【発明の詳細な説明】[Detailed description of the invention]
く産業上の利用分野〉
この発明は免疫検査装置に関し、ざらに詳細にいえば、
光導波路を用いて抗原、抗体の有無を検出することにJ
、り免疫検査を行なう免疫検査装置に関する。
〈従来の技術〉
従来から免疫検査を行4丁う[1的で、先導波路の表面
に、抗原または抗体を固定した領域を形成し、この領域
に血液等を接触させた状態で上記先導波路に光を導入し
、光導波路から出射される光強度を検出することにより
、抗体、まIごは抗原の有無を検知し、免疫検査をf’
r ’:xうにうにした装置が提案されでいる(特ム1
出願公表第58−501481号公報参照)。
さらに詳細に説明すると、光が光導波路を伝播する場合
には、光の強IC1分布の殆どの部分は光導波路の中に
閉じこめられた状態であるが、一部は先導波路を包囲す
るクラッド部に浸み出し、再び光導波路の内部に反射さ
れることが知られている(以下、この光成分をエバネセ
ント波と称する)。
そして、上記エバネセント波は、クラッド部の反射率の
影響を受けて光導波路内部への反ovmが変化Δる。
即ち、ト記りラッド部に相当ザる部分に抗原、または抗
体を予め固定しCおいて、この部分に血液等を接触させ
た状態で光を入射させれば、血液等が全く抗原、抗体を
有していない場合には、上聞抗原、または抗体を固定し
た部分の反射率の影旨を受番ノで出射光強度が変化し、
伯方、血液等が抗原、抗体を41している場合(免疫が
ある場合)には、抗原、おJ、び抗体が結合して全く別
の物質が上記クラッド部に存71′tJることになり、
上記強度と異なる出射光強度どなる(但し、ト;2出射
光強度は、抗原、または抗体のみの場合と比較して、抗
原抗体反応が行なわれた場合の方が小ざくなることが知
られている)。
したがって、出射光強度を検出すれば、血液等の中に抗
原、抗体が存在するか否か、叩ら、免疫があるか否かを
検査することができる。
〈発明が解決しようとする問題点〉
上記の構成の免疫検査装置にJ3いでは、当初抗原、ま
たIndustrial Application Field> This invention relates to an immunoassay device, and to be more specific,
J on detecting the presence or absence of antigens and antibodies using optical waveguides
The present invention relates to an immunoassay device for performing an immunoassay. <Conventional technology> Conventionally, immunoassays have been carried out using four methods [one method is to form a region on the surface of a leading waveguide on which an antigen or antibody is immobilized, and bring blood, etc. into contact with this region into the leading waveguide. By introducing light into the optical waveguide and detecting the light intensity emitted from the optical waveguide, the presence or absence of antibodies, or antigens, can be detected and immunoassays can be performed.
r':x A device has been proposed (special feature 1).
(See Application Publication No. 58-501481). To explain in more detail, when light propagates through an optical waveguide, most of the intense IC1 distribution of the light is confined within the optical waveguide, but some of it is in the cladding surrounding the leading waveguide. It is known that the light component leaks into the optical waveguide and is reflected back into the optical waveguide (hereinafter, this light component is referred to as an evanescent wave). The evanescent wave is influenced by the reflectance of the cladding portion, and the reflection ovm toward the inside of the optical waveguide changes by Δ. In other words, if an antigen or antibody is fixed in advance on a part corresponding to the rad part as described above, and light is incident on this part while blood etc. is in contact with it, the blood etc. will be completely absorbed by the antigen or antibody. If it does not have, the intensity of the emitted light will change depending on the reflectance of the part on which the antigen or antibody is immobilized.
