JPS62264120A - Transportation of solid particle - Google Patents
Transportation of solid particleInfo
- Publication number
- JPS62264120A JPS62264120A JP10436686A JP10436686A JPS62264120A JP S62264120 A JPS62264120 A JP S62264120A JP 10436686 A JP10436686 A JP 10436686A JP 10436686 A JP10436686 A JP 10436686A JP S62264120 A JPS62264120 A JP S62264120A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- fluid
- solid particles
- conduit
- transportation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 58
- 239000007787 solid Substances 0.000 title claims abstract description 36
- 239000012530 fluid Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims description 19
- 239000002002 slurry Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000005299 abrasion Methods 0.000 abstract description 3
- 102100027340 Slit homolog 2 protein Human genes 0.000 abstract 1
- 101710133576 Slit homolog 2 protein Proteins 0.000 abstract 1
- 230000032258 transport Effects 0.000 description 21
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 5
- 235000011941 Tilia x europaea Nutrition 0.000 description 5
- 239000004571 lime Substances 0.000 description 5
- 239000003245 coal Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Air Transport Of Granular Materials (AREA)
- Jet Pumps And Other Pumps (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、固体粒子の輸送方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for transporting solid particles.
さらに詳しくは、この発明は、コアンダスパイラルフロ
ーによる固体粒子の高速輸送方法に関するものである。More specifically, the present invention relates to a method for high-speed transport of solid particles using Coanda spiral flow.
(従来技術とその課題)
従来、石炭、石灰、セメント、無機化合物、金属、ある
いは有機物の固体粒子を管路によって流体輸送するには
、空気、不活性ガス等の気体や液体の高速流に対してこ
れらの固体粒子を送入して輸送することが行われている
。(Prior art and its problems) Conventionally, in order to fluidly transport solid particles of coal, lime, cement, inorganic compounds, metals, or organic materials through pipes, it is difficult to transport solid particles of coal, lime, cement, inorganic compounds, metals, or organic materials through high-speed flows of gases or liquids such as air or inert gas. These solid particles are introduced and transported by means of transport.
この従来法においては、高速流体が乱流状態にあるため
、固体粒子は流体と乱流混合する。In this conventional method, since the high-speed fluid is in a turbulent state, the solid particles mix turbulently with the fluid.
このため、固体粒子は輸送の過程において輸送管の内面
壁と激しく衝突し、この内面を摩耗させる。この摩耗は
、輸送管を破損し、粒子の輸送を回動にする。For this reason, the solid particles collide violently with the inner wall of the transport tube during the transport process, causing abrasion of this inner surface. This wear damages the transport tube and causes the transport of particles to rotate.
また、乱流混合による粒子の管内壁、粒子相互間との衝
突は、輸送プロセスの圧損失、内壁の摩耗によって輸送
プロセスの制御を難しくする。粒子の形状の維持が必要
なものについても、従来の乱流混合による方法は適用で
きない。In addition, collisions of particles with the inner wall of the pipe and between particles due to turbulent mixing cause pressure loss in the transport process and wear of the inner wall, making it difficult to control the transport process. Conventional turbulent mixing methods cannot be applied to particles that require maintenance of particle shape.
ざらにまた、乱流混合によって大口の固体粒子を゛効率
的に行なおうとすれば、流体の高速化のために装置を大
型化しなければならなかった。大きな粒子形状のものに
ついても、この従来法では流体輸送に限界があった。Furthermore, in order to efficiently mix large particles of solid particles by turbulent mixing, it was necessary to increase the size of the equipment in order to increase the velocity of the fluid. Even with large particles, this conventional method has limitations in fluid transport.
このため、輸送効率、経済性に優れた固体粒子の流体輸
送の方法の実現が強く望まれていた。For this reason, it has been strongly desired to realize a method for fluid transportation of solid particles that is highly efficient and economical.
(発明の目的)
この発明は、このような事情に鑑みてなされたものであ
り、従来の乱流混合による輸送法の問題点を解決した、
固体粒子の輸送方法を提供することを目的としている。(Object of the invention) This invention was made in view of the above circumstances, and solves the problems of the conventional transport method using turbulent mixing.
The purpose is to provide a method for transporting solid particles.
