JPS62289202A - Production of microporous membrane - Google Patents
Production of microporous membraneInfo
- Publication number
- JPS62289202A JPS62289202A JP61132467A JP13246786A JPS62289202A JP S62289202 A JPS62289202 A JP S62289202A JP 61132467 A JP61132467 A JP 61132467A JP 13246786 A JP13246786 A JP 13246786A JP S62289202 A JPS62289202 A JP S62289202A
- Authority
- JP
- Japan
- Prior art keywords
- dope
- microporous membrane
- solvent
- film
- pore diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012982 microporous membrane Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000007788 liquid Substances 0.000 claims description 24
- 238000005266 casting Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 abstract description 37
- 239000011148 porous material Substances 0.000 abstract description 28
- 229920000642 polymer Polymers 0.000 abstract description 24
- 239000012528 membrane Substances 0.000 abstract description 16
- 238000005345 coagulation Methods 0.000 abstract description 11
- 230000015271 coagulation Effects 0.000 abstract description 11
- 229920002492 poly(sulfone) Polymers 0.000 abstract description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 abstract description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 abstract description 9
- 239000003795 chemical substances by application Substances 0.000 abstract description 8
- 239000002344 surface layer Substances 0.000 abstract description 8
- 230000008961 swelling Effects 0.000 abstract description 8
- 230000035699 permeability Effects 0.000 abstract description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000011521 glass Substances 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- -1 polyoxyethylene octylphenol Polymers 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 239000004695 Polyether sulfone Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920006393 polyether sulfone Polymers 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920006216 polyvinyl aromatic Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0013—Casting processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/15—Use of additives
- B01D2323/16—Swelling agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/022—Asymmetric membranes
- B01D2325/0232—Dense layer on both outer sides of the membrane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔技術分野〕
この発明は、異方性を有し、精密濾過に適した微多孔性
膜を製造する方法に関する。Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field] The present invention relates to a method for producing a microporous membrane having anisotropy and suitable for precision filtration.
微多孔性膜は、ビール・ワイン・清酒などの除菌・清澄
、注射薬・輸液などの除菌、微生物の検査・分析、各種
用水の除菌・除粒子、空気中のごみ・菌の除去など高い
精度の濾過を行う多くの分野で用いられる。Microporous membranes are used for sterilization and clarification of beer, wine, sake, etc., sterilization of injection drugs and infusions, microbial testing and analysis, sterilization and particle removal of various types of water, and removal of dust and bacteria in the air. It is used in many fields that require high-precision filtration.
従来、微多孔性膜は、素材ポリマーを溶剤に溶解し、こ
の溶液(ドープ)をキャスティング台(支持板)上に流
延したのち、ポリマーの非溶剤(前記溶剤とは混和性が
あり、ポリマーが溶解しない溶媒)からなる凝固浴に浸
漬することにより膜を得るという湿式法などによって作
られ一ζいる。Conventionally, microporous membranes are produced by dissolving the raw material polymer in a solvent and casting this solution (dope) onto a casting table (support plate). The film is produced by a wet method, in which the membrane is obtained by immersing it in a coagulation bath consisting of a solvent in which it does not dissolve.
上記湿式法で得られる微多孔性膜は、膜表面が緻密であ
るかまたは膜表面の孔径が小さく、膜内部およびキャス
ティング台に接した面が表面より大きな孔を有するスポ
ンジ状であるか、または細長の指状巨大室孔を有して、
いわゆる「異方性」を有している。微多孔性膜の透水性
は主として膜表面の孔径の小さい層によって支配される
ので、前記のような異方性を有する膜は、粒子等の捕捉
性をもち、かつ、比較的高い透水性を示す。The microporous membrane obtained by the above wet method has a dense membrane surface or a small pore size on the membrane surface, and the inside of the membrane and the surface in contact with the casting table are spongy with larger pores than the surface, or It has an elongated finger-like megaventricular foramen,
It has so-called "anisotropy". The water permeability of a microporous membrane is mainly controlled by the layer with small pores on the membrane surface, so a membrane with the above-mentioned anisotropy has the ability to trap particles and has relatively high water permeability. show.
しかし、従来の微多孔性膜は、液体透過性、細菌および
粒子捕捉性などの点で不満足である。これは、表面の孔
径が均一ではないことに由来する特開昭56−1540
51号公報には、ポリマーを溶剤に溶解し、この溶液に
非溶剤を、その溶液がわずかに白濁するまで加えたもの
を製膜原液(ドープ)として用いて、微多孔性膜を得る
方法が提案されている。この方法では、ドープがわずか
に白濁した不安定な状態にあるため、経時変化などによ
りドープの分離が起こりやすく (前記公報記載のドー
プでは分離が2週間以内に生じる)、ドープを長期間保
存したあとでは孔径の均一な微多孔性膜を得にくいとい
う問題がある。However, conventional microporous membranes are unsatisfactory in terms of liquid permeability, bacterial and particle retention, etc. This is due to the fact that the pore size on the surface is not uniform.
