JPS6227498B2 - - Google Patents
Info
- Publication number
- JPS6227498B2 JPS6227498B2 JP9862476A JP9862476A JPS6227498B2 JP S6227498 B2 JPS6227498 B2 JP S6227498B2 JP 9862476 A JP9862476 A JP 9862476A JP 9862476 A JP9862476 A JP 9862476A JP S6227498 B2 JPS6227498 B2 JP S6227498B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electron
- electron beam
- beam holes
- sides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010894 electron beam technology Methods 0.000 claims description 59
- 230000003287 optical effect Effects 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 230000004075 alteration Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 201000009310 astigmatism Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/50—Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
- H01J29/503—Three or more guns, the axes of which lay in a common plane
Description
【発明の詳細な説明】
本発明はカラー受像管用電子銃に係り、特に自
動集中型のカラー受像管(セルフコンバーゼンス
カラー受像管)に多く使われている単一電子銃
(ユニタイズガン)に於ける非点収差軽減のため
の構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron gun for color picture tubes, and in particular, to problems with a single electron gun (unitizing gun) often used in automatic converging color picture tubes (self-converging color picture tubes). This relates to a structure for reducing point aberration.
自動集中型カラー受像管に多く使用されている
単一電子銃は、組立精度を向上させるために第1
図に示す如く、フエースプレート内面に塗布され
た赤、緑、青3色の蛍光体にそれぞれ射突する3
本の電子ビーム1,2,3を形成する電極がそれ
ぞれ一体化されている。特に、主集束レンズを形
成する第3電極21および第4電極22の組立精
度は重要であるため一体化されている。第一電極
19、第二電極20については一体化されている
場合と分離化されている場合とがある。いずれに
しても組立精度を上げるために、第1電極19、
第2電極20、第3電極21の第2電極側及び第
4電極22側の両側電子ビーム通孔4,7,1
0,13及び6,9,12,15の中心4a,7
a,10a,13a及び6a,9a,12a,1
5aを通る線は中央の通孔5,8,11,14の
中心5a,8a,11a,14aを通る線ととも
にほぼ一直線上にあり、管軸(電子銃軸)に対し
平行になつている。 The single electron gun, which is often used in automatic concentrating color picture tubes, is
As shown in the figure, 3 phosphors collide with red, green, and blue phosphors coated on the inner surface of the face plate.
The electrodes forming the electron beams 1, 2, and 3 of the book are each integrated. In particular, the assembly accuracy of the third electrode 21 and the fourth electrode 22 forming the main focusing lens is important, so they are integrated. The first electrode 19 and the second electrode 20 may be integrated or separated. In any case, in order to improve assembly accuracy, the first electrode 19,
Both electron beam holes 4, 7, 1 on the second electrode side and the fourth electrode 22 side of the second electrode 20 and the third electrode 21
Centers 4a, 7 of 0, 13 and 6, 9, 12, 15
a, 10a, 13a and 6a, 9a, 12a, 1
The line passing through 5a is substantially in line with the line passing through the centers 5a, 8a, 11a, 14a of the central through holes 5, 8, 11, 14, and is parallel to the tube axis (electron gun axis).
第4電極22の両側電子ビーム通孔16,18
の中心16a,18aはそれに対向している第3
電極21の両側電子ビーム通孔13,15の中心
13a,15aに対して外側に僅かに(0.1〜0.3
mm位)ずらし、3本の平行電子ビーム1,2,3
がフエースプレート内面に形成された蛍光スクリ
ーン23の赤、縁、青3色の蛍光体(図示せず)
をそれぞれ射突するようにしてある。図中24,
25,26はレンズの中心を示す。 Both side electron beam holes 16 and 18 of the fourth electrode 22
The centers 16a and 18a of the third
Slightly (0.1 to 0.3
mm) shifted, three parallel electron beams 1, 2, 3
are the red, edge, and blue phosphors of the fluorescent screen 23 formed on the inner surface of the face plate (not shown).
It is designed to shoot at each. 24 in the figure,
25 and 26 indicate the center of the lens.
