[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62256931A - Method for recovering ruthenium - Google Patents

Method for recovering ruthenium

Info

Publication number
JPS62256931A
JPS62256931A JP61098637A JP9863786A JPS62256931A JP S62256931 A JPS62256931 A JP S62256931A JP 61098637 A JP61098637 A JP 61098637A JP 9863786 A JP9863786 A JP 9863786A JP S62256931 A JPS62256931 A JP S62256931A
Authority
JP
Japan
Prior art keywords
oxide
base metal
ruthenium
chloride
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098637A
Other languages
Japanese (ja)
Inventor
Toru Shoji
亨 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP61098637A priority Critical patent/JPS62256931A/en
Publication of JPS62256931A publication Critical patent/JPS62256931A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To conveniently and efficiently recover Ru from a recovered material by converting the Ru and the oxide of the base metal in the recovered material into the chlorides with gaseous chlonrine while heating the material in the presence of carbon or CO, and separating the chlorides by utilizing the difference in vapor pressure. CONSTITUTION:The recovered material contg. Ru or its oxide and the oxide of the base metal is mixed with carbon powder, the mixture 1 is charged in a chloride forming vessel 4, and gaseous Cl2 is introduced from an inlet pipe 5 and the bottom of the vessel 4 through glass fiber 3 while heating the material by an electric furnace 2. Consequently, the Ru and its oxide and the oxide of the base metal are converted into the chlorides. The heating temp. is controlled to a temp. higher than the b.p. of the chloride of the base metal, or preferably to 400-1,200 deg.C. As a result, the chloride of the base material is evaporated and separated due to the difference in vapor pressure, and recovered in a collection tank 7 through a cooling pipe 6. Meanwhile, the Ru chloride is decomposed by reducing the Cl2 partial pressure to form metallic Ru, and Ru is recovered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の方法は、反応部分においてルテニウム又はルテ
ニウム酸化物および基体金属酸化物の塩素化反応と基体
金属塩化物の揮発分離とを行うことによるルテニウム回
収方法に係るものである。
Detailed Description of the Invention (Industrial Field of Application) The method of the present invention involves carrying out a chlorination reaction of ruthenium or ruthenium oxide and a base metal oxide and volatilization separation of the base metal chloride in a reaction part. This relates to a method for recovering ruthenium.

(従来例技術とその問題点) 近年酸化チタン、酸化コバルト、酸化銅、酸化すず、ア
ルミナ、シリカ等の金属酸化物基体上に、ルテニウム酸
化物被膜を設けた不活性金属電極や酸化触媒が、種々の
電気化学の分野、特に食塩電解工業における不溶性電極
として大量に使用されている。またチタン酸化物等にル
テニウムを被覆した電子材料が広く使用されている。
(Conventional technology and its problems) In recent years, inert metal electrodes and oxidation catalysts in which a ruthenium oxide film is provided on a metal oxide substrate such as titanium oxide, cobalt oxide, copper oxide, tin oxide, alumina, or silica have been developed. It is used in large quantities as an insoluble electrode in various fields of electrochemistry, especially in the salt electrolysis industry. Furthermore, electronic materials in which titanium oxide or the like is coated with ruthenium are widely used.

このような金属電極や触媒等は、かなりの長寿命を有す
るものであるが、使用中にルテニウム酸化物被膜が徐々
に消耗、低活性化し、一定の性能を維持できなくなった
際には、新しい電極等に取り替える必要がある。こうし
た使用済の金属電極等には、面相当量の高価なルテニウ
ムが被膜中に残存し、これを回収し有効利用することは
工業上重要である。
Such metal electrodes and catalysts have a fairly long lifespan, but when the ruthenium oxide coating gradually wears out and becomes less active during use and cannot maintain a certain level of performance, it is necessary to replace them with new ones. It is necessary to replace it with an electrode, etc. In such used metal electrodes, an amount of expensive ruthenium remains in the coating, and it is industrially important to recover and effectively utilize this.

