[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62271437A - Formation of insulating film - Google Patents

Formation of insulating film

Info

Publication number
JPS62271437A
JPS62271437A JP11375986A JP11375986A JPS62271437A JP S62271437 A JPS62271437 A JP S62271437A JP 11375986 A JP11375986 A JP 11375986A JP 11375986 A JP11375986 A JP 11375986A JP S62271437 A JPS62271437 A JP S62271437A
Authority
JP
Japan
Prior art keywords
substrate
insulating film
silicon
sif4
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11375986A
Other languages
Japanese (ja)
Inventor
Masaki Ogawa
正毅 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11375986A priority Critical patent/JPS62271437A/en
Publication of JPS62271437A publication Critical patent/JPS62271437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To accurately control the film thickness of an insulating film of silicon by a method wherein, after the unimolecular adsorption of silicon on the surface of a substrate, silicon hydride is adsorbed thereon and this process is repeated several times. CONSTITUTION:The inside of a vessel 2 is evacuated by a vacuum exhaust system 8, a substrate 1 is kept at a temperature of 400 deg.C, and SiF4 is introduced from a pipe 4. Then SiF4 is adsorbed as a unimolecular layer on the substrate 1. The supply of SiF4 is stopped, the inside of the vessel 2 is evacuated, and thereafter SiH4 is introduced from a a pipe 5. Then SiH4 is adsorbed on the substrate 1 covered with SiF4. A surface exchange reaction expressed by a formula of SiF4 + SiH4 2Si + 4HF is conducted. and HF is released into a vapor phase, while Si of a two-atom layer grows on the surface of the substrate 1. This process is repeated several times. By this method, the film thickness of an insulating film of Si is controlled accurately.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、絶縁膜として使用するシリコンもしくはアル
ミニウムの酸化物もしくは窒化物の薄膜の成長方法に関
する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of growing a thin film of silicon or aluminum oxide or nitride used as an insulating film.

〔従来の技術〕[Conventional technology]

エミッタとベースの境界に薄い絶縁膜が形成されたポリ
シリコンエミッタトランジスタ(M。
A polysilicon emitter transistor (M.

B、ローランドソン他、IEEE Electron 
De−vice  Letters、  EDL−6巻
、  No、6.  p、  288〜290(198
5)記載)は、1万以上の大きな電流利得を示している
。また、絶縁ゲート型電界効果トランジスタの相互コン
ダクタンスも絶縁膜の膜厚を薄くすることによって増大
することは良く知られている。
B. Rowlandson et al., IEEE Electron
Device Letters, EDL-6 volume, No. 6. p, 288-290 (198
5) shows a large current gain of 10,000 or more. Furthermore, it is well known that the mutual conductance of an insulated gate field effect transistor also increases as the thickness of the insulating film is reduced.

このように、高性能のトランジスタを得るには薄い絶縁
膜を制御性よく被着する技術が重要である。しかし、こ
れまでの代表的な熱酸化膜形成法や化学気相成長法は、
薄い絶縁膜を制御性よく被着する点では、不充分な技術
であった。
Thus, in order to obtain high-performance transistors, it is important to have a technique for depositing thin insulating films with good controllability. However, the typical thermal oxide film formation methods and chemical vapor deposition methods to date are
This technique was insufficient in terms of depositing thin insulating films with good controllability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一方、サントラ(Santla)等は出願広告公報昭6
0−21955においてハロゲン化合物と水を基板表面
に交互に吸着させ、その際に行われる交換表面反応を利
用して、酸化膜を成長させる方法について述べている。
On the other hand, Santla etc. are published in the Application Publication Publication No. 6.
No. 0-21955 describes a method of growing an oxide film by alternately adsorbing a halogen compound and water onto the surface of a substrate and utilizing the exchange surface reaction that occurs at that time.

この方法は、単分子吸着現象を利用するため、原理的に
は原子層レベルで酸化膜を制御することが可能とされて
いる。しかし、吸着物で表面を完全に覆うためには、基
板を低温に保つ必要があり、成長した絶縁膜の膜質は必
ずしも良好とは言えず、従って、トランジスタの製造に
利用されるまでに至っていなかった。
Since this method utilizes a single molecule adsorption phenomenon, it is theoretically possible to control the oxide film at the atomic layer level. However, in order to completely cover the surface with adsorbed substances, it is necessary to keep the substrate at a low temperature, and the quality of the grown insulating film is not necessarily good, so it has not been used for the manufacture of transistors. There wasn't.