Publication No. 51 describes a method of obtaining a microporous membrane by dissolving a polymer in a solvent and adding a non-solvent to this solution until the solution becomes slightly cloudy, and using this as a membrane-forming stock solution (dope). Proposed. In this method, since the dope is in a slightly cloudy and unstable state, separation of the dope is likely to occur due to changes over time (separation occurs within two weeks with the dope described in the above publication), and the dope cannot be stored for a long period of time. After that, there is a problem that it is difficult to obtain a microporous membrane with uniform pore size.
この発明は、以上のことに鑑みて、ドープの管理がしや
すく、表面層の孔径が均一であって異方性を有する微多
孔性膜を作る方法を提供することを目的とする。In view of the above, an object of the present invention is to provide a method for producing a microporous membrane that is easy to control dope, has a uniform pore size in the surface layer, and has anisotropy.
上記の湿式法の場合、液膜にしたドープ(製膜原液)を
非溶剤の浴に浸漬すると、非溶剤との界面においては溶
剤と非溶剤の濃度勾配が大きく、溶剤と非溶剤の置換速
度が大きいため、ポリマーの沈澱速度が速い。このため
、非溶剤との界面付近の膜の孔径は非常に小さくなる。In the case of the above wet method, when the dope in the form of a liquid film (film-forming stock solution) is immersed in a non-solvent bath, there is a large concentration gradient between the solvent and the non-solvent at the interface with the non-solvent, and the rate of substitution between the solvent and the non-solvent is Since the is large, the precipitation rate of the polymer is fast. Therefore, the pore size of the membrane near the interface with the non-solvent becomes extremely small.
これに対して、膜内部はど(すなわち、非溶剤との界面
から離れてキャスティング台に近くなるほど)非溶剤の
拡散速度が遅く、孔径の大きい層が形成されるようにな
る。要するに、一般に、湿式法における微多孔性膜の異
方性の制御は非溶剤の侵入速度によって行っている。On the other hand, the diffusion rate of the non-solvent becomes slower in the interior of the membrane (that is, the further away from the interface with the non-solvent and closer to the casting table) the more a layer with larger pores is formed. In short, in general, the anisotropy of a microporous membrane in a wet method is controlled by the infiltration rate of a non-solvent.
発明者らは、安定なドープを用いるようにすれば、得ら
れる微多孔性膜の孔径がドープの保存期間の長短によっ
て変化しないようになるとともにドープ管理が容易にな
ると考えた。しかし、安定なドープを用いるようにする
だけでは、得られる微多孔性膜に異方性をもたせること
が不十分であるため、上記のような非溶剤の侵入速度の
作用に加えて、液膜にしたドープの表面と裏面とで温度
差をつけることによって膜の異方性の制御を行うように
すれば、孔径が均一であって異方性をもつ微多孔性膜を
得ることができるのではないかと考えて研究を進めた結
果、この発明を完成させた。The inventors thought that by using a stable dope, the pore diameter of the resulting microporous membrane would not change depending on the length of the storage period of the dope, and dope management would become easier. However, simply using a stable dope is insufficient to give the obtained microporous membrane anisotropy. If the anisotropy of the film is controlled by creating a temperature difference between the front and back sides of the dope, it is possible to obtain a microporous film with uniform pore size and anisotropy. As a result of researching this idea, we completed this invention.
したがって、この発明は、ドープから液膜を形成する工
程を備えた微多孔性膜の製法において、前記ドープとし
て安定なものを用いることとし、前記液膜の表裏面で温
度差をつけることを特徴とする微多孔性膜の製法を要旨
としている。Therefore, the present invention is characterized in that, in a method for manufacturing a microporous membrane that includes a step of forming a liquid film from a dope, a stable dope is used and a temperature difference is created between the front and back surfaces of the liquid film. The gist of this paper is a method for manufacturing microporous membranes.
以下に、この発明の詳細な説明する。The present invention will be explained in detail below.
ドープは、通常、ポリマーを溶剤に溶解したものに、必
要に応じて膨潤剤および/またはポリマーの非溶剤など
を添加して溶解したものが用いられる。しかし、そのま
までは安定性が良くないので、この発明では、それらの
配合物の種類および配合割合を適宜調整して、安定なも
のにして用いる。ここで「安定な」とは、たとえば2週
間放置しておいても分離が生じないことを指す。安定な
ドープを用いるようにすると、製膜工程においてドープ
管理がしやすく、得られる微多孔性膜も均一で信頼性が
高くなる。The dope is usually prepared by dissolving a polymer in a solvent and adding, if necessary, a swelling agent and/or a non-solvent for the polymer. However, since the stability is not good as it is, in this invention, the type and blending ratio of these blends are appropriately adjusted to make them stable. Here, "stable" means that separation does not occur even if left for two weeks, for example. If a stable dope is used, the dope can be easily controlled in the film forming process, and the resulting microporous film will be uniform and highly reliable.
