[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6227481B2 - - Google Patents

Info

Publication number
JPS6227481B2
JPS6227481B2 JP52150573A JP15057377A JPS6227481B2 JP S6227481 B2 JPS6227481 B2 JP S6227481B2 JP 52150573 A JP52150573 A JP 52150573A JP 15057377 A JP15057377 A JP 15057377A JP S6227481 B2 JPS6227481 B2 JP S6227481B2
Authority
JP
Japan
Prior art keywords
weight
ceramic
multilayer circuit
circuit board
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52150573A
Other languages
Japanese (ja)
Other versions
JPS5484270A (en
Inventor
Nobuo Kamehara
Chizuko Sato
Seiichi Yamada
Koichi Niwa
Kyohei Murakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15057377A priority Critical patent/JPS5484270A/en
Publication of JPS5484270A publication Critical patent/JPS5484270A/en
Publication of JPS6227481B2 publication Critical patent/JPS6227481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツク多層回路基板の製法に関す
る。 従来のセラミツク多層回路基板の製法は焼成方
法や焼成回路によつて次の3通りに大別される。
第一は、未焼成の状態で多層構造体を形成し、こ
れから一回の焼成によりセラミツク多層回路基板
を製造する方法であり、第二は、ベースとなる、
焼成したセラミツク基板上に導体と絶縁体を印刷
し、一層毎に焼成する操作を繰り返して多層化す
る方法であり、第三は焼成したセラミツク基板上
に導体と絶縁体を交互に印刷し、多層化を行なつ
た後これらを同時に焼成してセラミツク多層回路
基板を製造する方法である。 これらの3通りの方法にはそれぞれ一長一短は
あるが、第三の方法は焼成回数が少なく、またベ
ースとなる基板をもつため製造されたセラミツク
多層回路基板の寸法精度が高くかつ機械的強度が
大きいという利点をもつ。しかし、この方法の欠
点は、焼成の際に、各層の信号線を接続するため
の導通孔であるバイアホールとそれを囲む絶縁体
の境界にクラツクが発生し、バイアホールと信号
層間の断線の原因となり易いことである。この原
因は、本発明者等の解明によれば、導体と絶縁体
の焼成時における収縮のモードの相違によるもの
である。即ち、絶縁体が、例えば800℃前後の焼
成温度で溶融状態となつて収縮を起さなくなつて
も、導体の方は更に高温でも依然として収縮を起
すため、バイアホールと絶縁体の境界にクラツク
が発生するものと思われる。 従つて、本発明の目的は、焼成したセラミツク
基板(例えば、アルミナ、ムライト、フオルステ
ライトなどの基板)上に導体と絶縁体を交互に印
刷して多層化した後これを同時に焼成することに
よりセラミツク多層回路基板を製造する従来方法
の上述の欠点を排除し、クラツクの発生を防止し
てバイアホールと信号線間の信頼性を高めると共
に、寸法精度及び機械的強度の高いセラミツク多
層回路基板を製造する方法を提供することにあ
る。 本発明に従えば、焼成したアルミナ、ムライト
又はフオルステライトから成るセラミツク基板上
に導体と絶縁体を交互に印刷して多層化した後こ
れを同時に焼成することによりセラミツク多層回
路基板を製造するに当り、バイアホール用導体材
料として組成がB2O34〜40重量%、SiO240〜95重
量%及びAl2O31〜10重量%であるB2O3−SiO2
Al2O3混合物粉末を約5〜20重量%含有する金属
ペースト用い、絶縁体材料としてアルミナ50重量
%とホウケイ酸ガラス50重量%からなるガラスセ
ラミツクを用いることから成るセラミツク多層回
路基板の製法が提供される。 前記B2O3−SiO2−Al2O3混合粉末の好ましい組
成はB2O34〜40重量%、SiO240〜95重量%及び
Al2O31〜10重量%である。 このようにB2O3−SiO2−Al2O3混合粉末を添加
した金属ペーストを用いることによつて導体の収
縮モードが絶縁体の収縮モードに近づき、焼成の
過程でのクラツクの発生が効果的に防止されるの
である。前記金属ペースト中のB2O3−SiO2
Al2O3混合粉末の量が5重量%未満の場合には、
クラツク防止効果は認められるものの、実用上満
足すべきもの、例えば目視でクラツクの発生が認
められず、信号線とバイアホールの信頼性が高
く、かつ、酸及びアルカリ溶液にセラミツク多層
回路基板を浸漬しても劣化が起らない状態のもの
が得られないので好ましくなく、また20重量%を
越える場合には導体回路の電気抵抗が高くなり、
伝送速度の遅れが大きくなつて好ましくない。 以下に本発明の実施例を説明する。 実施例 1〜8 97%アルミナ基板上に、第1表に示す様々な組
成の導体ペースト基材100重量部(予じめボール
ミルで充分混合)にエチルセルロース6.5重量
部、界面活性剤(ゾルビタントリオレート、日本
油脂OP−85R)1.0重量部、ジブチルフタレート
3.5重量部、ブチルカルビトールアセテート8.0重
量部及びテルピネオール28.0重量部を配合して調
製した導体ペースト材料と、アルミナ50.0重量
部、ホウケイ酸ガラス50.0重量部、エチルセルロ
ース7.5重量部、ジブチルフタレート8.0重量部、
ブチルカルビトールアセテート15.0重量部及びテ
ルピネオール15.0重量部を配合して調製した絶縁
体ペースト材料(ガラス−セラミツクペースト)
をスクリーン印刷法により印刷して多層化を行な
い、信号層を5層もつ回路基板未焼成体を作成し
た。この多層回路基板未焼成体を900℃で15分間
焼成して、セラミツク多層回路基板を得た。 このようにして製造したセラミツク多層回路基
板について、 (1) クラツクや剥離などの外観、 (2) 水中(水温100℃)で2時間煮沸した時の吸
水率、及び (3) バイアホールの導体抵抗 の試験を行なつた。結果は第1表に示す通りであ
り、実施例1〜8のいずれのものも良好であつ
た。 比較例 1〜4 上記実施例で用いた導体ペースト基材に代えて
第1表に示す様々な組成の基材を用いた以外は上
記実施例と同様にしてセラミツク多層回路基板を
製造し、それについて試験を行なつた。結果は第
1表に示す通りであり、いずれも外観が不良であ
り、吸水率も0.8以上と大きく、導体抵抗も高か
つた。
The present invention relates to a method for manufacturing a ceramic multilayer circuit board. Conventional manufacturing methods for ceramic multilayer circuit boards are roughly divided into the following three types depending on the firing method and firing circuit.
The first method is to form a multilayer structure in an unfired state and then manufacture a ceramic multilayer circuit board by firing it once.