ところが、このような電子銃構造には重大な欠
点がある。すなわち、第2図のように第1、第
2、第3電極(第1図参照)によつて形成された
両側電子ビーム1,3は第3電極21、第4電極
22によつて形成される主集束レンズの中心に入
射せず僅かに(0.1〜0.3mm位)電子銃軸線100
側にずれているため、第3図に示す如く非点収差
30,31を生ずる。27,28,29は電子ビ
ームのスポツト形状を示す。 However, such an electron gun structure has serious drawbacks. That is, as shown in FIG. 2, the double-sided electron beams 1 and 3 formed by the first, second, and third electrodes (see FIG. 1) are formed by the third electrode 21 and fourth electrode 22. The electron gun axis line 100 is slightly (approximately 0.1 to 0.3 mm) not incident on the center of the main focusing lens.
Since it is shifted to the side, astigmatism 30, 31 occurs as shown in FIG. 27, 28, and 29 indicate the spot shapes of the electron beams.
本発明は上記欠点を除去するためになされたも
のであり、主集束レンズへの入射電子ビームを主
集束レンズの電子光学的なほぼ中心を通過せしめ
るように、実質的に各電極の両側電子ビーム形成
用通孔を配列することを特徴としている。 The present invention has been made in order to eliminate the above-mentioned drawbacks, and the present invention has been made in such a way that the electron beam incident on the main focusing lens passes through approximately the electron optical center of the main focusing lens. It is characterized by an array of forming holes.
次に、本発明の一実施例を図面を用いて説明す
る。 Next, one embodiment of the present invention will be described using the drawings.
第1の実施例は第4図に示す如く、陰極(図示
せず)、第1電極19及び第2電極20からなる
三極部50及び第3電極21の第2電極側の両側
電子ビーム通孔4,7,10及び6,9,12の
中心4a,7a,10a及び6a,9a,12a
は、それぞれ一直線上に配置され、第3の電極2
1の第4電極22側の電子ビーム通孔13,15
の中心13a,15aを上記両側電子ビーム通孔
中心を通る両側軸線200,300より僅か
(0.1〜0.3mm)に電子銃軸線100側にずらし、
第4電極22の両側電子ビーム通孔16,18を
中心16a,18aを逆に電子銃軸側と反対方向
に僅か(0.1〜0.3mm)にずらす。この結果、上記
第3、第4電極により形成される主レンズの電子
光学的中心24,26が上記両側軸線上にほぼ一
致するように配置する。 As shown in FIG. 4, the first embodiment has a triode section 50 consisting of a cathode (not shown), a first electrode 19, and a second electrode 20, and a third electrode 21 that has electron beams passing through both sides of the second electrode side. Centers 4a, 7a, 10a and 6a, 9a, 12a of holes 4, 7, 10 and 6, 9, 12
are arranged in a straight line, respectively, and the third electrode 2
Electron beam holes 13 and 15 on the fourth electrode 22 side of 1
The centers 13a, 15a of are slightly (0.1 to 0.3 mm) shifted toward the electron gun axis 100 side from the axes 200, 300 on both sides passing through the centers of the electron beam holes on both sides,
The centers 16a, 18a of the electron beam holes 16, 18 on both sides of the fourth electrode 22 are slightly shifted (0.1 to 0.3 mm) in the direction opposite to the electron gun axis. As a result, the electro-optical centers 24 and 26 of the main lens formed by the third and fourth electrodes are arranged so as to substantially coincide with the axes on both sides.
すなわち、第3、第4電極間において、対向す
る各電子ビーム通孔の中心を結んだ線の夫々の中
央を3つの電子ビームの夫々か通過する位置に主
集束電子レンズを形成するように、前記対向する
各電極の両側電子ビーム通孔を配設した。 That is, between the third and fourth electrodes, the main focusing electron lens is formed at a position where each of the three electron beams passes through the center of a line connecting the centers of the opposing electron beam holes. Electron beam holes were provided on both sides of each of the opposing electrodes.