ポリマーとしては、種々のものが用いられ、たとえば、
天然樹脂、酢酸セルロース・ニトロセルロースなどの半
合成樹脂、ポリスルホン、ポリカーボネート、ポリ塩化
ビニル、ポリスチレン、ポリアミド、ポリフッ化ビニリ
デン・ポリフッ化ビニル・ポリフルオロハロカーボンな
どのハロゲン化重合体、ポリクロロエーテルなどのポリ
エーテル、ポリホルムアルデヒドなどのアセタール重合
体、ポリアクリロニトリル・ポリメタクリル酸メチル・
ポリメタクリル酸n−ブチルなどのアクリル樹脂、ポリ
ウレタン、ポリイミド、ポリベンゾイミダゾール、ポリ
酢酸ビニル、芳香族および脂肪族ポリエーテルなどがそ
れぞれ単独でまたは複数種混合して用いられるが、これ
らに限定されない。Various polymers are used, for example,
Natural resins, semi-synthetic resins such as cellulose acetate and nitrocellulose, polysulfone, polycarbonate, polyvinyl chloride, polystyrene, polyamide, halogenated polymers such as polyvinylidene fluoride, polyvinyl fluoride, polyfluorohalocarbon, polychloroether, etc. Acetal polymers such as polyether and polyformaldehyde, polyacrylonitrile, polymethyl methacrylate,
Acrylic resins such as polyn-butyl methacrylate, polyurethane, polyimide, polybenzimidazole, polyvinyl acetate, aromatic and aliphatic polyethers, and the like can be used alone or in combination, but are not limited to these.
ポリスルホンは優れた耐熱性および耐薬品性をもってい
るので、ポリスルホンを用いて微多孔性膜をつくると、
耐熱性および耐薬品性が優れた膜が得られる。ポリスル
ホンは、−8O□−基を含むポリマーであり、
の繰り返し単位であられされるポリスルホン、の繰り返
し単位であられされるポリエーテルスルホンなどがあげ
られるが、これらに限定されない溶剤としては、ポリマ
ーを溶解し、かつ、ポリマーに対し凝固能を有する非溶
剤と相溶性をもつものを用いることができる。たとえば
、ポリマーとしてポリスルホンを用いた場合、溶剤とし
て、ジメチルホルムアミド、ジメチルアセトアミド、N
−メチル−2−ピロリドン、ジメチルスルホキシドなど
がそれぞれ単独でまたは複数種混合して用いられるが、
これらに限定されない。また、ポリマーとしてポリ塩化
ビニル、ポリカーボネート、ポリスチレンなどを用いた
場合、溶剤としてジメチルホルムアミドなどが用いられ
、ポリマーとしてポリアミドなどを用いた場合、溶剤と
してm−クレゾールなどが用いられ、ポリマーとしてポ
リアクリロニトリルなどを用いた場合、溶剤としてジメ
チルアセトアミドなどが用いられるが、それぞれ前記の
ものに限定されない。Polysulfone has excellent heat resistance and chemical resistance, so if you use polysulfone to make a microporous membrane,
A film with excellent heat resistance and chemical resistance can be obtained. Polysulfone is a polymer containing an -8O□- group, and includes, but is not limited to, polysulfone composed of repeating units of and polyethersulfone composed of repeating units of In addition, it is possible to use a material that is compatible with a non-solvent that has coagulation ability with respect to the polymer. For example, when polysulfone is used as the polymer, dimethylformamide, dimethylacetamide, N
-Methyl-2-pyrrolidone, dimethyl sulfoxide, etc. can be used alone or in combination,
Not limited to these. In addition, when polyvinyl chloride, polycarbonate, polystyrene, etc. are used as a polymer, dimethylformamide etc. are used as a solvent, when polyamide etc. are used as a polymer, m-cresol etc. are used as a solvent, and polyacrylonitrile etc. are used as a polymer. When using, dimethylacetamide or the like is used as a solvent, but the solvent is not limited to the above.