The third method is to print conductors and insulators on a fired ceramic substrate and repeat the process of firing each layer to create a multilayer structure.The third method is to print conductors and insulators alternately on a fired ceramic substrate to create a multilayer structure. In this method, a ceramic multilayer circuit board is manufactured by simultaneously firing these materials after chemical conversion. Each of these three methods has its advantages and disadvantages, but the third method requires fewer firings, and because it has a base substrate, the manufactured ceramic multilayer circuit board has high dimensional accuracy and high mechanical strength. It has the advantage of However, the disadvantage of this method is that during firing, cracks occur at the boundary between the via hole, which is a conductive hole for connecting signal lines in each layer, and the insulator surrounding it, resulting in disconnection between the via hole and the signal layer. This can easily be the cause. According to the findings of the present inventors, this is due to the difference in the mode of contraction during firing of the conductor and insulator. In other words, even if the insulator becomes molten and no longer shrinks at a firing temperature of around 800°C, the conductor still shrinks even at higher temperatures, so cracks may occur at the boundary between the via hole and the insulator. is expected to occur. Therefore, an object of the present invention is to create a ceramic material by alternately printing conductors and insulators on a fired ceramic substrate (for example, a substrate made of alumina, mullite, forsterite, etc.) to form a multilayer structure, and then firing them simultaneously. Eliminates the above-mentioned drawbacks of the conventional method of manufacturing multilayer circuit boards, prevents the occurrence of cracks, increases reliability between via holes and signal lines, and manufactures ceramic multilayer circuit boards with high dimensional accuracy and mechanical strength. The goal is to provide a way to do so. According to the present invention, a ceramic multilayer circuit board is produced by alternately printing conductors and insulators on a ceramic substrate made of fired alumina, mullite, or forstellite to form a multilayer, and then firing them simultaneously. , B2O3 - SiO2- whose composition is 4 to 40% by weight of B2O3, 40 to 95% by weight of SiO2 , and 1 to 10% by weight of Al2O3 as a conductor material for via holes .
A method for manufacturing a ceramic multilayer circuit board is disclosed, which comprises using a metal paste containing about 5 to 20% by weight of Al 2 O 3 mixture powder and glass ceramic consisting of 50% by weight of alumina and 50% by weight of borosilicate glass as an insulating material. provided. The preferred composition of the B2O3 -SiO2 - Al2O3 mixed powder is 4-40% by weight of B2O3 , 40-95% by weight of SiO2 , and
Al2O3 1-10% by weight . As described above, by using a metal paste to which B 2 O 3 -SiO 2 -Al 2 O 3 mixed powder is added, the contraction mode of the conductor approaches that of the insulator, and the occurrence of cracks during the firing process is prevented. It is effectively prevented. B 2 O 3 −SiO 2 − in the metal paste
If the amount of Al 2 O 3 mixed powder is less than 5% by weight,
Although the effect of preventing cracks has been recognized, it is practically satisfactory, for example, no cracks are visually observed, the reliability of signal lines and via holes is high, and ceramic multilayer circuit boards are immersed in acid and alkaline solutions. However, if it exceeds 20% by weight, the electrical resistance of the conductor circuit will increase;