第2の実施例は第5図に示す如く、第3電極2
1の第2電極20側の両側電子ビーム通孔10,
12を第1電極19、第2電極20及び第3電極
21の第4電極22側の両側電子ビーム通孔4,
7,13及び6,9,15の中心4a,7a,1
3a及び6a,9a,15aを通る直線に対して
僅かに(0.1〜0.3mm)電子銃軸側にずらす方法で
ある。第1の実施例では両側の電子ビーム1,3
の軌跡が電子銃軸に対して主電子レンズまでは平
行であるのに対し、第2の実施例では僅かに電子
銃軸に対して外側に傾いており、実質的には主レ
ンズの電子光学的中心24,26を通過させるよ
うに電極の電子ビーム通孔を配置したものであ
る。この他に第2の実施例と同様、主電子レンズ
へ入射する両側電子ビームを僅かに電子銃軸に対
して外側に傾けて主電子レンズの実質的光学的中
心を通過せしめる方法は多く考えられる。例えば
電極の平行度を僅かにくるわす等あるが詳細な説
明は省略する。 In the second embodiment, as shown in FIG.
Both electron beam holes 10 on the second electrode 20 side of 1,
12 are the electron beam holes 4 on both sides of the first electrode 19, the second electrode 20, and the third electrode 21 on the fourth electrode 22 side,
Centers 4a, 7a, 1 of 7, 13 and 6, 9, 15
This is a method of slightly (0.1 to 0.3 mm) shifting toward the electron gun axis side with respect to the straight line passing through 3a, 6a, 9a, and 15a. In the first embodiment, electron beams 1 and 3 on both sides
The trajectory is parallel to the electron gun axis up to the main electron lens, whereas in the second embodiment, it is slightly tilted outward with respect to the electron gun axis, and the trajectory of the main lens is substantially parallel to the electron optics of the main lens. The electron beam holes in the electrodes are arranged so that the electron beam passes through the target centers 24 and 26. In addition to this, as in the second embodiment, there are many possible methods in which the electron beams on both sides entering the main electron lens are slightly tilted outward with respect to the electron gun axis so that they pass through the substantial optical center of the main electron lens. . For example, the parallelism of the electrodes may be slightly changed, but a detailed explanation will be omitted.
次に、上記に述べた方法をさらに効果的にせし
める第3の実施例について述べる。自動集中型カ
ラー受像管の場合、3本の電子ビームを画面全体
に渡つてほぼ一点に集束させるために偏向ヨーク
の磁界分布は強く歪んでいる。すなわち、水平磁
界は強いピンクツシヨン磁界、垂直磁界は強いバ
レル磁界になつていることは周知の通りである。
このため第6図に示す如く、電子ビームのスポツ
ト形状は画面の周辺で楕円形となる。これを電子
ビームの偏向収差という。このためにフオーカス
品位(画質)を著しく劣化させているわけであ
る。これを軽減させるために、すでに第1電極や
第2電極の通孔を楕円形状にして補償する構造が
提案されているが、この構造は部品製作の組立上
多くの問題がある。 Next, a third embodiment will be described which makes the method described above even more effective. In the case of a self-focusing color picture tube, the magnetic field distribution of the deflection yoke is strongly distorted in order to focus the three electron beams to approximately one point over the entire screen. That is, as is well known, the horizontal magnetic field is a strong pink tension magnetic field, and the vertical magnetic field is a strong barrel magnetic field.
Therefore, as shown in FIG. 6, the spot shape of the electron beam becomes an ellipse around the screen. This is called electron beam deflection aberration. For this reason, the focus quality (image quality) is significantly degraded. In order to alleviate this problem, a structure has already been proposed in which the through holes of the first electrode and the second electrode are made into an elliptical shape to compensate, but this structure has many problems in assembling parts.