(発明の構成)
この発明の固体粒子の輸送方法は、上記の目的を実現す
るために、従来法の高速乱流混合輸送に代えて、コアン
ダスパイラルフロ一方式を採用し、特定の条件のもとに
、このコアンダスパイラルフロ一方式による固体粒子の
輸送を行うことを特徴としている。(Structure of the Invention) In order to achieve the above object, the method for transporting solid particles of the present invention adopts a single Coanda spiral flow method in place of the high-speed turbulent mixed transport of the conventional method, and In particular, it is characterized by transporting solid particles using this Coanda spiral flow method.
このコアンダスパイラルフローとその産業的利用はこの
発明の発明者によってはじめて見出されたものである(
たとえば特願昭6O−197620)。This Coanda spiral flow and its industrial use were first discovered by the inventor of this invention (
For example, Japanese Patent Application No. 6O-197620).
すなわら、この発明の発明者は、管方向の流体のベタ1
−ルに管半径方向のベクトルを加えると流体が施回し、
この施回流に基き管内壁近傍に動的境界層が形成され、
流体はスパイラル(螺旋)を描きつつ、管路方向に高速
で進行するという事実を見出した。このスパイラルフロ
ーに固体粒子を混入すると、粒子はスパイラルを描きつ
つ管路方向に進行し、しかも粒子と管内壁との接触は抑
制されるのである。In other words, the inventor of the present invention
- When a vector in the pipe radial direction is added to the pipe, the fluid is rotated,
Based on this circulation flow, a dynamic boundary layer is formed near the inner wall of the pipe,
It was discovered that the fluid moves at high speed in the direction of the pipe while drawing a spiral. When solid particles are mixed into this spiral flow, the particles move in the direction of the pipe while drawing a spiral, and contact between the particles and the inner wall of the pipe is suppressed.
このようなコアンダスパイラルフローの応用について検
討を行うことにより、特定の条件を採用する場合には、
固体粒子の流体輸送が高速で、効率的に、かつ粒子と管
内壁との衝突を抑制しつつ実現できることが今般見出さ
れた。この発明は、このような新たな知見に基づくもの
である。By considering the application of such Coanda spiral flow, when adopting specific conditions,
It has recently been discovered that fluid transport of solid particles can be achieved at high speed, efficiently, and while suppressing collisions between the particles and the inner wall of the pipe. This invention is based on such new knowledge.
コアンダスパイラルフローを生成させるには、この発明
においては、管路に流入する固体粒子の粉流体の流れ方
向に対して横方向から加圧流体を高速送入する。この場
合、加圧流体の圧力は、たとえば空気を用いる時は、2
〜’l0KI/criG程度とする。その流体について
も、同様に適宜に選択する。In order to generate the Coanda spiral flow, in the present invention, pressurized fluid is fed at high speed in a direction transverse to the flow direction of the solid particle powder flowing into the pipe. In this case, the pressure of the pressurized fluid is, for example, 2 when using air.
~'l0KI/criG. The fluid is similarly selected appropriately.
より具体的に添付した図面に沿って説明する。This will be explained in more detail with reference to the attached drawings.
第1図に示した、この発明に用いるコアンダスパイラル
フローの発生部(断面)の例においては、管路(1)の
端面に管路径と等しくなるように円筒管(2)を接続し
ている。この円筒管(2)は、この接続面と反対方向に
向って次第に径が大きくなっていく。円筒管(2)には
、横方向から加圧流体を送入するための環状の細隙(,
3)を形成する。また、この細隙(3)から管路に向っ
て滑らかに湾曲した壁面(4)を設ける。In the example of the Coanda spiral flow generation part (cross section) used in the present invention shown in Fig. 1, a cylindrical pipe (2) is connected to the end face of the pipe line (1) so as to have the same diameter as the pipe line. . The diameter of this cylindrical tube (2) gradually increases in the direction opposite to this connection surface. The cylindrical tube (2) has an annular slit (,
3) Form. Further, a smoothly curved wall surface (4) is provided from this narrow gap (3) toward the conduit.
細隙(3)の壁面(4)と反対の側には補助筒(8)を
接続し、壁面(9)をほぼ直角もしくは鋭角状に折り曲
げる。補助筒に代えて、円筒管と一体のものとしてもよ
い。いずれの場合も、細隙(3)は、その間隔が調整で
きるようにするとよい。An auxiliary tube (8) is connected to the side of the slit (3) opposite to the wall surface (4), and the wall surface (9) is bent at a substantially right angle or an acute angle. Instead of the auxiliary tube, it may be integrated with the cylindrical tube. In either case, it is preferable that the gap between the slits (3) can be adjusted.