ポリマーを上記溶剤に溶解してドープをつくる。ポリマ
ーとしてポリスルホンを用いる場合には、特に限定され
ないが、ポリスルホンの濃度は、5〜30重量%が好ま
しく、8〜15重量%がより好ましい。ポリスルホンの
濃度が高すぎると、得られる微多孔性膜の透水性能が小
さくなるおそれがあり、低すぎると、充分な強度をもっ
た微多孔性膜が得られないおそれがある。他のポリマー
−の場合も、ポリスルホンと同様の濃度でよい。A dope is prepared by dissolving the polymer in the above solvent. When using polysulfone as the polymer, the concentration of polysulfone is preferably 5 to 30% by weight, more preferably 8 to 15% by weight, although it is not particularly limited. If the concentration of polysulfone is too high, the water permeability of the resulting microporous membrane may be reduced; if it is too low, a microporous membrane with sufficient strength may not be obtained. In the case of other polymers, the concentration may be similar to that of polysulfone.
なお、ドープには、微多孔性膜の透過性能を改善するな
どのために、非溶剤および/または膨潤剤などが必要に
応じて加えられる。たとえば、硝酸リチウム、塩化カリ
ウムなどのアルカリ金属またはアルカリ土類金属のハロ
ゲン化物・硝酸塩・硫酸塩などの無機塩類、メタノール
・エタノール・イソプロパツールなどのアルコール類、
エチレングリコール・ジエチレングリコール・トリエチ
レングリコール・ポリエチレングリコール・ポリオキシ
エチレンオクチルフェノールエーテルなどのグリコール
類およびそのエーテル類、グリセリンなどの多価アルコ
ール類、アセトン・メチルエチルケトンなどのケトン類
などが加えられるがこれらに限定されない。非溶剤およ
び/または膨潤剤の添加量が多いとドープの相分離が起
こるので、常温においては均一であり、放置しても2相
に分離が起こらない範囲で加えなければならない。Note that a non-solvent and/or a swelling agent may be added to the dope as necessary in order to improve the permeation performance of the microporous membrane. For example, inorganic salts such as halides, nitrates, and sulfates of alkali metals or alkaline earth metals such as lithium nitrate and potassium chloride; alcohols such as methanol, ethanol, and isopropanol;
Glycols and their ethers such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polyoxyethylene octylphenol ether, polyhydric alcohols such as glycerin, ketones such as acetone and methyl ethyl ketone, etc. may be added, but are not limited to these. . If the amount of non-solvent and/or swelling agent added is large, phase separation of the dope will occur, so it must be added within a range that is homogeneous at room temperature and does not separate into two phases even if left standing.
なお、膨潤剤および/または非溶剤の添加量は、ポリマ
ーの種類・濃度、溶剤の種類などによって異なるので特
に限定はない。たとえば、下記実施例1では、ポリマー
:膨潤剤−100:580であり、実施例2では、ポリ
マー:膨潤剤=100:286である。The amount of the swelling agent and/or non-solvent to be added is not particularly limited as it varies depending on the type and concentration of the polymer, the type of solvent, etc. For example, in Example 1 below, the ratio of polymer: swelling agent is 100:580, and in Example 2, the ratio of polymer: swelling agent = 100:286.
ドープは、適宜の手段によって液膜にされる。The dope is made into a liquid film by appropriate means.
ドープの液膜をつくるには、たとえば、気相中で、キャ
スティング台上にドープを流延したり、あるいは、塗布
したりして行われるが、これらの方法以外の方法で行っ
てもよい。また、ドープを中空糸製造用の環状ノズルか
ら押し出したりする方法も可能である。この場合には、
中空にしたドープの内外で温度差をつけるようにするの
がよい。A liquid film of dope is formed by, for example, casting or coating the dope on a casting table in a gas phase, but methods other than these methods may also be used. It is also possible to extrude the dope from an annular nozzle for producing hollow fibers. In this case,
It is best to create a temperature difference between the inside and outside of the hollow dope.
液膜にするときのドープの厚み(液膜の厚みであって、
乾燥した膜の厚みではない)は、特に限定されないが、
50〜500μmの範囲が好ましく、100〜400p
mの範囲がより好ましい。この1n囲の上限を越えると
、得られた微多孔性膜の選択性は増すが透水速度が低下
するおそれがあり、下限を下回ると、得られた微多孔性
膜の強度が不足するおそれがある。なお、気相とは、通
常、空気を指すが、これに限らない。The thickness of the dope when forming it into a liquid film (thickness of the liquid film,
(not the dry film thickness) is not particularly limited, but
The range is preferably 50 to 500 μm, and 100 to 400 p
A range of m is more preferable. If the upper limit of this 1n range is exceeded, the selectivity of the obtained microporous membrane will increase, but the water permeation rate may decrease; if it is below the lower limit, the strength of the obtained microporous membrane may be insufficient. be. Note that the gas phase usually refers to air, but is not limited to this.