この問題を解決したのが本発明の第3の実施例
である。すなわち、自動集中型カラー受像管に多
く使用されている静的集束用永久磁石(4極又は
6極マグネツト)の性質を利用する方法である。
例えば、第7図の如く、上記4極マグネツトの非
均一性を利用して両側の電子ビームを内側(電子
銃軸側)にシフトさせると電子ビームは実質上縦
長に変形する。これが上述の偏向ヨークによるビ
ームの歪み(偏向収差)を補償するように作用す
る。これを設計的に応用するためには、主電子レ
ンズを構成するよう対向している第3電極と第4
電極の両側電子ビーム通孔の相対的な偏位量をや
や小さめにして無偏向時の3本の電子ビームの集
束角を小さくする。これを上記4極マグネツトで
集束させる。4極マグネツトで補正された電子ビ
ーム軌道は主レンズの電子光学的中心からさらに
内側(電子銃軸側)にずれる。これをあらかじめ
見込んで各電極の電子ビーム通孔を配置しておけ
ば第8図の如く、主電子レンズの電子光学的中心
24,26を通過するようになり、一層の効果を
出すことができる。第7図及び第8図に於いて、
41は永久磁石、又は電磁石を示す。このように
すれば自動集中型カラー受像管の欠点である非点
収差及び偏向収差を同時に解決できるという利点
がある。また、本発明のカラー受像管用電子銃は
要旨の範囲内に於いて種々の構造を有するものが
考えられるが、これらも本発明の権利範囲に含ま
れることはいうまでもない。 The third embodiment of the present invention solves this problem. That is, this method utilizes the properties of static focusing permanent magnets (4-pole or 6-pole magnets) that are often used in automatic focusing color picture tubes.
For example, as shown in FIG. 7, when the electron beams on both sides are shifted inward (toward the electron gun axis side) by utilizing the non-uniformity of the quadrupole magnet, the electron beams are deformed into a substantially vertically elongated shape. This acts to compensate for the beam distortion (deflection aberration) caused by the above-mentioned deflection yoke. In order to apply this in design, the third electrode and the fourth electrode, which face each other to form the main electron lens, must be
The relative deflection of the electron beam holes on both sides of the electrode is made slightly smaller to reduce the convergence angle of the three electron beams when no deflection is performed. This is focused by the four-pole magnet mentioned above. The electron beam trajectory corrected by the quadrupole magnet is further shifted inward (towards the electron gun axis) from the electron optical center of the main lens. If the electron beam holes in each electrode are arranged with this in mind in advance, the electron beam will pass through the electron optical centers 24 and 26 of the main electron lens, as shown in Figure 8, and even more effects can be obtained. . In Figures 7 and 8,
41 indicates a permanent magnet or an electromagnet. This has the advantage that astigmatism and deflection aberration, which are disadvantages of automatic focusing color picture tubes, can be solved at the same time. Further, the electron gun for color picture tube of the present invention may have various structures within the scope of the gist, but it goes without saying that these are also included within the scope of the present invention.
第1図は従来の一体化電子銃の構造と電子ビー
ムの軌跡を示す説明図、第2図は従来の一体化電
子銃の主集束レンズ部の極配置図及び電界と電子
ビーム軌跡を示す説明図、第3図は第1図及び第
2図の一体化電子銃による電子ビームの画面上の
スポツト形状を示す説明図、第4図は本発明の一
実施例の一体化電子銃の電極配置図と電子ビーム
の軌跡を示す説明図、第5図は本発明の他の実施
例の一体化電子銃の電極配置図と電子ビームの軌
跡を示す説明図、第6図は偏向ヨークの磁界分布
の歪みによつて生ずる電子ビームの画面上のスポ
ツト形状を示す平面図、第7図は4極マグネツト
によつて生ずる電子ビーム断面形状の変化を示す
概念図、第8図は本発明の他の実施例として第7
図の4極マグネツトを作用させた場合一体化電子
銃を使つた電子ビーム軌跡を示す説明図である。
19……第1電極、20……第2電極、21…
…第3電極、22……第4電極、23……シヤド
ウマスク、27,28,29……電子ビームスポ
ツト形状。
Fig. 1 is an explanatory diagram showing the structure of a conventional integrated electron gun and the locus of the electron beam, and Fig. 2 is an explanatory diagram showing the pole arrangement of the main focusing lens section of the conventional integrated electron gun and the electric field and the trajectory of the electron beam. 3 is an explanatory diagram showing the spot shape of the electron beam on the screen by the integrated electron gun of FIGS. 1 and 2, and FIG. 4 is an electrode arrangement of the integrated electron gun of one embodiment of the present invention. Figure 5 is an explanatory diagram showing the electrode arrangement of an integrated electron gun according to another embodiment of the present invention and the trajectory of the electron beam. Figure 6 is the magnetic field distribution of the deflection yoke. FIG. 7 is a conceptual diagram showing the change in the cross-sectional shape of the electron beam caused by the quadrupole magnet, and FIG. 8 is a plan view showing the spot shape of the electron beam on the screen caused by the distortion of As an example, the seventh
FIG. 2 is an explanatory diagram showing an electron beam trajectory using an integrated electron gun when the quadrupole magnet shown in the figure is applied. 19...first electrode, 20...second electrode, 21...