If the blood, etc. contains antigens and antibodies (if there is immunity), the antigens, antibodies, and antibodies will combine and a completely different substance will exist in the cladding region. Become,
What is the intensity of the emitted light that differs from the above intensity? ). Therefore, by detecting the intensity of the emitted light, it is possible to test whether antigens and antibodies exist in blood or the like, and whether or not the patient has immunity. <Problems to be solved by the invention> The J3 immunoassay device with the above configuration initially contains antigens and
【31抗体を固定した状態ぐ1よ、クラッド部が乾燥
状(ぶて・あるが、免疫検査を行なうために血液等を接
触させると、クラッド部が湿る伯、他の物7′J(例え
ば涛、血球、白血球客)が接触して状態が変化し、さら
に温度条件し変化しく第り図13参照)、それだけで抗
原、抗体のイj無に拘りらり゛出用光強)αが変化づる
の(゛、正確な免疫検査を(jムうことが−(・さない
という問題がある。
また、クラッド部をrめ湿らせてr3 <ことが考えら
れるが、このようにJ゛るど、血液等を注入した場合に
均一化するまCの時間が長くかかり、抗原、抗体反応を
行なわせるために、通常必要とされる数分程度q月時間
以トとなるのて゛あるから、実際には、乾燥状態と湿・
〕だ状態とによる出(ト)光強度の変化を完全に(よ解
消さぜることができず、やはり正確な免疫検査を行なう
ことができないという問題がある。
ざらには、抗原、抗体の検出は、病気の発見をfiなう
場合には、甲に有無のみが検出できればにいのであるが
、病気の治療を行なう場合には、単に有無を検出するの
みでは不十分であり、抗原、抗体の存在レベルを検出す
ることが必要になる(存在レベルが減少していれば、治
療効果があり、存在レベルが増加し、或は変化していな
ければ、治療効果がないことが分かる)。
このような点を考慮すれば、上記従来の免疫検査装置は
、病気の治療を行なっている途中における使用には到底
供することがでさないという問題もある。
く発明の目的〉
この発明は上記の問題点に篤みてなされたしのであり、
測定開始のIyJ後等にJ3Ljる状態変化の影旨を受
けることなく、正確な免疫検査を(jなうことができる
免疫検査装置を提供することを目的としている。
く問題点を解決するだめの手段〉
上記の目的を達成するための、この発明の免疫検査装置
は、光導波路の表面に、抗原または抗体を固定した領域
を光の進行方向と平行に形成してあるとともに、上記領
域と平行に、抗原抗体反応をfJなわず、かつ他の性質
が上記領域と同一である領域を形成してあり、さらに)
:記両領域にJ、りそれぞれ反射されられた光を入力と
して、両光の差を検出する検出手段を有している乙ので
ある。
引し、上記内領域に向かって同時に光を照)1するしの
て・あってもよく、または上記両T4Vi、に向かって
交ηに光を照射1゛るものであってもよい。
く作用〉
以上の構成の免役検査装置であれば、抗原または抗体を
固定した領域により反射されるよ・)に光を光導波路に
入射させれば、上記抗原、または抗体のみによる減衰、
或1ま抗原抗体反応による減衰が1じさ口られた光が出
射させられ、また、抗原抗体反応を行なわず、かつ他の
性質が上記領域と同一である領域により反射されるよう
に光を光導波路に入射させれば、上記領域のみによる減
Qが生じさUられた光が出射させられる。
したがって、上記内領域によりそれぞれ反引された光を
検出手段に入力することにより、両光の差を検出1ノ、
X−の有無により免疫の有無を、差の程度により免疫・
の程度をそれぞれ検出することができる。
尚、固定されるものが抗原でも抗体でもよいのIよ、免
疫がある状態においCは、溶液中に抗原、および抗体の
両者が存在するからである。
また1、]に両領域に向かって111時に光を照射゛4
るものである場合には、直接検出手段により差の検出を
flなうことができ、またはj−2両領域に向かって交
(jに光を照射するしのである場合には、周期的に変化
づる出力を得ることができ、上記と同様にZ−のイj無
により免疫の有無を、差の程度により免疫のP?、度を
でれでれ検出することができる。
〈実施例〉
以上、実施例を示す添(4図面に五つ−C訂細に説明す
る。
第1図はこの発明の免疫検査装置の一実施例を示す概略
図であり、全体が平板状であり、両端部下面に光導入部
(4)、J3よび光導出部(5)を形成してなる光導波
路(3)の上面に、光の伝播方向と平行な2′〕の領域
[1] (2+を例説しCいる1、f−L T、I−2
光)n出品(5)から;n出される光を、光電変換器、
差動増幅器等を右づる検出部(〔))に導い(−いる1
゜1−開領域(1)は、第2図に詳細を概略的に示!1
゛ように、光導波路(:3)の上面に抗体(力を固定し
てなる領域であり、抗1ia (81を含・む溶液が接
触した場合には、抗原抗体反応を行なう。
さした、」−開領域(2)は、先ず抗体(′7)を固定
した後、紫外線照射をtT ’、’につ−(抗体(力の
竹′Cτ(抗1j;(抗体反応をfiなう性質)庖除人
しでなる領域であり、抗原b″L体反応を行なわない他