液膜にされたドープは、その表面と裏面とで温度差がつ
けられる。ドープは温度が高いと不安定になって分離を
起こすので、この分離を利用して、異方性の制御を行う
。すなわち、温度を高くした側の孔径は大きく、温度を
低くした側の孔径は小さくなって膜に異方性が付与され
る。しかも、温度を低くした側の孔径を均一にすること
ができる。なお、温度差は5℃以上となるようにするの
が好ましい。温度差がこれよりも小さいと温度差をつけ
る効果があられれないおそれがある。また、温度差をつ
けるのは、ドープの液膜をつくると同時、液膜をつくっ
たのちのいずれでもよい。A temperature difference is created between the front and back surfaces of the dope, which has been turned into a liquid film. When the temperature is high, the dope becomes unstable and separates, so this separation is used to control the anisotropy. That is, the pore diameter on the side where the temperature is higher is larger, and the pore diameter is smaller on the side where the temperature is lowered, thereby imparting anisotropy to the membrane. Moreover, the pore diameter on the side where the temperature is lower can be made uniform. Note that it is preferable that the temperature difference is 5° C. or more. If the temperature difference is smaller than this, the effect of creating a temperature difference may not be achieved. Further, the temperature difference may be applied either at the same time as forming the dope liquid film or after forming the liquid film.
キャスティング台上で液膜にされたドープは、キャステ
ィング台に接する側を、気相に接する側よりも高温にし
て気相中に置かれるのが好ましい。これは、非溶剤に浸
漬してポリマーを凝固させるときに、非溶剤の侵入速度
の作用も利用して異方性をもたせるのに好都合であるか
らである。ドープのキャスティング台に接する側を気相
に接する側よりも高温にする方法は特に限定されないが
、たとえば、
■常温のドープをこれより高温のキャスティング台上で
液膜にし、ドープと同温の気相に曝す方法■常温よりも
低い温度のドープを常温またはそれよりも高い温度のキ
ャスティング台上で液膜にする方法、
などがあげられる。The dope formed into a liquid film on the casting table is preferably placed in a gas phase with the side in contact with the casting table having a higher temperature than the side in contact with the gas phase. This is because when solidifying the polymer by immersing it in a non-solvent, it is convenient to provide anisotropy by also utilizing the effect of the penetration rate of the non-solvent. There are no particular limitations on the method of making the side of the dope in contact with the casting table higher than the side in contact with the gas phase, but for example, ■ Turn room-temperature dope into a liquid film on a casting table at a higher temperature, and then heat it with air at the same temperature as the dope. Methods such as exposing the dope to a liquid film at a temperature lower than room temperature on a casting stand at room temperature or higher.
液膜にされたドープを上記のようにして温度差をつけて
おいておく時間は、特に限定されないが、5秒〜IO分
間が好ましい。この範囲の下限を下回ると、?&膜内で
充分な温度差が生じないおそれがあり、上限を上回って
も特性向上にあまり結びつかず、時間がむだになるおそ
れがある。The time period for which the dope formed into a liquid film is kept at a temperature difference as described above is not particularly limited, but is preferably 5 seconds to 10 minutes. Below the lower limit of this range? & There is a possibility that a sufficient temperature difference will not be generated within the film, and even if the temperature exceeds the upper limit, it will not lead to much improvement in characteristics, and there is a possibility that time will be wasted.
上記キャスティング台としては、特に限定はないが、ス
テンレス板・銅板・二・ノケルめっきした鉄板などの金
属板・管、ガラス板・管、ポリエチレン・ポリプロピレ
ン・ポリエステル・ポリテトラフロロエチレンなどの板
・管・フィルムなどが用いられる。また、ドープをキャ
スティング台上で液膜にするかわりに、ポリエステル繊
維・アクリル繊維など有機質繊維、ガラス繊維などの無
機質繊維からなる織布・不織布などの上で液膜にして、
複合透過膜を形成することもできる。The above-mentioned casting table is not particularly limited, but metal plates and tubes such as stainless steel plates, copper plates, Ni-Kel plated iron plates, glass plates and tubes, plates and tubes such as polyethylene, polypropylene, polyester, polytetrafluoroethylene, etc.・Film etc. are used. Also, instead of turning the dope into a liquid film on a casting table, it can be turned into a liquid film on woven or non-woven fabrics made of organic fibers such as polyester fibers and acrylic fibers, and inorganic fibers such as glass fibers.
Composite permeable membranes can also be formed.
液膜にされたドープは、表裏面で温度差をつけた後、凝
固浴に浸漬される。The dope formed into a liquid film is immersed in a coagulation bath after creating a temperature difference between the front and back surfaces.