従来、この種の技術に関連するものとして特開51−6
8493号には、ルテニウム又はその化合物を含む難溶
性物質の可溶化法が、特開51−68499号にはルテ
ニウム又はその化合物を含む難溶性物質を処理してルテ
ニウムを回収する方法が示されている。しかし、これら
の方法は、剥離物に対するアルカリ溶融塩処理、酸化溶
液熔解工程に複雑かつ長時間の処理を要する。また、基
体金属酸化物をも溶融するため大型の高温加熱装置が必
要となり、さらに白金族金属と基体金属を分離する際、
基体金属酸化物が析出し、効率が悪く工業的に最適なル
テニウム等の白金族金属の回収方法とは言えない。
Conventionally, Japanese Patent Application Laid-Open No. 51-6 is related to this type of technology.
No. 8493 discloses a method for solubilizing a poorly soluble substance containing ruthenium or its compounds, and JP-A-51-68499 discloses a method for recovering ruthenium by treating a sparingly soluble substance containing ruthenium or its compounds. There is. However, these methods require complicated and time-consuming processes for the alkali molten salt treatment and oxidizing solution melting steps for the peeled material. In addition, large-scale high-temperature heating equipment is required to melt the base metal oxide, and when separating the platinum group metal and base metal,
The base metal oxide is precipitated and the efficiency is poor, so it cannot be said to be an industrially optimal method for recovering platinum group metals such as ruthenium.

(発明の目的) 本発明は、叙上の事情に鑑みなされたもので、その目的
は、ルテニウム又はその酸化物と基体金属酸化物を含む
回収物から筒便かつ効率良くルテニウムを回収する方法
を提供することにある。
(Object of the Invention) The present invention was made in view of the above circumstances, and its object is to provide a method for conveniently and efficiently recovering ruthenium from a recovered material containing ruthenium or its oxide and a base metal oxide. It is about providing.

(発明の構成) 本発明は、ルテニウムを回収する方法においてルテニウ
ム又はその酸化物と基体金属酸化物を含む回収物をカー
ボン又は一酸化炭素の存在下で塩素を流しながら加熱す
ることにより基体金属酸化物及びルテニウム又はその酸
化物を塩化物に変え、蒸気圧の高い基体金属塩化物を揮
発させ分離じでルテニウムを回収することを特徴とする
(Structure of the Invention) In a method for recovering ruthenium, the present invention involves heating a recovered material containing ruthenium or its oxide and a base metal oxide in the presence of carbon or carbon monoxide while flowing chlorine to oxidize the base metal. The method is characterized by converting ruthenium and ruthenium or its oxide into chloride, volatilizing the base metal chloride with high vapor pressure, and recovering ruthenium through separation.

塩化物においては、ルテニウム又はその酸化物と基体金
属酸化物を含む回収物をカーボンまたは一酸化炭素の存
在下で塩素を流しながら加熱するとルテニウム又はその
酸化物と基体金属酸化物は塩化物に変わる。
Regarding chlorides, when the recovered material containing ruthenium or its oxide and the base metal oxide is heated in the presence of carbon or carbon monoxide while flowing chlorine, the ruthenium or its oxide and the base metal oxide will be converted to chloride. .

一般的に使用される基体金属の塩化物の蒸気圧はルテニ
ウム塩化物の蒸気圧に比べてかなり高いため、気体相と
して反応系外へ容易に運び出す事ができる。反応部分の
温度は600℃以上で行うのが好ましい。これより低い
温度では長時間を要したり、塩化物化が完全に行われな
いことがあると共に基体金属塩化物の気体相として反応
系外へ運び出すのが難しくなる。
Since the vapor pressure of the commonly used base metal chloride is considerably higher than that of ruthenium chloride, it can be easily carried out of the reaction system as a gas phase. The temperature of the reaction part is preferably 600°C or higher. If the temperature is lower than this, it may take a long time, chloridation may not be completed completely, and it becomes difficult to carry the base metal chloride out of the reaction system as a gas phase.

ここで、反応部分の温度は600°C以上が好ましいが
塩化物化反応が発熱である場合、加熱温度が600℃未
満であっても反応熱より600℃以上に保持することを
可能である。
Here, the temperature of the reaction part is preferably 600° C. or higher, but if the chloride reaction is exothermic, even if the heating temperature is lower than 600° C., it is possible to maintain the temperature at 600° C. or higher due to the reaction heat.

しかし加熱温度が400℃未満になると塩化物化反応が
起こりに<<、それによる発熱が期待できなくなる。
However, if the heating temperature is less than 400° C., a chloride reaction occurs and no heat generation can be expected.

又、1200℃よりも高い温度では塩素圧を高くしても
ルテニウムの解離反応を抑える事が困難になり、又、高
価な高温設備が必要とTるからである。
Further, at temperatures higher than 1200°C, it becomes difficult to suppress the dissociation reaction of ruthenium even if the chlorine pressure is increased, and expensive high-temperature equipment is required.

カーボン又は一酸化炭素の存在下で加熱する理由は金属
酸化物の塩化物化を促進するためである。
The reason for heating in the presence of carbon or carbon monoxide is to promote the conversion of metal oxides into chlorides.