は、上記領域(1)と同一の性質を有している。
一1記の構成の免疫検査装置の?)t f’r ss次
のとおりである。
光導入部(4)から、Iiトー強度の光を導入し、ぞれ
ぞれ領域f1) (2)により所定回数反射させて光導
出部(5)から検出部(6)に導くことにより、免疫検
査をf−jな′うことができる。
さらに詳細に説明すると、血液等の溶液をJ開領域Fi
+ <21に全く接触させていない状態、或略よ血液等
の溶液中の抗原、抗体が全く存在しない(免疫がない)
状態であれば、両光の、領域[1) (21による減衰
量は同一であり、両川射光の強度は同一となるので、免
疫がないと判定することができる。
ま1J、血液等の溶液中に抗原、抗体が存在する場合に
は、上記領域(1)において抗原抗体反応が行なわれ、
抗原抗体反応にJ:り抗体(刀のみとは全く異なる物質
が生成されるので、領域(i)により反射させられた光
の雀亀と、抗原抗体反応を全く行なわない上記Grit
iffi(2)により反射さVられた光の強度とが相違
する状態となる。即ち、上記領域(1)により反0’l
させられた光の強1uEbは、Eb=EO(1−(K+
W+T))であり、上2領vJ、(2)により反射さI
られた先の強度[aは、Ea=EO(1−<W+T))
であるから(但し、[0は入射光強!印であり、Kは抗
原抗体反応に起因する減資割合であり、Wは濡れ等に起
因する減衰91合であり、Tμ温度変化に起因する減衰
割合である。)、両者の差を求めると、[E a−E
b=E OKとなり、抗原抗体反応に起因する光強度変
化分のみを検出することができる。
したがって、ト記光強度変化分の有無により免疫の有無
を検出することができ、光強度変化分の程度により免疫
の程度を検出することができることになる。
第3図は検出部(6)の一実施例を示1電気回路図であ
り、上記両川射光を受光して電気信号に変換するフォト
ダイオード(11)(12)と、−]二間各フJ)へダ
イオード(it)(12)からの出力信号を増幅する増
幅器<13)(14)と、1,2両増幅器(13)(1
4)からの出力信号を入力として差信号を出力する差動
増幅器(15)とから構成されている。
したがって、上記領域(1)により反(ト)させられた
光(抗原抗体反応に起因する減衰が!1:じさせられる
光)をフォトダイオード(11)により受光して電気1
9号に変換し、増幅器(13)により所定レベルにまで
増幅することができるととしに、上記領1iffi (
2)により反射させられた光(抗原抗体反応に起因Jる
減衰が全く生じさせられない光)を7月トダイA−ド(
12)により受光して電気信号に変換し、増幅器(14
)ににり所定レベルにまで増幅4ることがでさる。そし
て、上記両増幅信号を差動増幅器(15)に供給りるこ
とにより、抗原抗体反応に起因する減貞徹に相当する信
号のみを17ることが(゛きる。
尚、この実施例を使用ζる場合には、例えば、第4図に
示すように、同一の光源(16)からの出力光をハーフ
ミラ−(17)により2分し、一方の光を他方の光と平
行になるようにミラー(18)にJ、り反射させ、この
状態で両光を、それぞれ領1ii1i (11F2+に
より反射されるよう先導波路(3)に尋人することが、
両導入光の強度を同一に−することがて・きて好ましい
。
上記の実施例により得られた導出光強度i It、温度
変化に拘わらず抗原量、即ら、抗原抗体反応量に対応し
て一義的に定まる(第55図△参照)のであるから、温
度条件が変化しても(特に免疫検査遂Yj途中にJjけ
る温度変化が発生しても)、同一の特性線に基いて抗原
抗体反応量、すなわら、免疫の程度を筒中に検出するこ
とができる。
。した、狛に特セ1線[J、示していムいが、社;れ、
他の物質秀による影響を5受けることが<’K <、J
’、 Qjどji+様に免疫の程度を曲中1−検出する
ことが(’ Qる。。
第6図は他の実施例f tj< ’l電気回路図゛(′
あり、第7図1ま照射光光路を切付える1台装置6示・
J概略図である。
この実施例にJjい一″Cは、光源(21)からの出力
光を、平面ミラー、或は多面体ミラー等からなるミラー
(22)を回転さ14ることにより、順次1.”i L
、:逆り向に反射さ?!(第7図中実線、(13五〇破
線参照)、−1記実線ぐ示1光、おJ、び破線τ・小4
光6−(れぞれミラー(23a)(23b)にJ、り艮
射さ11で、でれぐれ領域(11(21で反射されるよ
)に先導波路(3)に導入4ることがでさる。
そしく、先導波路(:3)から導出された各光1よ、イ
れぞれミラー(24a)(24b)により反射さVられ
た後、上記ミラー(22)と同111J I、 T回転
(るミラー(25)i、’Tよりフ第1・ダイオード(
2G)に照射される。。
」−記ノ第1・ダイA・−ド(26)により変換された
電気信号は増幅器(27)により増幅さねlこ後、−】
ンデン128)により直流成分が除去されで、増幅器(
29)による増幅がt)なわれ、その後、ダイオード(
30)により整流され、]ンデン+j131)により平
滑化されて、外部に検出信号とし”l(’ )5!出さ
れる。
即ち、図示しない駆vJ源により上記ミラー(22)(
25)を回転駆動リ−れば、領域(1)により反射され
た光、および領域(2により反射された光が交互にフォ
トダイオード(26)に照射されるので、増幅器(27
)により増幅されることにより、第8図Δに承すJ、う
に、所定の自流伝号成分が重畳された正弦波信号を11
1にとができる。その後、コンデンサ(28)によりi
[!流成分が除去され、増幅器(29)により増幅され
ることにより、第8図Bに示寸ように、直流信号成分が
除去された正弦波信号をyノ、次いで、ダイオード(3
0)ににる整流、およびコンデンサ(31)による平滑
が<)なわれることにより、抗原抗体反応に起因する、
両導出光の強匪差に相当する直流信号を得ることができ
る。
したがって、この直流信号が零か否かにより抗原抗体反