環状の細隙(3)に加圧流体を供給する手段(7)とし
ては適宜なものが採用できるが、円筒管(2)を囲むよ
うに分配室(6)を設け、この分配室と細隙(3)とを
連通させることができる。Although any suitable means (7) for supplying pressurized fluid to the annular slit (3) can be adopted, a distribution chamber (6) is provided surrounding the cylindrical pipe (2), and this distribution chamber and the slit are connected to each other. The gap (3) can be communicated with the gap (3).
この溝造においては、加圧流体、たとえば空気、水など
、を高速で細隙(3)から円筒管(2)内に送入する。In this channel construction, a pressurized fluid, such as air or water, is fed at high speed through the slit (3) into the cylindrical tube (2).
細隙(3)の出口で流体はコアンダ効果により円筒管か
ら管路(1)側に傾いた8i線(α)を描き、その結果
、反対側には負圧域を生じる。その負圧域に外部から固
体粒子、の粉流体が流入する。、(矢印β)。At the exit of the slit (3), the fluid draws an 8i line (α) inclined from the cylindrical pipe toward the pipe line (1) due to the Coanda effect, resulting in a negative pressure region on the opposite side. Solid particles and powder fluid flow into the negative pressure area from the outside. , (arrow β).
細隙(3)からの流体の運動ベクトルとタシ部からの粉
流体の運動ベクI・ルとは合成されて円筒管内を管路(
1)側へ進行する流体流が形成される。The motion vector of the fluid from the slit (3) and the motion vector of the powder fluid from the trestle are combined to form a pipe (
1) A fluid stream is formed that travels to the side.
流体流は、次第に径をせばめられ、その際に半径方向の
ベクトルが与えられる。この半径方向のベクトルが旋回
ベタ1〜ルに転換し、直進ベクトルと合わせてスパイラ
ルモーションを生ずるに至る。The fluid stream is gradually narrowed in diameter and given a radial vector. This radial vector transforms into a turning vector, and together with the straight vector, a spiral motion is produced.
もちろん、この第1図の例に限定されるものではない。Of course, the present invention is not limited to the example shown in FIG.
コアンダスパイラルフローを生成させることができ、そ
れを維持する限り、構造上に特段の限定はない。また、
この発明の方法においては、流体と固体粒子とは乱流混
合しないので、管内壁との衝突も抑制されるので、管お
よびその内壁に格別硬質な材料を使用する必要はない。There are no particular limitations on the structure as long as a Coanda spiral flow can be generated and maintained. Also,
In the method of the present invention, since the fluid and solid particles do not mix turbulently, collisions with the inner wall of the pipe are suppressed, so there is no need to use particularly hard materials for the pipe and its inner wall.
プラスデックチューブ、あるいはゴム管という弾性材料
を用いてもよい。An elastic material such as a plus deck tube or a rubber tube may also be used.
コアンダスパイラルフローの生成部としては、第1図に
示したような環状の細隙(3)側から直らに円筒管(2
)がコーン状に形成されたものだけではなく、たとえば
、第2図および第3図に示すように環状の細隙側から円
筒部分(10)を経てコーン状に形成されたものでもよ
い。The Coanda spiral flow generation part is a cylindrical pipe (2) straight from the annular slit (3) side as shown in Figure 1.
) may be formed into a cone shape, for example, as shown in FIGS. 2 and 3, it may be formed into a cone shape from the annular slit side through the cylindrical portion (10).
また、固体粒子は、第3図に示したように、導入管(1
1)から、流線βに沿って流入する流体とは別に送入し
てもよい。In addition, the solid particles are introduced into the inlet tube (1) as shown in Fig. 3.
From 1), the fluid may be introduced separately from the fluid flowing in along the streamline β.
この発明に用いる装置においては(第1図参照)、たと
えば、円筒管(2)の傾斜角θは、t a nθが1/
4〜1/8程度になるようにするのが好ましい。また管
路と円筒管との内径の比率は、1/2〜115程度とす
るのが好ましい。In the apparatus used in this invention (see FIG. 1), for example, the inclination angle θ of the cylindrical tube (2) is such that tanθ is 1/
It is preferable to set it to about 4 to 1/8. Moreover, it is preferable that the ratio of the inner diameters of the conduit and the cylindrical tube is about 1/2 to 115.