凝固浴は、ポリマーの非溶剤であって、ドープに含まれ
る溶剤・膨潤剤・非溶剤と相溶性(混和性)が良いもの
が用いられる。一般には、水、または、水と少量の有機
溶媒の混合物が用いられるが、これらに限定されない。The coagulation bath used is a non-solvent for the polymer that has good compatibility (miscibility) with the solvent, swelling agent, and non-solvent contained in the dope. Typically, but not limited to, water or a mixture of water and a small amount of an organic solvent is used.
前記有機溶媒のうち水と混合して用いられるものとして
は、たとえば、メタノール、エタノール、エチレングリ
コールなどがあげられるがこれらに限定されない。凝固
浴の温度は特に限定されないが、凝固浴に用いられる溶
剤の沸点未満の温度がよい。Examples of the organic solvents used in combination with water include, but are not limited to, methanol, ethanol, and ethylene glycol. Although the temperature of the coagulation bath is not particularly limited, it is preferably a temperature below the boiling point of the solvent used in the coagulation bath.
凝固浴に浸漬する時間は、特に限定されないが、30秒
〜15分間が好ましい。この範囲の下限を下回ると、ポ
リマーが充分凝固していないおそれがあり、15分間以
上では、通常ポリマーの凝固は充分なので、これ以上凝
固浴におく必要はない。なお、引き続いて洗浄を行う場
合、実際の工程としては凝固と洗浄の明確な区別はない
ことがある。The time for immersion in the coagulation bath is not particularly limited, but is preferably 30 seconds to 15 minutes. If it is below the lower limit of this range, there is a possibility that the polymer will not be sufficiently coagulated, and if it is longer than 15 minutes, the polymer will usually coagulate sufficiently, so there is no need to leave it in the coagulation bath any longer. Note that when washing is performed subsequently, there may not be a clear distinction between coagulation and washing in the actual process.
凝固浴に浸漬して凝固させたのち、充分洗浄して溶剤、
非溶剤などを除去し、乾燥して微多孔性膜が得られる。After being immersed in a coagulation bath to solidify, thoroughly wash and remove the solvent.
After removing the non-solvent and drying, a microporous membrane is obtained.
または、溶剤、非溶剤を揮発させることにより微多孔性
膜を得るようにしても良いこの発明の製法により得られ
る微多孔性膜は、表面層(液膜にされたときに、温度が
低かった面)の孔径が小さく均一であり、この表面層か
ら裏面(液膜にされたときに、温度が高かった面)にか
けて孔径が大きくなるという異方性を有している。この
ため、濾過の際に裏面を上流側に、表面を下流側にして
濾過を行うと、表面層が濾過の際の障壁層となり、粒子
・細菌などの濾別に対して信頼性が高(、透過性も良い
。Alternatively, the microporous membrane may be obtained by volatilizing the solvent or non-solvent. It has anisotropy in that the pore diameter on the surface layer is small and uniform, and the pore diameter increases from this surface layer to the back surface (the surface where the temperature was high when it was turned into a liquid film). Therefore, when filtration is performed with the back side facing upstream and the front side facing downstream, the surface layer becomes a barrier layer during filtration, making it highly reliable for filtering out particles, bacteria, etc. Good transparency.
つぎに実施例を示すが、この発明は実施例に限定されな
い。Next, examples will be shown, but the present invention is not limited to the examples.
(実施例1)
ポリエーテルスルホン10重量部およびポリオキシエチ
レンオクチルフェノールエーテル58重置部を、ジメチ
ルスルホキシド32重量部に添加し、30℃で攪拌熔解
してドープを調製した。(Example 1) 10 parts by weight of polyether sulfone and 58 parts by weight of polyoxyethylene octylphenol ether were added to 32 parts by weight of dimethyl sulfoxide, and the mixture was stirred and melted at 30° C. to prepare a dope.
このドープを40℃に保たれているガラス板上に厚み3
00III!lとなるよう流延したのち、30℃、RH
75%の空気中に5分間静置した。このあと、水中に浸
漬して5分間保って凝固させ、充分洗浄したのち乾燥し
て微多孔性膜を得た。This dope is placed on a glass plate kept at 40°C to a thickness of 3.
00III! 30℃, RH
It was left standing in 75% air for 5 minutes. Thereafter, it was immersed in water for 5 minutes to solidify, thoroughly washed, and then dried to obtain a microporous membrane.
得られた微多孔性膜の面を走査型電子顕微鏡で観察した
ところ、ガラス板に接した面の孔径が15μm、空気に
接した面の孔径が0.4μmでありそれぞれ均一であっ
た。When the surface of the obtained microporous membrane was observed with a scanning electron microscope, the pore diameter on the surface in contact with the glass plate was 15 μm, and the pore diameter on the surface in contact with air was 0.4 μm, which were uniform.