...Third electrode, 22... Fourth electrode, 23... Shadow mask, 27, 28, 29... Electron beam spot shape.
Claims (1)
ムを発生し、受像管の蛍光スクリーンに向かつて
指向させるための3つの電子ビーム通孔がほぼ一
列に配列された少くとも第1、第2電極を含む三
極部と、その三極部より蛍光スクリーン側にあつ
て主集束電子レンズを形成する少なくとも2つの
第3電極、第4電極からなる主レンズ形成電極を
有し、前記第3電極は、前記第2電極及び第4電
極との各対向面に、一列配列された3個の電子ビ
ーム通孔を有する円筒状電極で、前記第4電極
は、第3電極と対向する面に一列配列された3個
の電子ビーム通孔を有し、前記蛍光スクリーン側
が開放された円筒状電極であつて、互いに中央の
電子ビーム通孔は、電子ビームの進行方向に沿つ
て直線上にあり、かつ、3つの電子ビームの夫々
が、前記第3電極と第4電極の対向する各電子ビ
ーム通孔の中心を通る線の中央に形成される主集
束電子レンズの電子光学的中心を通過するよう
に、第4電極の両側電子ビーム通孔は第3電極の
第4電極側の両側電子ビーム通孔よりさらに外側
に遍位して配設したことを特徴とするカラー受像
管用電子銃。 2 主レンズ形成電極において、第3電極の前記
三極部側の両側電子ビーム通孔中心は、第1電極
と第2電極の両側電子ビーム通孔中心を通る両側
軸線上にあり、第3電極の第4電極側の両側電子
ビーム通孔中心は、前記両側軸線よりも電子銃軸
線側にあり、主レンズ形成電極の第4電極の両側
電子ビーム通孔中心が、前記両側軸線より電子銃
軸線から離れる位置にある特許請求の範囲第1項
記載のカラー受像管用電子銃。 3 主レンズ形成電極の第3電極において、この
第3電極の三極部側の両側電子ビーム通孔中心
が、前記両側軸線よりも電子銃軸線側にあり、第
3電極の第4電極側の両側電子ビーム通孔中心
が、ほぼ前記両側軸線上にあり、かつ、主レンズ
形成電極の第4電極両側電子ビーム通孔中心は、
前記両側軸線より電子銃軸線から離れる位置にあ
る特許請求の範囲第1項記載のカラー受像管用電
子銃。 4 主レンズ形成電極の内、第3電極は、この第
3電極の三極部側の両側電子ビーム通孔が前記両
側軸線上にあり、第4電極側の両側電子ビーム通
孔中心が、前記両側軸線より電子銃軸線側にあ
り、主レンズ形成電極の第4電極の両側電子ビー
ム通孔中心は、前記両側軸線上として小偏向の非
対称主集束電子レンズとし、この主レンズ形成電
極の第3電極に磁気補助偏向手段を有する特許請
求の範囲第1項記載のカラー受像管用電子銃。[Claims] 1. At least three electron beam apertures arranged substantially in a row for generating three electron beams arranged in a row at the center and on both sides and directing the electron beams toward a fluorescent screen of a picture tube. It has a main lens forming electrode consisting of a triode section including a first and a second electrode, and at least two third and fourth electrodes that are closer to the fluorescent screen than the triode section and form a main focusing electron lens. , the third electrode is a cylindrical electrode having three electron beam holes arranged in a row on each surface facing the second electrode and the fourth electrode; A cylindrical electrode having three electron beam holes arranged in a row on opposing surfaces, the phosphor screen side being open, the electron beam holes in the center of each other being arranged in a row along the electron beam traveling direction. An electron optical system of a main focusing electron lens that is on a straight line and in which each of the three electron beams is formed at the center of a line passing through the center of each opposing electron beam hole of the third and fourth electrodes. For a color picture tube, wherein the electron beam holes on both sides of the fourth electrode are disposed further outward than the electron beam holes on the fourth electrode side of the third electrode so as to pass through the center. electron gun. 2. In the main lens forming electrode, the centers of the electron beam holes on both sides of the third electrode on the triode side are on the axis of both sides passing through the centers of the electron beam holes of the first electrode and the second electrode, and The centers of both electron beam holes on the fourth electrode side are closer to the electron gun axis than the both axes, and the centers of the electron beam holes on both sides of the fourth electrode of the main lens forming electrode are closer to the electron gun axis than the both axes. An electron gun for a color picture tube according to claim 1, which is located away from the camera. 3 In the third electrode of the main lens forming electrode, the center of both electron beam holes on the triode side of the third electrode is closer to the electron gun axis than the both axes, and The centers of the electron beam holes on both sides are substantially on the axis of both sides, and the center of the electron beam holes on both sides of the fourth electrode of the main lens forming electrode is
