JPS62252932A - Heat-treating apparatus for semiconductor wafer - Google Patents
Heat-treating apparatus for semiconductor waferInfo
- Publication number
- JPS62252932A JPS62252932A JP9714486A JP9714486A JPS62252932A JP S62252932 A JPS62252932 A JP S62252932A JP 9714486 A JP9714486 A JP 9714486A JP 9714486 A JP9714486 A JP 9714486A JP S62252932 A JPS62252932 A JP S62252932A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- furnace
- quartz
- arm
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 235000012431 wafers Nutrition 0.000 claims description 75
- 238000012545 processing Methods 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims 4
- 239000010453 quartz Substances 0.000 abstract description 51
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 51
- 239000000463 material Substances 0.000 abstract description 4
- 229910000953 kanthal Inorganic materials 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000003672 processing method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は半導体装置の作製にあたり特にシリコンウェハ
の酸化・不純物の導入拡散あるいは熱処理を行なう為の
枚葉式電気炉に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a single-wafer electric furnace for oxidizing silicon wafers, introducing and diffusing impurities, or heat-treating silicon wafers in the production of semiconductor devices.
従来の技術
従来は、第5図に示すように、シリコンウェハ1を石英
製ボート21に数十枚から1cm0枚程度積載し、石英
炉芯管22に挿入する。石英炉芯管22は通常、カンタ
ル線のような材料を巻線にしたものを絶縁体の保持具で
固定し、その回りに断熱材全巻いた発熱体23に囲まれ
ており、多大な電流を流す事によってその石英炉芯管2
2 ’i 900〜12oO℃程度の高温に保持する事
が出来る。2. Related Art Conventionally, as shown in FIG. 5, silicon wafers 1 are loaded on a quartz boat 21 to a thickness of about 1 cm, and the silicon wafers 1 are inserted into a quartz furnace core tube 22. The quartz furnace core tube 22 is usually made of a wound wire made of a material such as Kanthal wire, fixed with an insulating holder, and surrounded by a heating element 23 completely wrapped with heat insulating material, which draws a large amount of current. By pouring the quartz furnace core tube 2
2'i It can be maintained at a high temperature of about 900 to 12oO°C.
石英炉芯管22は1通常一端を細く絞ったガス導入口2
4を有し、そこより、シリコンウェハの処理に必要なガ
スを流す事が出来る。又1図示はしていないが、炉体の
温度を制御□□するコントローラ一部、及びガスのコン
トロール全行なうンースキャビネット部は常にシステム
構成されている。The quartz furnace core tube 22 has a gas inlet port 2 which is usually narrowly constricted at one end.
4, through which gas necessary for processing silicon wafers can flow. Although not shown in the drawings, a part of the controller that controls the temperature of the furnace body and a space cabinet that controls all gases are always included in the system.
例えばシリコンの酸化を実施する場合、前述の石英製ボ
ート21をボートローディング装置等により炉体中央部
に挿入した後にガス導入口より乾燥酸素を必要な酸化膜
厚が得られる時間流せば良い。又、水素と酸素を混合燃
焼させて酸化種である水蒸気を流して、酸化を実施する
方法も多く用いられている。更に、最近の微細化に伴な
って。For example, when oxidizing silicon, it is sufficient to insert the aforementioned quartz boat 21 into the center of the furnace body using a boat loading device or the like, and then flow dry oxygen through the gas inlet for a period of time to obtain the required oxide film thickness. Also, a method is often used in which oxidation is carried out by performing mixed combustion of hydrogen and oxygen and flowing water vapor, which is an oxidizing species. Furthermore, with the recent miniaturization.