応の右魚、即ち、免疫のイj無を検出iiることができ
、ざらに直流信号のレベルに基い゛(抗原抗体反応のI
a、IIIら、免疫の程度を検出シることができる。
尚、この実施例の場合には、光源(21)、フ41−・
ダイオード(2G)、増幅器(27N29)、〕ンj゛
ンリ(28)(31)、およびダイオード(30)が両
光に対して共通に使用されるのぐあるから、各県r等の
温庶条fl苦に起因りるゆ動をし完全に除去し!、:状
態での直流信号を冑ることがT:きることになり、検出
粘1αを向、しさせることがぐさる。
第9図は照射光光路を1.IJ Hえるり凸装置の他の
実施例を示す概略図であり、十配第7図の実施例と異な
る点は、図示しない駆動源にJ、り回転駆動されるミラ
ー(31)の所定位置に、複数f17+1の聞[−1(
32)を形成し、開口(32)のサイズを、開口同上の
間のミラ一部分の1ナイズとhト・とし/、= I:i
、イb上び、1m1J(32)を通った光が直接領域(
1)により反a1されるように先導波路(3)に導入す
るとと(−ンに、ミラー(31)により反射された光が
、ミラー(33)<34)にJ、り反射されて、領域(
ZにJ、り反04されるように光導波路(3)に導入す
るようにした点のみである。
したが・)て、この実施例の場合には、正弦波信シ]が
得られる代わりに、第10図△に示すにうに、矩形波信
号が得られることになるが、上記実施例とIii]様に
i流成分の除去勤fl(第10図13参照)、および整
流、平滑0作を行なうことにより、抗原抗体反応に起因
する両導出光の強1立差に相当する直流信号を11?る
ことができる1゜
したがって、この直流信号が行か否かにより抗原抗体反
応のi無、即Jう、免疫の有無を検出することができ、
さらにめ原信号のレベルに阜い一゛C抗原抗体反応のが
、即ち、免疫の程度を検出Jることができる。
第11図はさらに他の実施例を示′1J′概略図であり
、レーザ光源から出射されるレーザ光をハーフミラ−(
41)に導くことにJ、す、1対のレーザ光を形成し、
各レーザ光をミラー(42)(43)により反射させる
ことにより、それぞれ領域flH2)で反射されるよう
に光導波路(3)に導入し、光導波路(3)からの出射
レー音ア光を、ミラー(44)(45)にJ、リハー−
ノミラー(46)に導いて!jに二「渉さけ、干渉光を
フォトダイオード(47)に照射することにより、干渉
光に対し6りる光信号をtl、増幅器(48)により増
幅1jることにJ、す、検出信号を取出寸ようにしてい
る。。
この実施例の場合には、領域(1+ ′C:反射された
し+ +/’光)よ、l原抗体反応tAに依存して位相
が変化覆るごとになるのであるから、干渉光強度も位相
Z7に応じて変化するので、フォトダイオード(47)
からの光(i’: j’3も位相X−に応じて変化しく
第12図参照)、この光信号を増幅することにより、抗
原抗体反応量を検出することができる。即ら、両光の位
相差に継いて抗原抗体反応量を検出することができる。
尚、この発明は上記の実施例に限定されるものではなく
、例えば、上記領bIAfl)に抗体(71を固定する
代わりに抗原(8)を固定することが可能である(この
場合には、血液中等において存在する抗体の吊が抗原の
量の約100倍程度であるから、悪疫を向上させること
ができる)他、上記領域(2)を、紫外線照射により形
成する代わりに^温加熱により形成することが可能であ
り、その他、この発明の要旨を変更しない範囲内におい
て種々の設み1変史をtA寸ごとが司1走である。
〈発明の効果〉
以上のようにこの発明は抗原抗体反応を行なう領域と、
抗原抗体反応を行なわない他は上記領域と同一の性質を
右する領域とにより反射させらるように先導波路に光を
導入し、両導出光に基いて差を得ることにより免疫検査
をfjなうようにしているので、濡れ、他の物質、温度
変化等の影響を受IJることなく、正確な免疫検査をf
jなうことができるという特有の効果を奏する。
また、内領域に向かって同時に光を照!8′1′るムの
である場合には、甲に差を得ることにより免疫検査を行
なうことができ、検出手段を筒素化することができると
いう利点を右し、さらに、内領域に向か〕で交りに光を
照(ト)するものである場合には、光源、J3よび検出
手段を共用することができ、抗原、および検出手段の、
温度等に起因する変動の影響を完全に拮除し’CiE確
な免疫検査をtjなうことができるとい・)利点を右す
る。[31 When the antibody is immobilized, the cladding part is dry. For example, when blood cells (blood cells, white blood cells) come in contact with each other, their state changes, and further changes occur due to temperature conditions (see Figure 13), which alone makes it possible to determine the presence of antigens and antibodies (light intensity) α There is a problem in that it is not possible to conduct an accurate immunological test because of changes in the However, when blood, etc. is injected, it takes a long time to homogenize, and it may take longer than the several minutes normally required to cause antigen and antibody reactions. , in fact, dry conditions and wet conditions
