法。
(1) A molded body containing zinc oxide as the main component and additives added so that the sintered body itself exhibits voltage nonlinearity has a temperature of 700 to 1150
Calcined in a temperature range of 0°C, and Si is placed on the side surface of the calcined body obtained.
The main component is O_2 and Zn_7Sb_2O_1_2 is 0.
A first side agent containing 1 to 30 mol% is applied, and a layer of Zn_2SiO_4 as a main component and Bi_
A method for manufacturing a voltage nonlinear resistor element, which comprises applying a second side surface agent containing 0 to 30 mol% of 2O_3 and then sintering it to form a high resistance layer on the side surface of the sintered body.
(2)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体の側面にSiO_2
を主成分としZn_7Sb_2O_1_2を0.1〜3
0モル%含む第1の側面剤を塗布し、前記第1の側面剤
の上部にZn_2SiO_4を主成分としBi_2O_
3を0〜30モル%含む第2の側面剤を塗布した後、焼
結し、焼結体側面に高抵抗層を形成する電圧非直線抵抗
体素子の製造方法。
(2) SiO_2 on the side surface of a molded body whose main component is zinc oxide, with additives added so that the sintered body itself exhibits voltage nonlinearity.
The main component is Zn_7Sb_2O_1_2 from 0.1 to 3
A first side surface agent containing 0 mol% is applied, and a layer containing Zn_2SiO_4 as a main component and Bi_2O_
A method for manufacturing a voltage nonlinear resistor element, which comprises applying a second side surface agent containing 0 to 30 mol% of 3, followed by sintering to form a high resistance layer on the side surface of the sintered body.
(3)酸化亜鉛を主成分とし、焼結体自身が電圧非直線
性を示すよう添加物を加えた成形体の側面にSiO_2
を主成分としZn_7Sb_2O_1_2を0.1〜3
0モル%含む第1の側面剤を塗布し、700〜1150
0℃の温度範囲で仮焼後、仮焼体の側面にZn_2Si
O_4を主成分としBi_2O_3を0〜30モル%含
む第2の側面剤を塗布した後、焼結し、焼結体側面に高
抵抗層を形成する電圧非直線抵抗体素子の製造方法。
(3) SiO_2 on the side surface of a molded body containing zinc oxide as the main component and additives added so that the sintered body itself exhibits voltage nonlinearity.
The main component is Zn_7Sb_2O_1_2 from 0.1 to 3
Apply the first side agent containing 0 mol%, and
After calcining in the temperature range of 0℃, Zn_2Si is applied to the side surface of the calcined body.
A method for manufacturing a voltage nonlinear resistor element, which comprises applying a second side surface agent containing O_4 as a main component and 0 to 30 mol% of Bi_2O_3, and then sintering to form a high-resistance layer on the side surface of the sintered body.
JP61126072A 1986-05-30 1986-05-30 Manufacture of voltage nonlinear resistance element Pending JPS62282407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126072A JPS62282407A (en) 1986-05-30 1986-05-30 Manufacture of voltage nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126072A JPS62282407A (en) 1986-05-30 1986-05-30 Manufacture of voltage nonlinear resistance element

Publications (1)

Publication Number Publication Date
JPS62282407A true JPS62282407A (en) 1987-12-08

Family

ID=14925919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126072A Pending JPS62282407A (en) 1986-05-30 1986-05-30 Manufacture of voltage nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS62282407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228709A (en) * 2008-03-19 2009-10-08 Smc Corp Solenoid valve drive control apparatus and method for driving solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228709A (en) * 2008-03-19 2009-10-08 Smc Corp Solenoid valve drive control apparatus and method for driving solenoid valve

Similar Documents

Publication Publication Date Title
EP0115149A1 (en) Varistor and method for manufacturing the same
JPS62282407A (en) Manufacture of voltage nonlinear resistance element
JPS6221242B2 (en)
JP2656233B2 (en) Voltage non-linear resistor
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPS62208601A (en) Manufacture of voltage nonlinear resistance device
JPS62208603A (en) Manufacture of voltage nonlinear resistance device
JPS62282408A (en) Manufacture of voltage nonlinear resistance element
JPH0754763B2 (en) Method of manufacturing voltage non-linear resistor element
JPS62282406A (en) Manufacture of voltage nonlinear resistance element
JP3317015B2 (en) Zinc oxide varistor
JPS62208606A (en) Manufacture of voltage nonlinear resistance device
JPS62208602A (en) Manufacture of voltage nonlinear resistance device
JPH0744088B2 (en) Method for manufacturing voltage non-linear resistor
JPS63114104A (en) Manufacture of nonlinear resistor
JPS6329805B2 (en)
JPS6236615B2 (en)
JPS5823402A (en) Method of producing nonlinear resistor
JPH0258807A (en) Manufacture of voltage nonlinear resistor
JPH0513361B2 (en)
JPH0510803B2 (en)
JPS5934603A (en) Nonlinear resistor
JPS6329801B2 (en)
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPS6347125B2 (en)