This is undesirable because the delay in transmission speed increases. Examples of the present invention will be described below. Examples 1 to 8 On a 97% alumina substrate, 100 parts by weight of conductor paste base materials of various compositions shown in Table 1 (mixed thoroughly in advance in a ball mill), 6.5 parts by weight of ethyl cellulose, and a surfactant (zorbitan trio) were added. rate, NOF OP-85R) 1.0 parts by weight, dibutyl phthalate
A conductive paste material prepared by blending 3.5 parts by weight, butyl carbitol acetate 8.0 parts by weight, and terpineol 28.0 parts by weight, 50.0 parts by weight alumina, 50.0 parts by weight borosilicate glass, 7.5 parts by weight ethyl cellulose, 8.0 parts by weight dibutyl phthalate,
Insulator paste material (glass-ceramic paste) prepared by blending 15.0 parts by weight of butyl carbitol acetate and 15.0 parts by weight of terpineol.
A green circuit board body having five signal layers was created by printing using a screen printing method to create multiple layers. This multilayer circuit board green body was fired at 900° C. for 15 minutes to obtain a ceramic multilayer circuit board. Regarding the ceramic multilayer circuit board manufactured in this way, (1) external appearance such as cracks and peeling, (2) water absorption rate when boiled in water (water temperature 100°C) for 2 hours, and (3) conductor resistance of via holes. The test was conducted. The results are shown in Table 1, and all of Examples 1 to 8 were good. Comparative Examples 1 to 4 Ceramic multilayer circuit boards were manufactured in the same manner as in the above examples, except that base materials with various compositions shown in Table 1 were used in place of the conductive paste base materials used in the above examples. We conducted tests on the following. The results are shown in Table 1, and all had poor appearance, high water absorption of 0.8 or more, and high conductor resistance.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 焼成したアルミナ、ムライト、フオルステラ
イトから選択されたセラミツクからなるセラミツ
ク基板上に導体と絶縁体を交互に印刷して多層化
した後これを同時に焼成することによりセラミツ
ク多層回路基板を製造するに当り、バイアホール
用導体材料として組成がB2O34〜40重量%、
SiO240〜95重量%及びAl2O31〜10重量%である
B2O3−SiO2−Al2O3混合粉末を約5〜20重量%含
有する金属ペーストを用い、絶縁体材料としてア
ルミナ50重量%とホウケイ酸ガラス50重量%から
なるガラスセラミツクを用いることを特徴とする
セラミツク多層回路基板の製法。
1. In producing a ceramic multilayer circuit board by alternately printing conductors and insulators on a ceramic substrate made of fired ceramic selected from alumina, mullite, and forsterite to form a multilayer, and then firing them simultaneously. , the composition is B 2 O 3 4-40% by weight as a conductor material for via holes,
SiO 2 40-95% by weight and Al 2 O 3 1-10% by weight
Use a metal paste containing about 5 to 20% by weight of B 2 O 3 -SiO 2 -Al 2 O 3 mixed powder, and use glass ceramic consisting of 50% by weight of alumina and 50% by weight of borosilicate glass as the insulating material. A method for manufacturing a ceramic multilayer circuit board characterized by:
JP15057377A 1977-12-16 1977-12-16 Method of making ceramic multiilayer circuit base board Granted JPS5484270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15057377A JPS5484270A (en) 1977-12-16 1977-12-16 Method of making ceramic multiilayer circuit base board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15057377A JPS5484270A (en) 1977-12-16 1977-12-16 Method of making ceramic multiilayer circuit base board