However, there is a problem in that it is not possible to completely eliminate changes in the intensity of emitted light due to different conditions, and it is not possible to conduct accurate immunological tests. When detecting a disease, it is good to be able to detect only the presence or absence of antigens, but when treating a disease, it is insufficient to simply detect the presence or absence of antigens, It will be necessary to detect the level of antibody present (a decrease in the level present indicates a therapeutic effect; an increase or no change in the level present indicates no therapeutic effect). Taking these points into consideration, there is a problem in that the conventional immunoassay device described above cannot be used during the treatment of a disease. This was done with great consideration to the problems of
The purpose of the present invention is to provide an immunoassay device that can perform accurate immunoassays without being affected by state changes such as after the start of measurement. Means> In order to achieve the above object, the immunoassay device of the present invention has a region on which an antigen or an antibody is immobilized on the surface of an optical waveguide, which is formed in parallel to the direction of propagation of light, and which In parallel, a region is formed that does not cause an antigen-antibody reaction and has other properties that are the same as the above region, and further)
2. A detecting means is provided for inputting the light reflected by both the recording areas and detecting the difference between the two lights. The light may be irradiated alternately toward both T4Vi, or the light may be irradiated alternately toward both T4Vi. Effects> With the immunoassay device with the above configuration, if light is made incident on the optical waveguide so that it is reflected by the area on which the antigen or antibody is immobilized, the attenuation due to the antigen or antibody alone will be reduced.
The light is guided so that the attenuation caused by the antigen-antibody reaction is slightly reduced, and the light is reflected by a region that does not undergo the antigen-antibody reaction and has other properties that are the same as the region described above. When the light is made incident on the wave path, the light is caused to have a reduced Q due only to the above-mentioned region and is emitted. Therefore, by inputting the light repulsed by the inner area to the detection means, the difference between the two lights can be detected.