(実施例2)
ポリエーテルスルホン1).0重量部およびジエチレン
グリコール31.5重量部を、ジメチルスルホキシド5
7.5重量部に添加し、30℃で攪拌溶解してドープを
調製した。(Example 2) Polyether sulfone 1). 0 parts by weight and 31.5 parts by weight of diethylene glycol, 5 parts by weight of dimethyl sulfoxide
A dope was prepared by adding 7.5 parts by weight and stirring and dissolving at 30°C.
このドープを45℃に保たれているガラス板上に厚み3
50μmとなるよう流延したのち、25℃、RH80%
の空気中に5分間静置した。このあと、水中に浸漬して
10分間保って凝固させ、充分洗浄したのち乾燥して微
多孔性膜を得た。This dope is spread on a glass plate kept at 45°C to a thickness of 3.
After casting to a thickness of 50 μm, 25°C, RH80%
It was left standing in the air for 5 minutes. Thereafter, it was immersed in water for 10 minutes to solidify, thoroughly washed, and then dried to obtain a microporous membrane.
得られた微多孔性膜の面を走査型電子顕微鏡で観察した
ところ、ガラス仮に接した面の孔径が12μm、空気に
接した面の孔径が0.3μmであり、それぞれ均一であ
った。When the surface of the obtained microporous membrane was observed with a scanning electron microscope, the pore diameter on the surface in contact with glass was 12 μm, and the pore diameter on the surface in contact with air was 0.3 μm, which were uniform.
実施例1および2で得られた微多孔性膜は、一方の面の
孔径ともう一方の面の孔径とが1:40程度の異方性を
示すことがわかる。It can be seen that the microporous membranes obtained in Examples 1 and 2 exhibit anisotropy in which the pore diameter on one surface and the pore diameter on the other surface are approximately 1:40.
(比較例1)
実施例1と同じドープを用い、このドープを30℃に保
たれているガラス板上に厚み300pmとなるよう流延
したのち、30℃、RH75%の空気中に5分間静置し
た。このあとは実施例1と同様にして微多孔性膜を得た
。(Comparative Example 1) Using the same dope as in Example 1, this dope was cast onto a glass plate kept at 30°C to a thickness of 300 pm, and then left standing in air at 30°C and 75% RH for 5 minutes. I placed it. After this, a microporous membrane was obtained in the same manner as in Example 1.
得られた微多孔性膜の面を走査型電子顕微鏡で観察した
ところ、ガラス板に接した面の孔径が3μm、空気に接
した面の孔径が0.4μmであり、それぞれ不均一であ
った。When the surface of the obtained microporous membrane was observed with a scanning electron microscope, the pore diameter on the surface in contact with the glass plate was 3 μm, and the pore diameter on the surface in contact with air was 0.4 μm, and it was found that they were nonuniform. .
(実施例3)
実施例1で調製したドープを30℃で3週間保存したの
ち、このドープを用いて実施例1と同様にして微多孔性
膜を得た。(Example 3) After storing the dope prepared in Example 1 at 30° C. for 3 weeks, a microporous membrane was obtained in the same manner as in Example 1 using this dope.
得られた微多孔性膜の面を走査型電子顕微鏡で観察した
ところ、ガラス板に接した面の孔径が15μm、空気に
接した面の孔径が0.4μmであり、それぞれ均一であ
った。When the surface of the obtained microporous membrane was observed with a scanning electron microscope, the pore diameter on the surface in contact with the glass plate was 15 μm, and the pore diameter on the surface in contact with air was 0.4 μm, which were uniform.
(比較例2)
ポリエーテルスルホン1)重量部をジメチルスルホキシ
ド30重量部に溶解し、さらに、ポリオキシエチレンオ
クチルフェノールエーテル59重量部を添加して攪拌混
合し、ドープを得た。(Comparative Example 2) Parts by weight of polyether sulfone 1) were dissolved in 30 parts by weight of dimethyl sulfoxide, and 59 parts by weight of polyoxyethylene octylphenol ether were added and mixed with stirring to obtain a dope.
このドープを30°Cで3週間保存したのち、このドー
プを用いて実施例1と同様にして微多孔性膜を得た。After storing this dope at 30°C for 3 weeks, a microporous membrane was obtained in the same manner as in Example 1 using this dope.
得られた微多孔性膜は、きわめて不均一で強度の小さい
ものであった。The microporous membrane obtained was extremely non-uniform and had low strength.
実施例3および比較例2の結果にみるように、この発明
に用いる安定なドープは2週間以上保存しておいても安
定であり、ドープ管理がしやすいことがわかる。As seen in the results of Example 3 and Comparative Example 2, it can be seen that the stable dope used in the present invention is stable even when stored for two weeks or more, and the dope can be easily controlled.