Publications (2)

Publication Number Publication Date
JPS5484270A JPS5484270A (en) 1979-07-05
JPS6227481B2 true JPS6227481B2 (en) 1987-06-15

Family

ID=15499833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15057377A Granted JPS5484270A (en) 1977-12-16 1977-12-16 Method of making ceramic multiilayer circuit base board

Country Status (1)

Country Link
JP (1) JPS5484270A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100306A (en) * 1981-12-09 1983-06-15 松下電器産業株式会社 Conductive paste
JPS6085598A (en) * 1983-10-18 1985-05-15 松下電器産業株式会社 Multilayer circuit board
JPS6122685A (en) * 1984-07-04 1986-01-31 富士通株式会社 Conductive paste
JPS62155593A (en) * 1985-12-27 1987-07-10 松下電器産業株式会社 Ceramic multilayer circuit board
DE68912932T2 (en) * 1989-05-12 1994-08-11 Ibm Deutschland Glass-ceramic article and process for its manufacture.

Also Published As

Publication number Publication date
JPS5484270A (en) 1979-07-05

Similar Documents

Publication Publication Date Title
JPH03197333A (en) Crystallizable glass and thick membranous composition thereof
US4808673A (en) Dielectric inks for multilayer copper circuits
US4997795A (en) Dielectric compositions of devitrified glass containing small amounts of lead oxide and iron oxide
US4808770A (en) Thick-film copper conductor inks
JPS6227481B2 (en)
US4874550A (en) Thick-film copper conductor inks
JPH05116985A (en) Ceramic substrate
JPH0581922A (en) Conductor paste composition and ceramic multiple layer substrate
JPS6379739A (en) Sintered glass ceramic body
JPS60103075A (en) Composition for ceramic substrate
JPS6054721B2 (en) Paste composition for forming insulators
JPH0738493B2 (en) Co-fired ceramic circuit board
JPH0768065B2 (en) Glass-coated aluminum nitride sintered body and method for producing the same
JPS6328862B2 (en)
JPH02212336A (en) Glass-ceramic composition and its use
JPS63292504A (en) Conductor paste
JP2893711B2 (en) Conductive paste and ceramic substrate
JPH06243716A (en) Copper paste
JPS63248199A (en) Multilayer interconnection circuit board
JPH0558201B2 (en)
JPH069320B2 (en) Low temperature firing ceramic multilayer wiring board
JPS63307182A (en) Multi-layer ceramic circuit board
JPS63260199A (en) Dielectric ink for multilayer copper circuit
JPS63120777A (en) Dielectric ink for multilayer copper circuit
JPS5887164A (en) Thermal deterioration resistant electrically conductive coating