Immunity is determined by the presence or absence of X-, and immunity is determined by the degree of difference.
It is possible to detect the degree of each. It should be noted that what is immobilized may be an antigen or an antibody (I). In a state of immunity (C), both the antigen and the antibody are present in the solution. Also, 1,] irradiate light at 111 o'clock toward both areas゛4
If the difference is detected by direct detection means, the difference can be detected by direct detection means, or by intersecting towards both regions j-2 (if the light is irradiated on j, then the difference can be detected periodically). It is possible to obtain a variable output, and similarly to the above, the presence or absence of immunity can be detected based on the presence or absence of Z-, and the P? and degree of immunity can be detected based on the degree of difference. An example is shown in the appendix (4 drawings and 5 C). On the upper surface of the optical waveguide (3) formed with the light introducing part (4), J3 and the light leading part (5), a region [1] (2' is parallel to the light propagation direction) (2+ is taken as an example). C1, f-L T, I-2
light) n From (5); n the emitted light is converted into a photoelectric converter,
Lead the differential amplifier etc. to the detection section ([)) on the right (-1
゜1-Open area (1) is schematically shown in detail in Figure 2! 1
This is a region formed by fixing the antibody (force) on the upper surface of the optical waveguide (3), and when it comes into contact with a solution containing anti-1ia (81), an antigen-antibody reaction occurs. ''-open region (2) is first immobilized with antibody ('7), and then irradiated with ultraviolet rays at tT','-(antibody (powerful bamboo'Cτ(anti-1j); (property that makes the antibody reaction fi) ) This is a region formed by human beings, and has the same properties as region (1) above, except that it does not perform an antigen b''L-body reaction. t f'r ssThe light having an intensity of Ii is introduced from the light introduction part (4), is reflected a predetermined number of times by each area f1) (2), and then sent to the light output part (5). By guiding the solution such as blood to the detection part (6), it is possible to perform an immunological test.
+<21 A state in which there is no contact at all, or there are no antigens or antibodies in solutions such as blood (no immunity)
In this case, the amount of attenuation due to area [1) (21) of both lights is the same, and the intensity of the light emitted by both rivers is the same, so it can be determined that there is no immunity. If an antigen or antibody is present in the area, an antigen-antibody reaction takes place in the above region (1),
Antibody (A substance completely different from the sword is generated, so the light reflected by area (i) and the above Grit, which does not perform any antigen-antibody reaction.
The intensity of the light reflected by iffi(2) is different from that of the light reflected by iffi(2). That is, due to the above region (1), anti-0'l
The intensity 1uEb of the emitted light is Eb=EO(1-(K+
W + T)), reflected by the upper 2nd region vJ, (2) I
The strength of the tip [a is Ea=EO (1-<W+T)]
(However, [0 is the incident light intensity! mark, K is the reduction rate due to antigen-antibody reaction, W is the attenuation due to wetting, etc., and Tμ is the attenuation due to temperature change. ), and finding the difference between the two, we get [E a-E
b=E OK, and only the change in light intensity caused by the antigen-antibody reaction can be detected. Therefore, the presence or absence of immunity can be detected based on the presence or absence of the light intensity change, and the degree of immunity can be detected based on the degree of light intensity change. FIG. 3 is an electrical circuit diagram showing an embodiment of the detection unit (6), which includes photodiodes (11) and (12) that receive the above-mentioned light emitted from both sides and convert it into an electric signal, and Amplifiers <13) (14) that amplify the output signal from the diode (it) (12) to J), and both amplifiers (13) (14)
4), and a differential amplifier (15) that receives the output signal from 4) and outputs a difference signal. Therefore, the photodiode (11) receives the light reflected by the region (1) (the light that is attenuated due to the antigen-antibody reaction) and generates an electric current.
9 and can be amplified to a predetermined level by the amplifier (13), the above region 1iffi (
2) The light reflected by (light that does not undergo any attenuation due to antigen-antibody reactions) is
12) receives the light, converts it into an electrical signal, and sends it to an amplifier (14).
) can be amplified to a predetermined level. By supplying both of the above amplified signals to the differential amplifier (15), it is possible to extract only the signal (17) corresponding to the reduced signal caused by the antigen-antibody reaction. For example, as shown in Figure 4, the output light from the same light source (16) is divided into two by a half mirror (17), and one light is made parallel to the other light. In this state, both beams are reflected by the mirror (18) and sent to the leading waveguide (3) so that they are reflected by the respective regions 1ii1i (11F2+).