この発明では、このような装置を用い、固体粒子の超高
速輸送、管内壁の磨耗の抑制を実現するため、輸送対象
となる固体粒子の粒子径を輸送管路の管径の1/3以下
とし、固体粒子と流体との混合比を10以下、特に好ま
しくは2〜6程度とする。In this invention, in order to realize ultra-high-speed transportation of solid particles and suppression of wear on the inner wall of the pipe using such a device, the particle diameter of the solid particles to be transported is set to 1/3 or less of the pipe diameter of the transport pipe. The mixing ratio of solid particles and fluid is set to 10 or less, particularly preferably about 2 to 6.
こうすることにより、粒子径が30m、あるいは50m
という大粒子にあっても超高速で輸送することが可能と
なる。従来の乱流混合輸送の40〜60m/分の流速は
もらろんのこと、100〜200m/分の超高速での輸
送も可能となる。しかも、管内壁と粒子との衝突は抑制
される。By doing this, the particle size becomes 30m or 50m.
Even large particles can be transported at ultra-high speeds. In addition to the flow rate of 40 to 60 m/min of conventional turbulent mixed transport, it is also possible to transport at ultra-high speeds of 100 to 200 m/min. Moreover, collisions between the inner wall of the pipe and the particles are suppressed.
粒子を輸送する流体に格別の限定はなく、空気、窒素そ
の他の不活性ガス、あるいは排気ガスなどの気体、水、
その他の液体等、適宜なものを用いることができる。There are no particular limitations on the fluid that transports the particles, and air, nitrogen and other inert gases, gases such as exhaust gas, water,
Other suitable liquids can be used.
固体粒子にも、その種類に限定はない。石炭、石灰、セ
ラミックス、その他無機物質、有機物質の乾燥、または
湿潤状態の粒子、あるいはCOM、CWMのスラリーな
どがこの発明の輸送方法によって超高速で輸送すること
ができる。There are no limitations on the type of solid particles either. Dry or wet particles of coal, lime, ceramics, other inorganic substances, organic substances, slurries of COM, CWM, etc. can be transported at ultra-high speed by the transport method of the present invention.
輸送の管路距離についても適宜に選択することができる
。The length of the transportation pipeline can also be selected as appropriate.
輸送距離が長距離となる場合には、たとえば、第4図に
示した手段を管路途中に設けてもよい。When the transportation distance is long, for example, the means shown in FIG. 4 may be provided in the middle of the pipe.
この場合には、中空ドーナツ状に形成した加圧流体分配
室(6)を直接環状の細隙(3)の外側に接続してもよ
い。In this case, the pressurized fluid distribution chamber (6) formed in the shape of a hollow donut may be connected directly to the outside of the annular slot (3).
以下、実施例を示して、ざらにこの発明を具体的に説明
する。EXAMPLES Hereinafter, the present invention will be briefly described in detail with reference to Examples.
実施例1
内径30mの透明プラスデックチューブを用い、出口を
大気に解放した長さ200m管路を敷設した。管路は途
中にカーブや若干の高低を有していた。管路入口には、
第3図に示したような構造の装置を設けた。Example 1 A 200 m long pipeline was constructed using a transparent plastic tube with an inner diameter of 30 m and an outlet open to the atmosphere. The pipeline had curves and slight elevations along the way. At the pipe entrance,
An apparatus having the structure shown in FIG. 3 was provided.
第3図の装置の固体粒子供給管路(11)から、径5#
、長さ5Mの円柱状の合成樹脂ベレットを連続的に供給
した。管路における気流速度は平均で26m/秒に設定
した。From the solid particle supply pipe (11) of the apparatus shown in Fig. 3,
, cylindrical synthetic resin pellets with a length of 5M were continuously supplied. The air velocity in the conduit was set at an average of 26 m/sec.
合成樹脂ペレットは連続してスパイラルを描きつつ進行
した。長時間の粒子輸送にもかかわらず、プラスデック
デユープの柔らかい内壁には全く傷がつかなかった。The synthetic resin pellets progressed while drawing a continuous spiral. Despite the long-term particle transport, the soft inner wall of the PlusDeck duplex was completely undamaged.