〔発明の効果〕
この発明の微多孔性膜の製法は、以上にみるように、ド
ープとして安定なものを用いて液膜を形成し、この液膜
の表裏面で温度差をつけることを特徴とするので、ドー
プ管理がしやすく、表面層の孔径が均一であり、異方性
を有する微多孔性膜が得られる。[Effects of the Invention] As described above, the method for producing a microporous membrane of the present invention is characterized by forming a liquid film using a stable dope and creating a temperature difference between the front and back surfaces of this liquid film. Therefore, it is possible to easily control the doping, and to obtain a microporous membrane with uniform pore diameter in the surface layer and anisotropy.
Claims (1)
膜の製法において、前記ドープとして安定なものを用い
ることとし、前記液膜の表裏面で温度差をつけることを
特徴とする微多孔性膜の製法(2)液膜を形成すること
が、気相中のキャスティング台上で行われ、温度差をつ
けることが、前記キャスティング台の温度をドープの温
度よりも高温にすることで達成される特許請求の範囲第
1項記載の微多孔性膜の製法。 (3)温度差が5℃以上である特許請求の範囲第1項ま
たは第2項記載の微多孔性膜の製法。[Claims] (1) In a method for manufacturing a microporous membrane that includes a step of forming a liquid film from a dope, a stable material is used as the dope, and a temperature difference is created between the front and back surfaces of the liquid film. (2) Forming a liquid film is performed on a casting table in a gas phase, and creating a temperature difference makes the temperature of the casting table lower than the temperature of the dope. A method for producing a microporous membrane according to claim 1, which is achieved by raising the temperature to a high temperature. (3) The method for producing a microporous membrane according to claim 1 or 2, wherein the temperature difference is 5° C. or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61132467A JPS62289202A (en) | 1986-06-06 | 1986-06-06 | Production of microporous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61132467A JPS62289202A (en) | 1986-06-06 | 1986-06-06 | Production of microporous membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62289202A true JPS62289202A (en) | 1987-12-16 |
Family
ID=15082055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61132467A Pending JPS62289202A (en) | 1986-06-06 | 1986-06-06 | Production of microporous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62289202A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09136985A (en) * | 1995-08-21 | 1997-05-27 | Korea Advanced Inst Of Sci Technol | Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof |
JP2009142799A (en) * | 2007-12-18 | 2009-07-02 | Daicel Chem Ind Ltd | Porous membrane and its manufacturing method |
-
1986
- 1986-06-06 JP JP61132467A patent/JPS62289202A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09136985A (en) * | 1995-08-21 | 1997-05-27 | Korea Advanced Inst Of Sci Technol | Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof |
JP2009142799A (en) * | 2007-12-18 | 2009-07-02 | Daicel Chem Ind Ltd | Porous membrane and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5833896A (en) | Method of making a hollow fibre membrane | |
JPS6238205A (en) | Semi-permeable membrane for separation | |
JPS62289202A (en) | Production of microporous membrane | |
JPH08108053A (en) | Cellulose acetate hollow-fiber separation membrane and its production | |
CN110831690B (en) | Film-forming solution and method for producing separation membrane using same | |
JP3169404B2 (en) | Method for producing semipermeable membrane with high water permeability | |
JP2713294B2 (en) | Method for producing polysulfone-based resin semipermeable membrane | |
JP2882658B2 (en) | Method for producing polysulfone-based semipermeable membrane | |
JPS61402A (en) | Semipermeable membrane for separation | |
JP2926082B2 (en) | Hydrophilic membrane | |
JP2001149763A (en) | Semipermeable membrane and production method for semipermeable membrane | |
JPH03174233A (en) | Production of aromatic polysulfone hollow-fiber membrane | |
JPS5891731A (en) | Asymmetrical porous membrane of polyvinyl fluoride and its production | |
JPH01184001A (en) | Porous membrane of polysulfone | |
JPS5830308A (en) | Cellulose ester permeable membrane and its production | |
TWI410272B (en) | Cellulose acetate hollow fiber membrane and the method of manufacturing the same | |
JPS6329562B2 (en) | ||
JP4659166B2 (en) | Film-forming stock solution and method for producing ethylene-vinyl alcohol polymer film | |
JPS6249911A (en) | Production of aromatic polysulfone hollow yarn membrane | |
JP2505496B2 (en) | Semipermeable membrane and manufacturing method thereof | |
JP2899348B2 (en) | Porous hollow fiber | |
JPS6255882B2 (en) | ||
JPS6289745A (en) | Production of microporous membrane | |
JPS6227163B2 (en) | ||
JPS6253414A (en) | Production of aromatic polysulfone hollow fiber membrane |