It is preferable to make the intensities of both introduced lights the same. Since the derived light intensity i It obtained in the above example is uniquely determined in correspondence to the amount of antigen, that is, the amount of antigen-antibody reaction, regardless of temperature changes (see FIG. 55 △), the temperature conditions Even if the temperature changes (particularly even if a temperature change occurs during the immunoassay), the amount of antigen-antibody reaction, that is, the degree of immunity, can be detected in the tube based on the same characteristic line. can. . I did, but the special 1st line [J, I can't show it, but the company;
Being influenced by other material strengths is <'K <, J
', It is possible to detect the degree of immunity in the same way as (' Q. Figure 6 shows an electric circuit diagram of another embodiment f tj <'l)
Yes, Fig. 7 shows one device 6 that can cut the irradiation light optical path.
J schematic diagram. In this embodiment, output light from a light source (21) is sequentially converted into 1."i L by rotating a mirror (22) made of a plane mirror, a polyhedral mirror, etc.
, :Reflected in the opposite direction? ! (Figure 7 solid line, (see 1350 broken line), -1 solid line 1 light, O J, and broken line τ, small 4
Light 6- (J, reflected by mirrors (23a) and (23b), respectively) can be introduced into the leading waveguide (3) in the stray region (11 (reflected by 21)) at 11. Then, each light 1 derived from the leading waveguide (3) is reflected by the mirrors (24a) and (24b), respectively, and then reflected by the mirror (22) and the same 111J I, T rotation (mirror (25) i, 'T from the first diode (
2G). . - After the electrical signal converted by the first die A-de (26) is amplified by the amplifier (27), -]
The DC component is removed by the amplifier (128), and the amplifier (
29) is amplified by t), and then the diode (
30), smoothed by 131), and output as a detection signal to the outside. That is, the mirror (22) is driven by a drive source (not shown).
When the photodiode (25) is rotationally driven, the light reflected by the area (1) and the light reflected by the area (2) are alternately irradiated onto the photodiode (26).
), the sine wave signal on which a predetermined free-current transmission signal component is superimposed, as shown in FIG.
1 can be broken. After that, the capacitor (28)
[! By removing the current component and amplifying it by the amplifier (29), the sine wave signal from which the DC signal component has been removed is passed through the diode (3), as shown in FIG. 8B.
0) and smoothing by the capacitor (31), resulting in an antigen-antibody reaction.
It is possible to obtain a DC signal corresponding to the strong difference between the two derived lights. Therefore, depending on whether or not this DC signal is zero, it is possible to detect the presence or absence of the antigen-antibody reaction, that is, the absence of immunity, and roughly based on the level of the DC signal (I
a, III, etc., the degree of immunity can be detected. In addition, in the case of this embodiment, the light source (21), the frame 41-.
Since the diode (2G), amplifier (27N29), amplifier (28) (31), and diode (30) are commonly used for both types of light, it is possible to Completely remove any vibrations caused by stress! , : It is possible to remove the DC signal in the T: state, and it is possible to direct the detected viscosity 1α. Figure 9 shows the optical path of the irradiation light as 1. This is a schematic diagram showing another embodiment of the IJH convex device, and the difference from the embodiment shown in FIG. , the number of f17+1 [-1(
32), and the size of the aperture (32) is set to 1 size of the mirror part between the apertures above and ht/, = I:i
, i b rises and the light passing through 1 m 1 J (32) directly reaches the area (
1), the light reflected by the mirror (31) is reflected by the mirror (33)<34), and the area (
The only difference is that it is introduced into the optical waveguide (3) so that it is curved 04 to Z. Therefore, in this embodiment, instead of obtaining a sine wave signal, a rectangular wave signal is obtained as shown in FIG. ] By removing the i current component fl (see Figure 10, 13), rectifying it, and smoothing it, the DC signal corresponding to the intensity difference of 1 level between the two emitted lights caused by the antigen-antibody reaction can be reduced to 11 ? Therefore, depending on whether or not this DC signal is present, it is possible to detect the presence or absence of an antigen-antibody reaction, or the presence or absence of immunity.