なおルテニウム及び基体金属の代表的な塩化物の諸性質
は以下の通りである。
The properties of ruthenium and typical chlorides of the base metal are as follows.

RuCff、  蒸気圧 0.059*nl!g/ 5
86°C〃〃0.777龍Hg/ 727℃ ANCβ3 昇華点  182.7°CT r Cl 
a沸点 136.4°CZrC7!4〃331°C TaCに、    〃242℃ 34C#4    〃57.57℃ S n Cl a     #      114.1
℃以下の図面にもとすいて、実施例と従来例に付いて説
明する。
RuCff, vapor pressure 0.059*nl! g/5
86°C〃〃0.777 DragonHg/727°C ANCβ3 Sublimation point 182.7°CT r Cl
a Boiling point 136.4°C ZrC7!4 331°C TaC, 242°C 34C#4 57.57°C S n Cl a # 114.1
Examples and conventional examples will be explained with reference to the drawings below.

(実施例) 二酸化チタン3.5kg、二酸化ルテニウム200g、
カーボン粉末1.05kgを混合し、図に示す如くこの
混合物1を底部にガラス繊維3を装着した塩化物化容器
4中に入れ電気炉2により塩化物化容器4を600℃に
加熱し、塩素ガスを塩素ガス導入管5から31/min
流すことにより基体金属酸化物を塩化物にして蒸発させ
、それを冷却管6を通して液化し、基体金属塩化物捕集
タンク7に移した。
(Example) 3.5 kg of titanium dioxide, 200 g of ruthenium dioxide,
1.05 kg of carbon powder was mixed, and as shown in the figure, this mixture 1 was placed in a chloride container 4 equipped with a glass fiber 3 at the bottom, and the chloride container 4 was heated to 600°C using an electric furnace 2, and chlorine gas was added. Chlorine gas introduction pipe 5 to 31/min
By flowing, the base metal oxide was converted into chloride and evaporated, which was liquefied through a cooling pipe 6 and transferred to a base metal chloride collection tank 7.

これを9時間続けた後、残材料を取り出し、その材料を
水素により還元し比重分離によりカーボン粉末、未反応
材料を分離して金属ルテニウム粉末を回収したところ金
属ルテニウムの純度は99%以上で回収率は99%以上
であった。
After continuing this for 9 hours, the remaining material was taken out, the material was reduced with hydrogen, carbon powder and unreacted materials were separated by specific gravity separation, and metal ruthenium powder was recovered.The purity of metal ruthenium was recovered at over 99%. The rate was over 99%.

(従来例) 二酸化チタン36.7kg、二酸化ルテニウム4.0k
gを混合したものをKOHtK’N○3を用い800°
Cで融解したところKOH58,4kg、 KNO36
,1kirを要し、ルテニウムの回収率は90%であっ
た。
(Conventional example) Titanium dioxide 36.7kg, ruthenium dioxide 4.0k
800° using KOHtK'N○3
When melted at C, KOH58.4kg, KNO36
, 1 kir, and the recovery rate of ruthenium was 90%.

上記実施例及び従来例で明らかなように本発明は回収効
率が99%以上であるのに対し、従来例は90%と低い
ことがわかる。また、従来例では溶融塩処理工程、酸性
溶液溶解工程等の複雑かつ、長時間の処理を必要として
いた。
As is clear from the above embodiments and conventional examples, the recovery efficiency of the present invention is 99% or more, whereas it is as low as 90% in the conventional example. Further, the conventional method requires complicated and long-time processing such as a molten salt treatment step and an acidic solution dissolution step.

尚、上記実施例ではカーボン粉末と塩素ガスを用いたが
、塩素ガスと一酸化炭素の混合ガスを用いてもよいもの
である。
Although carbon powder and chlorine gas were used in the above embodiments, a mixed gas of chlorine gas and carbon monoxide may also be used.