前述の炉芯管22と石英ボート21とがこすれ合って出
る微少なダストが、シリコンウェハ1上に飛び散り、ウ
ニ・・上の集積回路の歩留り全低下させる事が問題とな
っており、カンチレバーと呼ばれる石英フォーク26を
使用する事も多く見られる。これは1石英ボート21を
前述の石英フォーク26の先端部に乗せたまま石英フォ
ークごと浮かせて石英炉芯管22の中央に、石英炉芯管
22と石英ボート21全接する事なく石英ボート21を
炉体中央部に置く事が出来るソフトランディング装置と
呼ばれるものであり、ダスト対策としては有効な物であ
る。The problem is that minute dust generated when the furnace core tube 22 and quartz boat 21 rub against each other scatters onto the silicon wafer 1, reducing the overall yield of integrated circuits on the silicon wafer 1. It is often seen that a so-called quartz fork 26 is used. This is done by placing the quartz boat 21 on the tip of the quartz fork 26 mentioned above, floating the quartz fork together, and placing the quartz boat 21 in the center of the quartz furnace core tube 22 without completely touching the quartz boat 21 with the quartz furnace core tube 22. This is a so-called soft landing device that can be placed in the center of the furnace body, and is an effective measure against dust.
しかしシリコンウェハ1が大口径化するにつれて、前述
のソフトランディング装置が非常に犬がかりになる事や
省エネルギーや省スペースかう考えて縦形炉も一部考慮
され始めた。簡単に言えば。However, as the diameter of the silicon wafer 1 becomes larger, the soft landing device described above becomes extremely cumbersome, and vertical furnaces have also begun to be considered in order to save energy and space. Simply put.
第6図aに示すように、従来の横形炉を縦にしただけで
ある。 横形炉用の石英ボートと異なり。As shown in FIG. 6a, the conventional horizontal furnace is simply made vertical. Unlike quartz boats for horizontal furnaces.
シリコンウェハ1が落下しないように若干傾斜をつけて
、ウェハを挾み込むような石英ボート26を使用する。A quartz boat 26 is used which is slightly inclined to prevent the silicon wafer 1 from falling and which holds the wafer therein.
この場合、横形炉の大型のソフトランディング装置と異
なり1石英ボート26を下から支える事によって1石英
炉芯管22と石英ボート26が接触する事を防げる。従
ってウェハの挿入方法としては横型炉より縦型炉の方が
、若干省スペースで作りやすい感じがある。In this case, unlike a large soft landing device for a horizontal furnace, by supporting the first quartz boat 26 from below, it is possible to prevent the first quartz furnace core tube 22 and the quartz boat 26 from coming into contact with each other. Therefore, as a method for inserting wafers, a vertical furnace is easier to manufacture than a horizontal furnace because it takes up less space.
発明が解決しようとする問題点
前述のように、大口径ウェハに対して、横形炉の大型化
と共に縦形炉の検討もなされている。しかし、基本的な
概念として、ウェハを石英ボートに多数枚積載して、熱
処理する事は共通である。Problems to be Solved by the Invention As mentioned above, in addition to increasing the size of horizontal furnaces, studies are also being conducted on vertical furnaces for large diameter wafers. However, the basic concept is that a large number of wafers are loaded onto a quartz boat and heat treated.
つまり、石英炉芯管はウェハの径より太き目の円筒形状
をしている。従って% 8インチつまり直径が20(7
)のウェハに対しては、内径が1oインチつまり約25
画の石英炉芯管もしくは炭化ケイ素製炉芯管が必要とな
る。又、大口径ウェハ全多数枚熱処理する事は、熱容量
の大きな物全出し入れする事であり、その均熱性・保温
性等技術上の問題も多い。更にウェハの大口径化に対し
て1石英炉芯管のみならず1石英ボートちるいはソフト
ランディング用石英フォーク等種々の材料に対して大型
化が要求され、製作の困難もさることながらその運搬か
ら設置・洗浄・メインテナンスに至るまで取り扱いの不
便さはつのるばかりである。もちろん他の半導体装置等
も考慮すると、カセット・トクー・カセット方式がほと
んど採用されている現状では、25枚もしくは50枚単
位のロット構成による製造が適しているようである。し
かしウェハの大口径化の進展に伴ない、従来の多数ウェ
ハによるロット構成ではなく、ウェハ一枚一枚が各1c
mツトとなり、装置間をウェハを何枚か積載したキャリ
アで運ぶのではなく、ウェハが一枚ずつ走って行くウェ
ハ管理の必要性の比率が犬きぐなる。In other words, the quartz furnace core tube has a cylindrical shape that is thicker than the diameter of the wafer. Therefore, the diameter is %8 inches or 20 (7
) for a wafer with an inner diameter of 10 inches or approximately 25
A quartz hearth tube or a silicon carbide hearth tube is required. In addition, heat-treating all large diameter wafers requires taking in and out all items with large heat capacity, and there are many technical problems such as heat uniformity and heat retention. Furthermore, as the diameter of the wafer becomes larger, not only a quartz furnace core tube but also a variety of materials such as a quartz boat or a quartz fork for soft landing are required to be made larger. From installation to cleaning to maintenance, the inconvenience of handling only increases. Of course, considering other semiconductor devices and the like, it seems appropriate to manufacture in a lot structure of 25 or 50 pieces at present, where the cassette-to-cassette method is mostly adopted. However, with the progress of larger diameter wafers, instead of the conventional lot structure consisting of many wafers, each wafer is
This increases the need for wafer management in which wafers are moved one by one, rather than being transported between devices in a carrier loaded with several wafers.