Furthermore, the level of the antigen-antibody reaction, ie, the degree of immunity, can be detected as the level of the target signal increases. FIG. 11 is a schematic diagram '1J' showing still another embodiment, in which the laser beam emitted from the laser light source is reflected by a half mirror (
41) Form a pair of laser beams to guide the
By reflecting each laser beam by mirrors (42) and (43), it is introduced into the optical waveguide (3) so as to be reflected by the area flH2), and the laser beams emitted from the optical waveguide (3) are J, rehearsal for Miller (44) (45)
Lead me to Nomirah (46)! By irradiating the photodiode (47) with the interference light, the optical signal generated by the interference light is amplified by the amplifier (48), and the detection signal is amplified by the amplifier (48). In this example, the phase changes depending on the original antibody reaction tA in the area (1+'C: reflected + +/' light). Therefore, since the interference light intensity also changes according to the phase Z7, the photodiode (47)
(i': j'3 also changes depending on the phase X-, see FIG. 12), and by amplifying this optical signal, the amount of antigen-antibody reaction can be detected. That is, the amount of antigen-antibody reaction can be detected based on the phase difference between the two lights. It should be noted that the present invention is not limited to the above embodiments, and for example, instead of immobilizing the antibody (71) to the region bIAfl, it is possible to immobilize the antigen (8) (in this case, In addition, the above region (2) can be formed by heating instead of by ultraviolet irradiation. In addition, various configurations and changes can be made without changing the gist of the invention. <Effects of the Invention> As described above, this invention A region that performs an antibody reaction,
Introducing light into the leading waveguide so that it is reflected by a region that has the same properties as the above region, except that an antigen-antibody reaction is not performed, and obtaining a difference based on the two emitted lights, allows immunoassays to be performed like fj. This allows accurate immunological tests to be performed without being affected by wetness, other substances, temperature changes, etc.
It has the unique effect of being able to do the following. Also, shine light towards the inner realm at the same time! In the case of 8'1' lumen, it is possible to carry out an immunological test by obtaining a difference in the instep, and there is an advantage that the detection means can be made into a cylinder. ), the light source, J3 and detection means can be shared, and the antigen and the detection means can be used in common.
The advantage is that it can completely eliminate the influence of fluctuations caused by temperature, etc., and perform accurate immunological tests.
【図面の簡単な説明】[Brief explanation of drawings]
第1図はこの発明の免疫検査装置の一実施例を示1−概
略図、
第2図は要部概略縦断面図、
第3図は検出部の一実施例を示?l電気回路図、第4図
は光導入部を示す概略図、
第5図は導出光強度差と抗原抗体反応11とのIll係
を示す図、
第6図は他の実施例を示寸電気回路図、第7図は照射光
光路を切替える切開装置を示1概略図、
第8図I、L電気回路図の各部の信g波形を示す図、第
9図は照射光光路を1.7J行える切替装量の伯の実施
例を示す概略図、
第10図は各部の信号波形を丞す図、
第11図はさらに他の実施例を示(概略図、第12図は
フォトダイオードの光信号と抗原抗体反応量との関係を
示す図。
(1)・・・抗原抗体反応を行ない(!)る領域、(2
)・・・抗1jイ抗体反応を行くiい得ない領域、(3
)・・・光導波路、(6)・・・検出部将9出願人
ダイキンコニ業株式会2i:゛)
第3図
第4図
ヨ々永網
9 素
゛″1Fig. 1 shows an embodiment of the immunoassay device of the present invention. Fig. 2 is a schematic vertical sectional view of the main part. Fig. 3 shows an embodiment of the detection section. Figure 4 is a schematic diagram showing the light introduction part; Figure 5 is a diagram showing the relationship between the difference in the intensity of the derived light and the antigen-antibody reaction 11; Figure 6 is an electrical diagram showing another example. The circuit diagram, Fig. 7 shows the incision device that switches the irradiation light optical path, 1 schematic diagram, Fig. 8 shows the signal g waveform of each part of the I and L electric circuit diagram, and Fig. 9 shows the irradiation light optical path at 1.7J. Fig. 10 is a diagram showing the signal waveforms of each part; Fig. 11 is a diagram showing still another embodiment (schematic diagram; A diagram showing the relationship between the signal and the amount of antigen-antibody reaction. (1) ...A region where antigen-antibody reaction occurs (!), (2)
)...Region where anti-1j antibody reaction cannot occur, (3
)...Optical waveguide, (6)...Detection section general 9 Applicant
Daikin Konigyo Co., Ltd. 2i:゛) Fig. 3 Fig. 4 Yoyo Nagaami 9 So゛''1