The electron gun for a color picture tube according to claim 1, which is located at a position farther from the electron gun axis than the both-side axes. 4 Among the main lens forming electrodes, the third electrode has both electron beam holes on the triode side on the both-side axis, and the center of both electron beam holes on the fourth electrode side is on the above-mentioned axis. The centers of the electron beam holes on both sides of the fourth electrode of the main lens-forming electrode are located on the electron gun axis side of the both-side axes, and the asymmetric main focusing electron lens with a small deflection is located on the both-side axes. An electron gun for a color picture tube according to claim 1, wherein the electrode has magnetic auxiliary deflection means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9862476A JPS5324775A (en) | 1976-08-20 | 1976-08-20 | El ectronic gun for color picture tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9862476A JPS5324775A (en) | 1976-08-20 | 1976-08-20 | El ectronic gun for color picture tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5324775A JPS5324775A (en) | 1978-03-07 |
JPS6227498B2 true JPS6227498B2 (en) | 1987-06-15 |
Family
ID=14224684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9862476A Granted JPS5324775A (en) | 1976-08-20 | 1976-08-20 | El ectronic gun for color picture tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5324775A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55108153A (en) * | 1979-02-14 | 1980-08-19 | Matsushita Electronics Corp | In-line type electron gun |
JPS598941B2 (en) * | 1979-02-15 | 1984-02-28 | 松下電子工業株式会社 | In-line electron gun |
JPS5830047A (en) * | 1981-08-14 | 1983-02-22 | Nec Corp | In-line type electron gun structure |
JPS5830046A (en) * | 1981-08-14 | 1983-02-22 | Nec Corp | In-line type color cathode ray tube |
-
1976
- 1976-08-20 JP JP9862476A patent/JPS5324775A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5324775A (en) | 1978-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4234814A (en) | Electron gun with astigmatic flare-reducing beam forming region | |
JPH04218245A (en) | Color cathode-ray tube | |
JPH06111729A (en) | Dynamic-focusing electrin gun | |
JPS59211947A (en) | Cathode ray tube | |
KR930011058B1 (en) | Electron gun for color cathode-ray tube | |
JP2673111B2 (en) | Electron gun for beam spot distortion prevention | |
US5841224A (en) | Second grid for an electron gun having apertures and rotary asymmetrical portions facing the first and third grids | |
JPS6227498B2 (en) | ||
JPH0665004B2 (en) | Electron gun device | |
JPH0131259B2 (en) | ||
JPS6117095B2 (en) | ||
JPS6258102B2 (en) | ||
JP2001135258A (en) | Electron gun for cathode-ray tube | |
KR910009635B1 (en) | Dynamic focus electron gun | |
JPH0452586B2 (en) | ||
JP2743400B2 (en) | Electron gun for color picture tube | |
JPS6381737A (en) | In-line type electron gun | |
KR100335087B1 (en) | electron gun for a cathode ray tube | |
JPH039579B2 (en) | ||
JPH026188B2 (en) | ||
JP3427503B2 (en) | Color picture tube | |
JP2804052B2 (en) | Color picture tube equipment | |
KR100869100B1 (en) | Electron gun for color cathode ray tube | |
KR0156522B1 (en) | Color cathode ray tube | |
JPH0821339B2 (en) | Electron gun for color picture tube |