問題点を解決する為の手段
従って1周囲をカートリッジ式ヒータによる発熱体で囲
んだ直方体型熱処理炉体を使用し、更にその炉体中に、
半導体ウェハを一枚だけ、炉体と接触する事なく浮かせ
て挿入する事の出来る石英アームを付属させる事によっ
て、簡易で省スペースな熱処理を実施させる方法を採用
する。又、前述の石英アームにキャップをとりつけてお
いて。As a means to solve the problem, a rectangular parallelepiped heat treatment furnace surrounded by a heating element using a cartridge heater was used, and inside the furnace,
A simple and space-saving method of heat treatment is adopted by attaching a quartz arm that allows a single semiconductor wafer to be floated and inserted without contacting the furnace body. Also, attach the cap to the quartz arm mentioned above.
炉体にフタを行なう、あるいは石英アームにもガスが流
せるような工夫をほどこしておく。Place a lid on the furnace body, or take measures to allow gas to flow through the quartz arm.
作用 従って、本発明はウェハの大口径化に対して。action Therefore, the present invention is directed toward increasing the diameter of wafers.
電気炉にも枚葉処理方式を導入する事によって、各ウェ
ハ事の工程管理を実施する将来への方向金示すと共に1
来校葉式の利点である均熱性の良さ。By introducing a single wafer processing method to the electric furnace, we will be able to demonstrate the future direction of process control for each wafer and
Good heat uniformity is an advantage of the Kyoha style.
制菌の容易さ、保守の簡易さ、省スペース等を充分発揮
しうるものである。It can fully demonstrate the ease of sterilization, ease of maintenance, space saving, etc.
実施例
前述したように、本発明の基本型は大口径ウェハを一枚
だけ熱処理出来れば良い。従って、第1図乙に示した斜
視図の様に、シリコンウェハ1を2本の石英より成る石
英アーム2上に載せ、この石英アーム2を箱型の石英製
直方型処理炉3に挿入して、必要時間熱処理する事を特
徴とする。この処理炉3は少なくともウェハ1の直径よ
り若干太き目の幅金持ち、高さ方向にはウェハの厚みに
前記石英アームの厚みを加え、浮かせて挿入出来るスペ
ース分の厚みがあればよい。例えば8インチウェハを考
えた場合、正面から見て幅26C1n。Embodiments As mentioned above, the basic type of the present invention only needs to be able to heat treat one large-diameter wafer. Therefore, as shown in the perspective view shown in FIG. It is characterized by heat treatment for the required time. The processing furnace 3 only needs to have a width that is at least slightly thicker than the diameter of the wafer 1, and a thickness in the height direction that is equal to the thickness of the wafer plus the thickness of the quartz arm, and has enough space to allow floating insertion. For example, when considering an 8-inch wafer, the width is 26C1n when viewed from the front.
高さ3〜6備程度の大きさで良く、又その均熱長も40
(7)以上あれば充分である。すなわち、炉芯体を構成
する処理炉3の開口部の長辺はウェハ1の直径より2C
11を以上大きく、又開口部の短辺はウェハの厚みとア
ーム2の厚みを加えた長さより11以上の大きさを有す
るのが望ましい。当然、直方型処理炉3の周囲はカンタ
ル線のような材料で作製したカートリッジ式ヒーターブ
ロック4でおおわれている。The size should be about 3 to 6 in height, and the soaking length is 40
(7) or above is sufficient. That is, the long side of the opening of the processing furnace 3 constituting the furnace core is 2C smaller than the diameter of the wafer 1.