本発明は、良好な品質をもつ絶縁膜を、原子層レベルで
膜厚を制御しながら成長させる方法を提供しようとする
ものである。
The present invention aims to provide a method for growing an insulating film of good quality while controlling the film thickness at the atomic layer level.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、シリコン、もしくはアルミニウムを2原子層
被着する工程、酸化性もしくは窒化性雰囲気に前記被着
表面を曝すことにより、シリコンもしくはアルミニウム
の酸化膜もしくは窒化膜を形成する工程から成り、上記
2工程を交互に行うことにより、シリコンもしくはアル
ミニウムの酸化膜もしくは窒化膜を所望の厚さに成長さ
せる絶縁膜の形成方法にある。
The present invention comprises a step of depositing two atomic layers of silicon or aluminum, and a step of forming a silicon or aluminum oxide film or nitride film by exposing the deposited surface to an oxidizing or nitriding atmosphere. The present invention provides a method for forming an insulating film in which a silicon or aluminum oxide film or nitride film is grown to a desired thickness by performing two steps alternately.

〔作用及び原理〕[Operation and principle]

シリコンもしくはアルミニウムの2原子層は、例えば、
基板表面にシリコンもしくはアルミニウムのフン化物を
単分子吸着させた後、さらに前記元素の水素化物を吸着
させることにより形成される。前記元素のフッ化物及び
水素化物を装置内から除去した後、400℃〜1000
℃に保った基板表面に、例えば、酸化性雰囲気としては
水で飽和した酸素ガス、あるいは、N Oxガス、窒化
性雰囲気としてはアンモニアガスを導入すると、前記2
原子層の元素が酸化もしくは窒化される。このようにし
て、極薄の絶縁膜が形成される。以上の工程を所望の厚
さに達するまで繰り返すと、良質の絶縁膜を膜厚精度よ
く成長させることができる。
A diatomic layer of silicon or aluminum is, for example,
It is formed by adsorbing a single molecule of a silicon or aluminum fluoride onto the substrate surface and then adsorbing a hydride of the element. After removing the fluorides and hydrides of the above elements from the apparatus, the temperature
If, for example, water-saturated oxygen gas or NOx gas is introduced as an oxidizing atmosphere, and ammonia gas is introduced as a nitriding atmosphere onto the substrate surface kept at
Elements in atomic layers are oxidized or nitrided. In this way, an extremely thin insulating film is formed. By repeating the above steps until the desired thickness is reached, a high-quality insulating film can be grown with high precision in thickness.

〔実施例〕〔Example〕

実施例1゜ 第1図は、本発明の絶縁膜形成成長に用いた装置の概要
を示す図である。
Example 1 FIG. 1 is a diagram schematically showing an apparatus used for forming and growing an insulating film according to the present invention.

シリコンSi結晶を用いた基板1を真空容器2内に設置
する。基板1を置いた台3の温度を一定に制御する。
A substrate 1 using silicon Si crystal is placed in a vacuum container 2. The temperature of the table 3 on which the substrate 1 is placed is controlled to be constant.

基板表面には3種類のガスをそれぞれバイブ4.5およ
び6を通して独立に照射する。また、上方の2つの窓7
を通して光を照射する。真空排気系8との間にはゲート
バルブ9を設ける。符号10は真空計である。
Three types of gases are independently irradiated onto the substrate surface through vibrators 4.5 and 6, respectively. Also, the upper two windows 7
Irradiates light through. A gate valve 9 is provided between the vacuum exhaust system 8 and the vacuum exhaust system 8 . Reference numeral 10 is a vacuum gauge.

まず、容器2の内部を真空排気系8によって排気し、l
Xl0−”パスカルの真空度とし、基板1を400℃に
保ち、フッ化シリコンSiF、をバイブ4から導入する
と、SiF、が基板1上に単分子層として吸着する。吸
着は、約1秒でほとんど飽和状態に達する。SiF4供
給中の容器2内の真空度は、lXl0−”パスカルであ
った。次いでS i F4の供給を止め容器2内部をI
 X 10−’パスカルまで排気した後、シランSig
nをバイブ5からI X 10−”パスカルの真空度に
なるように導入すると、S i H4は5iFaで覆わ
れた基板1上に吸着し、 S i F 4 + S i H4−〉2 S i +
 4 HFの式で表される表面交換反応が行われ、気相
中にフッ酸HFが放出され、基板1の表面には2原子層
のSiが成長した。この置換反応を促進するために、上
方の窓7から紫外線を照射した。
First, the inside of the container 2 is evacuated by the vacuum exhaust system 8, and
When the substrate 1 is kept at 400° C. and silicon fluoride SiF is introduced from the vibrator 4 under a vacuum degree of Almost saturation was reached.The degree of vacuum in the vessel 2 during the SiF4 supply was 1X10-'' Pascal. Next, the supply of S i F4 is stopped and the inside of the container 2 is
After evacuation to X 10-'Pascals, silane Sig
When n is introduced from the vibrator 5 to a degree of vacuum of I x 10-'' Pascal, S i H4 is adsorbed onto the substrate 1 covered with 5iFa, and S i F 4 + S i H4-〉2 S i +
A surface exchange reaction represented by the formula 4HF was performed, hydrofluoric acid HF was released into the gas phase, and two atomic layers of Si were grown on the surface of the substrate 1. In order to promote this substitution reaction, ultraviolet rays were irradiated from the upper window 7.