実施例2
実施例1と同様に内径17mのチューブを用い、5m角
の石灰粒子を輸送した。Example 2 As in Example 1, lime particles of 5 m square were transported using a tube with an inner diameter of 17 m.
加圧流体としては、3.7KI/cirの圧力の空気を
用いた。平均速度は170Trt/秒であった。Air at a pressure of 3.7 KI/cir was used as the pressurized fluid. The average speed was 170 Trt/sec.
石灰粒子はスパイラルを描いて進行した。ブユーブ内壁
には全く傷がつかなかった。The lime particles progressed in a spiral pattern. The interior walls of Buyoubu were not damaged at all.
(発明の効果)
以上のとおり、この発明の方法による場合には、管路内
壁の摩耗が抑制され、しかも超高速での粒子輸送が実現
される。輸送効率、経済性は大きく向上する。(Effects of the Invention) As described above, according to the method of the present invention, wear of the inner wall of the pipe is suppressed, and particle transport at ultrahigh speed is realized. Transportation efficiency and economy will be greatly improved.
このように、この発明による効果は極めて大ぎい。As described above, the effects of this invention are extremely large.
第1図、第2図、第3図および第4図は、この発明に用
いる装置の要部を示したものである。
図中の番号は次のものを示している。
1、管路 5.流入口
2、円筒管 60分配室
3、細隙 7.加圧流体供給口゛4゜湾曲壁
面 8.補助筒
代理人 弁理士 西 澤 利 夫
第 1 図
↓
第 2 図
↓
3113図
第 4 図FIG. 1, FIG. 2, FIG. 3, and FIG. 4 show the main parts of the apparatus used in the present invention. The numbers in the figure indicate the following. 1. Pipeline 5. Inlet 2, cylindrical pipe 60 Distribution chamber 3, slit 7. Pressurized fluid supply port 4° curved wall 8. Assistant Agent Patent Attorney Toshio Nishizawa Figure 1 ↓ Figure 2 ↓ Figure 3113 Figure 4
Claims (4)
固体粒子を流入させ、該固体粒子を流体によるコアンダ
スパイラルフローによって輸送するにあたり、固体粒子
の粒子径を輸送管路の管径の1/3以下とし、固体粒子
と流体との混合比を10以下とすることを特徴とする固
体粒子の輸送方法。(1) When solid particles flow into a negative pressure region generated by high-speed feeding of pressurized fluid and are transported by the Coanda spiral flow by the fluid, the particle diameter of the solid particles is determined by the pipe diameter of the transport pipe. A method for transporting solid particles, characterized in that the mixing ratio of solid particles and fluid is 10 or less.
記載の固体粒子の輸送方法。(2) The method for transporting solid particles according to claim (1), wherein the pressurized fluid is a gas.
記載の固体粒子の輸送方法。(3) The method for transporting solid particles according to claim (2), wherein the pressurized fluid is air.
)項記載の固体粒子の輸送方法。(4) Claim No. 3 in which the solid particles are slurry
) The method for transporting solid particles described in section 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61104366A JP2506080B2 (en) | 1986-05-07 | 1986-05-07 | Transport method of solid particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61104366A JP2506080B2 (en) | 1986-05-07 | 1986-05-07 | Transport method of solid particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62264120A true JPS62264120A (en) | 1987-11-17 |
JP2506080B2 JP2506080B2 (en) | 1996-06-12 |
Family
ID=14378820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61104366A Expired - Fee Related JP2506080B2 (en) | 1986-05-07 | 1986-05-07 | Transport method of solid particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2506080B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63209725A (en) * | 1987-02-24 | 1988-08-31 | Aoki Kensetsu:Kk | Method and apparatus for performing local ventilation and dust removal |
CN103573722A (en) * | 2012-07-26 | 2014-02-12 | 庄立伟 | Air flow amplifier and flow amplifying cylinder thereof |
EP2778415A1 (en) * | 2013-03-14 | 2014-09-17 | General Electric Company | Synthetic jet driven cooling device with increased volumetric flow |
CN104590893A (en) * | 2015-01-16 | 2015-05-06 | 常州市永明机械制造有限公司 | Edge wire sucking air flow adjusting device for film coating machine |
CN105217316A (en) * | 2015-10-19 | 2016-01-06 | 四川大学 | A kind of novel feeder |
CN106246611A (en) * | 2016-08-01 | 2016-12-21 | 西南大学 | The air amplifier used under a kind of applicable cryogenic conditions and method of work thereof |