11 or more, and the short side of the opening is preferably 11 or more larger than the sum of the thickness of the wafer and the thickness of the arm 2. Naturally, the rectangular processing furnace 3 is surrounded by a cartridge type heater block 4 made of a material such as Kanthal wire.
ウェハの搬送機構としては、単純な方式はど、故障が少
なく、処理炉3への挿入・取り出しは石英棒を2本用意
して、その上にウエノS1を載せる形をとる。この場合
、ウェハヲ載せる石英アーム2に直接ウェハを置いた時
点で、ウェハとの接触面積が大きくなって、熱回復特性
が問題になれば第2図&に示すととぐ小さな突起5を石
英アーム2の一部に設ければ良い。この突起S上にウェ
ハが置かれ、最小で3点の支持を受ける事になり、この
場合だとその点における均熱特性等、はとんど問題を生
じない。更に2゛本の石英アーム2に強化枠6を設けた
り、ウェハ1が処理炉3に入った時点で処理炉の開孔部
にフタが出来るように石英アーム2にキャップ7を付属
させるのがよりよい方向と思われる。そして、これら石
英アーム2を処理炉3に接触する事なく、浮かせた状態
で挿入する為に、石英アーム2.キャップ7全持ち上げ
たり、炉芯管内に押し進めたり引き下げだりする事の出
来るリフト機構部8を設置しておく。又、このリフト機
構部を新たに動力源と連結したりする等して、挿入速度
等を決定すれば良い。The wafer transport mechanism is simple and has few failures, and is inserted into and taken out of the processing furnace 3 by preparing two quartz rods and placing the wafer S1 on them. In this case, when the wafer is placed directly on the quartz arm 2 on which the wafer is placed, the contact area with the wafer becomes large and if heat recovery characteristics become a problem, the small protrusion 5 shown in Figure 2 & is removed from the quartz arm. It may be provided in a part of 2. A wafer is placed on this protrusion S and is supported at a minimum of three points, and in this case, there is almost no problem with the thermal uniformity characteristics at those points. Furthermore, it is recommended to provide a reinforcing frame 6 to the two quartz arms 2 and attach a cap 7 to the quartz arm 2 so that the opening of the processing furnace can be covered when the wafer 1 enters the processing furnace 3. This seems like a better direction. In order to insert these quartz arms 2 in a floating state without contacting the processing furnace 3, the quartz arms 2. A lift mechanism part 8 is installed which can lift the entire cap 7, push it into the furnace core tube, and pull it down. In addition, the insertion speed and the like may be determined by newly connecting the lift mechanism to a power source.
処理炉3の一端はウェハの出入りの為に開放されている
が、他端は雰囲気ガスの導入が可能なように、第2図す
のごとぐガス導入口9が設置される。又、更に他のガス
を導入する方法として前述の石英アーム2を利用する事
も可能である。つまり2本の石英棒の一端を外部からの
ガスの導入口として兼用する事により1例えば第2図C
のように1本のアーム2人より酸素ガスを処理炉3内に
導入し、その後、もう一本のアーム2Bより水素ガスを
導入して混合し、酸化種である水蒸気を得る事も出来る
。One end of the processing furnace 3 is open for the entry and exit of wafers, and the other end is provided with a gas inlet 9, as shown in FIG. 2, so that atmospheric gas can be introduced. Furthermore, it is also possible to use the aforementioned quartz arm 2 as a method of introducing another gas. In other words, by using one end of the two quartz rods as an inlet for introducing gas from the outside, one
It is also possible to introduce oxygen gas into the processing furnace 3 from two people using one arm, and then introduce and mix hydrogen gas from the other arm 2B to obtain water vapor, which is an oxidizing species.
又、第3図、第4図には1例えばウェハ1を1枚ずつ処
理する時の挿入前後における電気炉手前の搬送機溝につ
いて示す。ウェハ1がベルト6るいはエアーによって搬
送されて、処理炉3の手前のウェハ支持体1cm上に運
ばれる(第3図a)。Further, FIGS. 3 and 4 show the carrier groove in front of the electric furnace before and after insertion when, for example, wafers 1 are processed one by one. The wafer 1 is conveyed by a belt 6 or by air and placed on a wafer support 1 cm in front of the processing furnace 3 (FIG. 3a).
その後石英アーム2が伸びて、ウェハ1の下部に挿入さ
れ、連動されたリフト機構部8によって石英アーム2が
少し持ち上げられ(第3図b)、ウェハ1が前述の突起
S上に載せられ、リフト機構部の前進運動によって、処
理炉3内に挿入されるわけでおる。After that, the quartz arm 2 is extended and inserted under the wafer 1, and the quartz arm 2 is slightly lifted by the interlocked lift mechanism 8 (FIG. 3b), and the wafer 1 is placed on the aforementioned protrusion S. It is inserted into the processing furnace 3 by the forward motion of the lift mechanism.
更に、前述のウェハ支持体1cmへのウェハ搬送には例
えば第4図乙に示すようにウェハ搬送体11とそれに連
結された支持棒12を考えて、支持棒12の他端を中心
に、ウェハを常に水平に置いた状態で円弧を描くように
ウェハ全移動させる。第4図すのごとく最も高い所(第
4図でBの位置)で静止させ、その下に搬送体11の間
隔より狭い前述の処理炉3@のウェハ支持体1cmを置
いておき、今度はその搬送体11を第4図点線のBの位
置より実線の搬送体11′ の位置まで下げる。そう
する事によって、搬送体11上のウェハは、その下に位
置していた処理炉用ウェハ支持体1cmに移し替えられ
、その後前述の石英アーム2によって処理炉3に挿入さ
れるわけである。逆に、ウェハ1を取り出す場合は1石
英アーム2によって。Furthermore, in order to transfer the wafer to the wafer support 1 cm described above, for example, as shown in FIG. Move the entire wafer in an arc while keeping it horizontal. Let it stand still at the highest point (position B in FIG. 4) as shown in FIG. The carrier 11 is lowered from the position B indicated by the dotted line in FIG. 4 to the position indicated by the solid line 11'. By doing so, the wafer on the carrier 11 is transferred to the processing furnace wafer support 1 cm located below it, and then inserted into the processing furnace 3 by the aforementioned quartz arm 2. Conversely, when taking out the wafer 1, use 1 quartz arm 2.
処理炉3より引き出されたウェハ1が支持体1cmに石
英アームを下げて後退する事により移し替えられ1次に
、下に降りていた搬送体11が支持棒12によって押し
上げられ、支持体1oより高くあげられる為、ウェハ1
は搬送体に移り、円弧を描くように、第4図Cの位置ま
で移動させられ、同様な搬送装置やベルト等によって次
工程の装置に移動する事が可能となるわけである。The wafer 1 pulled out from the processing furnace 3 is transferred by lowering the quartz arm to the support 1 cm and retreating. Next, the carrier 11 that had been lowered is pushed up by the support rod 12 and moved from the support 1o. Because it can be raised high, wafer 1
is transferred to a conveying body, and is moved in a circular arc to the position shown in FIG.
本発明は、一枚ずつのウェハ進行管理を実現する為に、
従来、バッチ処理方式であった熱処理までも枚葉式処理
にしようとするものであって、その利点は、ウェハの大
口径化に対し、大型化、大電力化する装置が非常に小型
ですみ、内容積が小さくなった為、電力も少ないという
省スペース・省エネ設計である。更に、多数のウェハを
処理すると本来の電気炉温度に回復に要する時間も長く
。In order to realize progress management of each wafer, the present invention
Heat treatment, which used to be a batch processing method, is now a single-wafer processing method, and the advantage of this is that the equipment that requires large size and high power consumption can be made very small as wafers become larger in diameter. It is a space-saving and energy-saving design that uses less electricity because the internal volume is smaller. Furthermore, when a large number of wafers are processed, it takes a long time to recover the original electric furnace temperature.
均熱長も長いものが必要であった装置が、一枚処理であ
る為、はとんどその回復特性を気にする事なく均熱性・
再現性共に非常に良好なものとなる。The equipment used to require a long soaking length, but since it processes a single sheet, it can now be heated without worrying about its recovery characteristics.
Both the reproducibility and the reproducibility are very good.
又、均熱長も高々、ウェハ長の2倍程度あれば良く広い
場所を必要としない。又、ソフトランディング装置も、
多数のウェハを処理する従来方式は装置も大型化し、又
石英炉芯管・ウェハを併せた温度回復特性も極めて悪い
。しかし2本発明では実施例のごとく、簡単で、場所を
とらない設計にする事が出来る〇
以上の様に今後の大口径化には非常に有利なものとなる
。従来と比べての量産性という欠点をどう処理するかが
問題であるが、他の工程もほとんど枚葉処理が増えてき
ている為、むしろ一枚処理すれば、直ちに次の処理にま
わされるという方式をとった場合、はとんど問題は生じ
ないと思える。Further, the soaking length only needs to be at most twice the wafer length, and a large space is not required. Also, the soft landing device
In the conventional method for processing a large number of wafers, the equipment becomes large and the temperature recovery characteristics of the quartz furnace tube and wafers are also extremely poor. However, in the second embodiment of the present invention, the design is simple and does not take up much space, which is very advantageous for future enlargement of the diameter. The problem is how to deal with the drawback of mass production compared to the conventional method, but since most other processes are also increasing in single-wafer processing, it is said that if one sheet is processed, it can be immediately transferred to the next process. If you use this method, it seems that there will be no problems.
何故なら、微細化が進むと共に高温電気炉熱処理におい
てはプロセスの低温化・短時間処理化が進んでいる。し
かし例えばX線ステッパーや電子線露光等を考えると、
従来の元一括露光に比べはるかに長い時間を必要とし微
細加工の為にかえって時間がかかっているが、電気炉処
理は、酸化膜の薄膜化が進み、たとえば1cm0人のゲ
ート酸化膜形成には900℃パイロジェニック法ではわ
ずか5分で可能となる。又、イオン注入後のアニールも
実質的には5分でも充分な場合が多々あり、現在は単に
従来の慣習で30分と長くしているに過ぎない。従って
枚葉式電気炉でも何ら量産性には問題は生じない。省ス
ペース・省エネが可能なので1枚葉処理方式のウェハ内
での均質性の利点を充分生かすべく、何段かの本発明に
よる熱処理炉をそろえれは量産性に何ら問題は生じない
。今述べたウェハ内での均質性の良さは一枚処理方式を
採用する本発明の特徴でもあり、バッチ式に比べ。This is because, as miniaturization progresses, the process temperature and short time in high-temperature electric furnace heat treatment are also progressing. However, if we consider, for example, X-ray steppers and electron beam exposure,
Although it requires much longer time than conventional original batch exposure and takes more time due to microfabrication, electric furnace processing allows for thinning of the oxide film and, for example, it takes less time to form a gate oxide film of 1 cm. With the 900°C pyrogenic method, this can be done in just 5 minutes. Further, in many cases, 5 minutes is actually sufficient for annealing after ion implantation, and at present, it is simply a conventional practice to extend the annealing to 30 minutes. Therefore, even with a single-wafer type electric furnace, there is no problem in mass production. Since it is possible to save space and energy, there will be no problem in mass production if several stages of heat treatment furnaces according to the present invention are arranged to take full advantage of the homogeneity within the wafer of the single wafer processing method. The good homogeneity within the wafer that I just mentioned is also a feature of the present invention, which uses a single-wafer processing method, compared to the batch method.
ウェハの受ける熱温度分布性が各種熱容量が少ない為に
良好であり、更に、温度制卸が容易である事により均一
性も良くなる。The heat temperature distribution received by the wafer is good because the various heat capacities are small, and further, the uniformity is also improved because temperature control is easy.
発明の効果
本発明によれば、半導体ウェハを一枚のみ2炉体と接触
することなく浮かせて挿入でき、簡易で省スペースな熱
処理を行うことが可能となる。さらに、炉の均熱長も短
くでき、ウェハ内での均質性の高い熱処理を、量産性良
く可能とすることができる。Effects of the Invention According to the present invention, only one semiconductor wafer can be inserted floatingly without contacting the two furnace bodies, making it possible to perform heat treatment in a simple and space-saving manner. Furthermore, the soaking length of the furnace can be shortened, and highly homogeneous heat treatment within the wafer can be performed with good mass productivity.
第1図a、b、cは本発明の一実施例の熱処理炉の要部
概略斜視図、側面図、正面図、第2図a。
Cは実際にウェハを積載して挿入する為の石英アームの
一例の斜視図、第2図すは炉体の斜視図。
第3図a、bは本発明の一実施例の装置における炉の手
前におけるウェハ搬送部の動作状態を示す図、第4図a
、bは同装置のウェハ搬送部の動作状態図、第5図a、
bは従来の横型熱処理炉の−1・・・・・・シリコンウ
ェハ、2・・・・・・石英アーム、3・・・・・・直方
型処理炉、4・・・・・・ヒータブロック。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
(0L)
2石英アーム
Cb)
第2図
(0−ン
(bン
CC)
第3図 (0−)
第4図
(α)
tt tZ
(b)
第5図
?1
?3
第6図
ぐ
亀
(bツ
ク2
〆
\〜Figures 1a, b, and c are schematic perspective views, side views, and front views of essential parts of a heat treatment furnace according to an embodiment of the present invention, and Figure 2a is a schematic diagram of main parts. C is a perspective view of an example of a quartz arm for actually loading and inserting wafers, and FIG. 2 is a perspective view of the furnace body. Figures 3a and 3b are diagrams showing the operating state of the wafer transport section in front of the furnace in an apparatus according to an embodiment of the present invention, and Figure 4a
, b are operational state diagrams of the wafer transfer section of the same apparatus, and Fig. 5 a,
b is a conventional horizontal heat treatment furnace -1... silicon wafer, 2... quartz arm, 3... rectangular processing furnace, 4... heater block . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (0L) 2 quartz arm Cb) Figure 2 (0-n (bn CC) Figure 3 (0-) Figure 4 (α) tt tZ (b) Figure 5 ?1 ?3 Figure 6 Turtle (btsuku2 〆\〜
Claims (5)
、前記炉芯体周囲をヒータで囲む発熱体と、半導体基体
を積載しかつ前記炉芯体に接触する事なく炉芯体中に前
記半導体基体を挿入しうるアーム体とから成る事を特徴
とする半導体ウェハの熱処理装置。(1) A rectangular heat treatment furnace core with an opening at one end, a heating element surrounding the furnace core with a heater, and a semiconductor substrate that can be loaded without touching the furnace core. 1. A heat treatment apparatus for semiconductor wafers, comprising an arm body into which the semiconductor substrate can be inserted.
2cm以上大きく又前記開口部の短辺が、前記半導体基
体の厚みと前記アーム体の厚みを加えた長さより1cm
以上の大きさを有すると共に、前記開口部と反対他端に
は処理ガスを導入しうる管がつながっている事を特徴と
する特許請求の範囲第1項に記載の半導体ウェハの熱処
理装置。(2) The long side of the opening of the furnace core is at least 2 cm larger than the diameter of the semiconductor substrate, and the short side of the opening is 1 cm larger than the sum of the thickness of the semiconductor substrate and the thickness of the arm body.
2. The heat processing apparatus for semiconductor wafers according to claim 1, which has a size larger than that and further includes a pipe connected to the other end opposite to the opening through which a processing gas can be introduced.
この細管の各端部が開口部を有すると共に、前記アーム
が炉芯体中に挿入された時に前記炉芯体開口部を覆うキ
ャップを前記アーム体に取りつけた事を特徴とする特許
請求の範囲第1項に記載の半導体ウェハの熱処理装置。(3) The arm body consists of at least two or more thin tubes,
Claims characterized in that each end of the thin tube has an opening, and a cap is attached to the arm body to cover the opening of the furnace core when the arm is inserted into the furnace core. The semiconductor wafer heat treatment apparatus according to item 1.
とする特許請求の範囲第1項に記載の半導体ウェハの熱
処理装置。(4) The semiconductor wafer heat treatment apparatus according to claim 1, further comprising a control section for controlling power of the heating element.
ビネット部を付加した事を特徴とした特許請求の範囲第
2項又は第3項記載の半導体ウェハの熱処理装置。(5) The semiconductor wafer heat treatment apparatus according to claim 2 or 3, further comprising a source cabinet section that can control the introduction of necessary gas into each thin tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9714486A JPS62252932A (en) | 1986-04-25 | 1986-04-25 | Heat-treating apparatus for semiconductor wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9714486A JPS62252932A (en) | 1986-04-25 | 1986-04-25 | Heat-treating apparatus for semiconductor wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62252932A true JPS62252932A (en) | 1987-11-04 |
Family
ID=14184375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9714486A Pending JPS62252932A (en) | 1986-04-25 | 1986-04-25 | Heat-treating apparatus for semiconductor wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62252932A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03122531U (en) * | 1990-03-27 | 1991-12-13 | ||
US6981324B2 (en) * | 2003-03-26 | 2006-01-03 | American Axle & Manufacturing, Inc. | Method of manufacturing net-shaped gears for a differential assembly |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55151330A (en) * | 1979-05-16 | 1980-11-25 | Mitsubishi Electric Corp | Wafer holder |
JPS6058608A (en) * | 1983-09-12 | 1985-04-04 | Hitachi Ltd | Heat processing furnace |
JPS60111420A (en) * | 1983-11-22 | 1985-06-17 | Nec Corp | Heat treatment furnace |
JPS618935A (en) * | 1984-06-25 | 1986-01-16 | Shinkawa Ltd | Heating device for bonding device |
-
1986
- 1986-04-25 JP JP9714486A patent/JPS62252932A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55151330A (en) * | 1979-05-16 | 1980-11-25 | Mitsubishi Electric Corp | Wafer holder |
JPS6058608A (en) * | 1983-09-12 | 1985-04-04 | Hitachi Ltd | Heat processing furnace |
JPS60111420A (en) * | 1983-11-22 | 1985-06-17 | Nec Corp | Heat treatment furnace |
JPS618935A (en) * | 1984-06-25 | 1986-01-16 | Shinkawa Ltd | Heating device for bonding device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03122531U (en) * | 1990-03-27 | 1991-12-13 | ||
US6981324B2 (en) * | 2003-03-26 | 2006-01-03 | American Axle & Manufacturing, Inc. | Method of manufacturing net-shaped gears for a differential assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11176822A (en) | Semiconductor treating equipment | |
JPS5588323A (en) | Manufacture of semiconductor device | |
JPS62252932A (en) | Heat-treating apparatus for semiconductor wafer | |
JPS62140413A (en) | Vertical type diffusion equipment | |
JP2003218040A (en) | Semiconductor manufacturing apparatus | |
JPS6341028A (en) | Forming device for oxide film | |
JP3190079B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JP2001156011A (en) | Heat treatment equipment for semiconductor wafer | |
JPS6367729A (en) | Semiconductor heat-treating apparatus | |
JP3081886B2 (en) | Film formation method | |
JPS5922114Y2 (en) | heat treatment equipment | |
JP2701847B2 (en) | Heat treatment method for semiconductor wafer | |
JPH0645294A (en) | Diffusing apparatus for impurity in semiconductor wafer | |
JPS60211913A (en) | Processing device | |
JPS6053032A (en) | Processor | |
JP3534518B2 (en) | Semiconductor heat treatment method and apparatus used therefor | |
JPS63316428A (en) | Soft landing system for heat treatment furnace of semiconductor wafer | |
JP2000012473A (en) | Heat treatment furnace | |
JPH06208964A (en) | Diffusion and oxidation processing device for silicon wafer | |
JPS6227724B2 (en) | ||
JPH01130523A (en) | Vertical furnace for heat-treating semiconductor | |
JPS6489514A (en) | Diffusion furnace for manufacturing semiconductor integrated circuit | |
JPS60140817A (en) | Manufacture of semiconductor device | |
JPS62249423A (en) | Processing apparatus | |
JPH04206515A (en) | Heat treatment device |