次いで、再び容器2内をlXl0−6パスカルまで排気
し、バイブロから飽和蒸気圧の水を含んだ酸素をlXl
0−”パスカル導入した。水は先に成長したSi表面に
吸着し、Siを酸化し、二酸化珪素5ift膜を形成し
た。2原子層のSiが酸化されるに必要な時間は、基板
1の温度400℃では約2分間の照射で充分であった。
Next, the inside of the container 2 is evacuated to lXl0-6 Pascal again, and oxygen containing water at saturated vapor pressure is pumped from the vibro to lXl0-6 Pascal.
0-" Pascal was introduced. Water was adsorbed on the previously grown Si surface, oxidized the Si, and formed a 5ft film of silicon dioxide. The time required for oxidation of two atomic layers of Si is At a temperature of 400°C, irradiation for about 2 minutes was sufficient.

1000℃では約10秒の照射で充分であった。At 1000°C, irradiation for about 10 seconds was sufficient.

以上の工程で成長したSiO2膜の膜厚は6.1人であ
り、上記工程を10回繰り返すことにより、61人の5
in2膜が成長した。
The thickness of the SiO2 film grown in the above process is 6.1 people, and by repeating the above process 10 times, 5
An in2 film was grown.

実施例2゜ 実施例1と同様にしてSt基板1上に2原子層のSiを
成長させた。
Example 2 In the same manner as in Example 1, two atomic layers of Si were grown on the St substrate 1.

その後、容器2内をlXl0−’パスカルまで排気しバ
イブロからアンモニアNH,をI X 10−”パスカ
ル導入した。NH3は先に成長したSi表面に吸着し、
Siを窒化しSi窒化膜Si3N、を形成した。2原子
層のSiが窒化されるに必要な時間に、基板1の温度4
00℃では約10分間の照射で充分であり、1000℃
では約50秒の照射で充分であった。
Thereafter, the inside of the container 2 was evacuated to lXl0-' Pascal, and ammonia NH, was introduced from a vibro to I x 10-' Pascal.NH3 was adsorbed on the previously grown Si surface.
Si was nitrided to form a Si nitride film Si3N. During the time required for two atomic layers of Si to be nitrided, the temperature of the substrate 1 is 4.
At 00℃, irradiation for about 10 minutes is sufficient; at 1000℃
In this case, irradiation for about 50 seconds was sufficient.

以上の実施例では、Siの酸化膜及び窒化膜を成長させ
たが、この方法に限定されることなく、例えば、A I
 F zとAlH3を交互に照射することによって2原
子層のAl膜を形成し、基板1の温度400〜600℃
で実施例1及び2と同様に酸化性もしくは窒化性雰囲気
に曝すことにより、アルミナ膜Al!203もしくはア
ルミ窒化膜AINを成長させることができる。また、酸
化性ガスとして酸化窒素NOxを用いることも可能であ
る。
In the above embodiments, a Si oxide film and a nitride film were grown, but the method is not limited to this, and for example, A I
By alternately irradiating Fz and AlH3, a two-atomic layer Al film is formed, and the temperature of the substrate 1 is 400 to 600°C.
By exposing to an oxidizing or nitriding atmosphere as in Examples 1 and 2, the alumina film Al! 203 or an aluminum nitride film AIN. It is also possible to use nitrogen oxide NOx as the oxidizing gas.

〔発明の効果〕〔Effect of the invention〕

本発明による絶縁膜の形成方法により成長した絶縁膜は
、ガス供給サイクルの回数に対応して、成長膜厚を正確
に制御することが可能である。
In the insulating film grown by the method for forming an insulating film according to the present invention, the thickness of the grown film can be accurately controlled in accordance with the number of gas supply cycles.

本方法で得られた絶縁膜は、誘電率、誘電損失、耐圧、
純度の点で熱酸化膜及び熱窒化膜と同等の特性を有して
いる。このため、トランジスタの製造に適用して優れた
特性を発揮する。
The insulating film obtained by this method has dielectric constant, dielectric loss, breakdown voltage,
In terms of purity, it has properties equivalent to thermal oxide films and thermal nitride films. Therefore, it exhibits excellent characteristics when applied to the manufacture of transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例に用いた絶縁膜製造用装置の概
略図である。 1・・・基板 2・・・真空容器 3・・・台 4、 5. 6・・・パイプ 7・・・窓 8・・・真空排気系 9・・・ゲートパルプ 10・・・真空計
FIG. 1 is a schematic diagram of an insulating film manufacturing apparatus used in an embodiment of the present invention. 1... Substrate 2... Vacuum container 3... Stand 4, 5. 6... Pipe 7... Window 8... Vacuum exhaust system 9... Gate pulp 10... Vacuum gauge

Claims (1)

【特許請求の範囲】[Claims] (1)シリコンもしくはアルミニウムを2原子層被着す
る工程、酸化性もしくは窒化性ガスを前記被着表面に吸
着させ、シリコンもしくはアルミニウムの酸化膜もしく
は窒化膜を形成する工程から成り、上記2工程を交互に
行うことにより、シリコンもしくはアルミニウムの酸化
膜もしくは窒化膜を形成する絶縁膜の形成方法。
(1) It consists of the step of depositing two atomic layers of silicon or aluminum, and the step of adsorbing an oxidizing or nitriding gas to the surface of the deposit to form an oxide or nitride film of silicon or aluminum. A method of forming an insulating film in which silicon or aluminum oxide or nitride films are formed by performing the steps alternately.
JP11375986A 1986-05-20 1986-05-20 Formation of insulating film Pending JPS62271437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11375986A JPS62271437A (en) 1986-05-20 1986-05-20 Formation of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11375986A JPS62271437A (en) 1986-05-20 1986-05-20 Formation of insulating film

Publications (1)

Publication Number Publication Date
JPS62271437A true JPS62271437A (en) 1987-11-25

Family

ID=14620420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11375986A Pending JPS62271437A (en) 1986-05-20 1986-05-20 Formation of insulating film

Country Status (1)

Country Link
JP (1) JPS62271437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217317A (en) * 2001-01-16 2002-08-02 Sony Corp Non-volatile semiconductor storage device and its manufacturing method
JP2006066587A (en) * 2004-08-26 2006-03-09 Hitachi Kokusai Electric Inc Method of forming silicon oxide film
JP2008010888A (en) * 2000-11-21 2008-01-17 Micron Technology Inc Film composition deposited on substrate and semiconductor device thereof
JP2010206223A (en) * 2010-06-11 2010-09-16 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and substrate processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195535A (en) * 1984-10-16 1986-05-14 Matsushita Electric Ind Co Ltd Manufacture of silicon nitride film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195535A (en) * 1984-10-16 1986-05-14 Matsushita Electric Ind Co Ltd Manufacture of silicon nitride film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010888A (en) * 2000-11-21 2008-01-17 Micron Technology Inc Film composition deposited on substrate and semiconductor device thereof
JP2002217317A (en) * 2001-01-16 2002-08-02 Sony Corp Non-volatile semiconductor storage device and its manufacturing method
JP4617574B2 (en) * 2001-01-16 2011-01-26 ソニー株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof
JP2006066587A (en) * 2004-08-26 2006-03-09 Hitachi Kokusai Electric Inc Method of forming silicon oxide film
JP2010206223A (en) * 2010-06-11 2010-09-16 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and substrate processing apparatus

Similar Documents

Publication Publication Date Title
George et al. Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB… binary reaction sequence chemistry
JPS6364993A (en) Growth method of elemental semiconductor single crystal thin film
JP2776726B2 (en) Method for manufacturing semiconductor device
JP2003332333A (en) Low-temperature deposition of insulating film
JP2789587B2 (en) Manufacturing method of insulating thin film
JPH07249618A (en) Method for manufacturing semiconductor device
JPS62271437A (en) Formation of insulating film
JP2008027932A (en) Process for fabricating semiconductor device and atomic layer deposition equipment
JPS5998726A (en) Formation of oxide film
JPH05221644A (en) Production of thin tantalum oxide film
JP4032889B2 (en) Insulating film formation method
JPS628519A (en) Formation of impurity diffused layer
RU2660622C1 (en) Silicon dioxide-on-silicon film and method for production thereof
JPH0327565A (en) Method for forming capacitance insulating film
JPH04111362A (en) Thin-film transistor and its manufacture
JP2606318B2 (en) Method of forming insulating film
JPS59129774A (en) Selective formation of nitrided film
JP7240946B2 (en) Silicon oxide film forming method
JP2000357690A (en) Insulation film, forming method thereof and semiconductor device using the insulation film
JPH04362017A (en) Formation of oriented ta2o5 thin film
JPS6125213B2 (en)
JPH04290219A (en) Method of forming polycrystalline silicon film
JPH0427116A (en) How to form semiconductor heterojunctions
JPS6390138A (en) Method for cleaning semiconductor surface
JP2000114253A (en) Semiconductor oxide film formation