(発明の効果) 以上詳述したように、本発明によれば従来例に比し、効
率良くルテニウムを金属基体酸化物から分離、回収する
ことができしかも従来のように多段の湿式処理工程を必
要としないため、経済的にしかも短時間で回収すること
ができるという効果がある。
(Effects of the Invention) As described in detail above, according to the present invention, ruthenium can be separated and recovered from a metal base oxide more efficiently than the conventional method, and it is possible to separate and recover ruthenium from the metal base oxide without requiring the multi-stage wet treatment process as in the conventional method. Since it is not necessary, it is economical and can be recovered in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のルテニウム回収方法に用いる回収装置の概
略図である。
The figure is a schematic diagram of a recovery device used in the ruthenium recovery method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)ルテニウム又はその酸化物と基体金属酸化物を含
む回収物をカーボン又は一酸化炭素の存在下で加熱しな
がら塩素ガスを流すことにより、ルテニウム又はその酸
化物ならびに基体金属酸化物を塩化物にして、それぞれ
の蒸気圧差を利用して分離することを特徴とするルテニ
ウムを回収する方法。
(1) Ruthenium or its oxide and the base metal oxide are converted to chloride by flowing chlorine gas while heating the recovered material containing ruthenium or its oxide and the base metal oxide in the presence of carbon or carbon monoxide. A method for recovering ruthenium characterized by separating the ruthenium using the vapor pressure difference between the two.
(2)加熱温度が基体金属塩化物の沸点以上であること
を特徴とする特許請求の範囲の第1項記載の方法。
(2) The method according to claim 1, wherein the heating temperature is higher than the boiling point of the base metal chloride.
(3)加熱温度が400〜1200℃であることを特徴
とする特許請求の範囲第1項又は第2項記載の方法。
(3) The method according to claim 1 or 2, wherein the heating temperature is 400 to 1200°C.
JP61098637A 1986-04-28 1986-04-28 Method for recovering ruthenium Pending JPS62256931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098637A JPS62256931A (en) 1986-04-28 1986-04-28 Method for recovering ruthenium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098637A JPS62256931A (en) 1986-04-28 1986-04-28 Method for recovering ruthenium

Publications (1)

Publication Number Publication Date
JPS62256931A true JPS62256931A (en) 1987-11-09

Family

ID=14225020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098637A Pending JPS62256931A (en) 1986-04-28 1986-04-28 Method for recovering ruthenium

Country Status (1)

Country Link
JP (1) JPS62256931A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596583B2 (en) 2000-06-08 2003-07-22 Micron Technology, Inc. Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
JP2007231365A (en) * 2006-03-01 2007-09-13 Nikko Kinzoku Kk Method for separating ruthenium and tantalum from ruthenium-tantalum alloy
US7858065B2 (en) * 2005-11-30 2010-12-28 Sumitomo Chemical Company, Ltd. Process for producing supported ruthenium and process for producing chlorine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596583B2 (en) 2000-06-08 2003-07-22 Micron Technology, Inc. Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
US6833576B2 (en) 2000-06-08 2004-12-21 Micron Technology, Inc. Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
US7253076B1 (en) * 2000-06-08 2007-08-07 Micron Technologies, Inc. Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
US7858065B2 (en) * 2005-11-30 2010-12-28 Sumitomo Chemical Company, Ltd. Process for producing supported ruthenium and process for producing chlorine
JP2007231365A (en) * 2006-03-01 2007-09-13 Nikko Kinzoku Kk Method for separating ruthenium and tantalum from ruthenium-tantalum alloy

Similar Documents

Publication Publication Date Title
CN103298742B (en) Process for preparing titanium chloride
JPH02111893A (en) Method for reducing a zirconium chloride, a hafnium chloride or a titanium chloride into a metal product
JP2011153380A (en) Method for producing titanium
JP2002540046A (en) Apparatus and method for salt melt production and use of the salt
JPS6191335A (en) Method for recovering platinum group metal
JPH0339494A (en) Method for obtaining uranium by using chloride method
JPH03500063A (en) Production method of zero-valent titanium from alkali metal fluorotitanate
JP2002129250A (en) Method for producing metallic titanium
JPS62256931A (en) Method for recovering ruthenium
JPS62256930A (en) Method for recovering ruthenium
JPS6179736A (en) Recovering method of platinum group metal
JPH01142040A (en) Method for recovering ru
JPS6296322A (en) Recovery of ru
US3977866A (en) Method for producing titanium
RU2401874C2 (en) Procedure by volkov for production of chemically active metals and device for implementation of this procedure
JPS62280337A (en) Recovering method for ir
JPH01142039A (en) Method for recovering ru
JPS63274725A (en) Method for recovering nb and ti from superconductive material
JPH01502916A (en) Method for producing and purifying Group 4B transition metal-alkali metal-fluoride salt
JPS63159223A (en) Production of high-purity zirconium tetrachloride
JPS62256932A (en) Method for recovering iridium
JPS63222020A (en) Production of chlororhodium acid
JP3253391B2 (en) Method for producing titanium oxide enriched material
JPH08217407A (en) Method for oxidation of hydrogen chloride
JPH02205635A (en) Method for recovering ru