CN108980121A (en) * | 2018-06-26 | 2018-12-11 | 湖南人文科技学院 | A kind of bidirection air intake type air lift mud pump |
CN115108327A (en) * | 2022-08-01 | 2022-09-27 | 安徽理工大学 | Filling paste gas wrapping and transporting device with carbon sealing function |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103612915A (en) * | 2013-12-02 | 2014-03-05 | 江苏科技大学 | Vortex airflow type pneumatic lifter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6258100A (en) * | 1985-09-09 | 1987-03-13 | Kiyoyuki Horii | Device for producing spiral flow in conduit |
-
1986
- 1986-05-07 JP JP61104366A patent/JP2506080B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6258100A (en) * | 1985-09-09 | 1987-03-13 | Kiyoyuki Horii | Device for producing spiral flow in conduit |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63209725A (en) * | 1987-02-24 | 1988-08-31 | Aoki Kensetsu:Kk | Method and apparatus for performing local ventilation and dust removal |
CN103573722A (en) * | 2012-07-26 | 2014-02-12 | 庄立伟 | Air flow amplifier and flow amplifying cylinder thereof |
EP2778415A1 (en) * | 2013-03-14 | 2014-09-17 | General Electric Company | Synthetic jet driven cooling device with increased volumetric flow |
US9976762B2 (en) | 2013-03-14 | 2018-05-22 | General Electric Company | Synthetic jet driven cooling device with increased volumetric flow |
CN104590893A (en) * | 2015-01-16 | 2015-05-06 | 常州市永明机械制造有限公司 | Edge wire sucking air flow adjusting device for film coating machine |
CN105217316A (en) * | 2015-10-19 | 2016-01-06 | 四川大学 | A kind of novel feeder |
CN106246611A (en) * | 2016-08-01 | 2016-12-21 | 西南大学 | The air amplifier used under a kind of applicable cryogenic conditions and method of work thereof |
CN108980121A (en) * | 2018-06-26 | 2018-12-11 | 湖南人文科技学院 | A kind of bidirection air intake type air lift mud pump |
CN108980121B (en) * | 2018-06-26 | 2019-08-27 | 湖南人文科技学院 | A kind of bidirection air intake type air lift mud pump |
CN115108327A (en) * | 2022-08-01 | 2022-09-27 | 安徽理工大学 | Filling paste gas wrapping and transporting device with carbon sealing function |
Also Published As
Publication number | Publication date |
---|---|
JP2506080B2 (en) | 1996-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4721126A (en) | Method of generating spiral fluid flow and the device therefor | |
JPS62264120A (en) | Transportation of solid particle | |
KR850002438A (en) | Method and apparatus for generating and using spiral lift in conduits | |
CA2364516A1 (en) | Flow development chamber | |
JP2506108B2 (en) | Multi-stage Coanda spiral flow generator | |
JPS63150500A (en) | Double cylindrical coanda spiral flow device | |
KR0165672B1 (en) | Method for passing cable or a wire through a passage | |
JP2506107B2 (en) | Coanda spiral flow controller | |
JPS63267424A (en) | Mixing method and device for additive | |
JPS6326046B2 (en) | ||
JP2582098B2 (en) | Coanda spiral high concentration transport device | |
JPH0512247B2 (en) | ||
JPS63310420A (en) | Transporting device for air | |
JP2599133B2 (en) | Coanda spiral flow generator | |
SE9804552D0 (en) | Method and apparatus for mixing a flowing gas and a powdered material | |
JP2643987B2 (en) | Fluid transport device | |
JPS63209725A (en) | Method and apparatus for performing local ventilation and dust removal | |
SU1497136A1 (en) | Arrangement for pneumatic transporting powder material | |
JPS63141688A (en) | Pipe inner-surface purifier | |
JPS60242128A (en) | Swirling gas flow generating apparatus for transporting powdery and granular material | |
JPS6236221A (en) | Device for conveying powder and grain body by gas stream | |
JP2770990B2 (en) | Mixing and mixing equipment for soil flow | |
JPS6366017A (en) | Air transporting method | |
JPS62251074A (en) | Method and device for blasting by spiral flow | |
JPS63126546A (en) | Method and device for controlling coanda spiral flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |