JPS62242710A - Combustion device - Google Patents
Combustion deviceInfo
- Publication number
- JPS62242710A JPS62242710A JP8733186A JP8733186A JPS62242710A JP S62242710 A JPS62242710 A JP S62242710A JP 8733186 A JP8733186 A JP 8733186A JP 8733186 A JP8733186 A JP 8733186A JP S62242710 A JPS62242710 A JP S62242710A
- Authority
- JP
- Japan
- Prior art keywords
- flame
- radiator
- radiator body
- exhaust gas
- gas outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 43
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 16
- 239000003054 catalyst Substances 0.000 claims abstract description 15
- 230000003647 oxidation Effects 0.000 claims abstract description 13
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 8
- 239000000446 fuel Substances 0.000 claims description 7
- 239000012780 transparent material Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 35
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 32
- 230000005855 radiation Effects 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000011521 glass Substances 0.000 abstract description 3
- 229910052697 platinum Inorganic materials 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 6
- 230000003247 decreasing effect Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Combustion Of Fluid Fuel (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は暖房、加熱、乾燥等に利用される放射型の燃焼
装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a radiant combustion device used for space heating, heating, drying, etc.
従来の技術
一般に燃焼室内に放射体を備え、燃焼熱の一部を輻射放
熱させて加熱、暖房に供するいわゆる放射型の燃焼装置
は、ガスまたは石油燃焼器として広く用いられている。2. Description of the Related Art In general, so-called radiant combustion devices, which include a radiator in a combustion chamber and radiate a portion of the combustion heat for heating and space heating, are widely used as gas or oil combustors.
そして、従来は例えば特開昭59−183205号公報
に示されるように、火炎が形成される炎口部から直接放
熱させるもの、であったり、あるいは燃焼反応完結後の
高温排ガスで放射体を加熱させる方法が採られていた。Conventionally, as shown in Japanese Unexamined Patent Publication No. 59-183205, heat is radiated directly from the flame opening where the flame is formed, or the radiator is heated with high-temperature exhaust gas after the combustion reaction is completed. A method was adopted to do so.
発明が解決しようとする問題点
上記従来の方式では、燃焼熱の20〜30%を輻射熱と
して利用できるものの、燃焼に供される空気中の窒素お
よび酸素が比較的長時間高温に曝され、多量の窒素酸化
物が発生するという欠点があった。すなわち前記第1例
のものでは、炎口部で燃焼熱の一部は放熱されるものの
、最高温度となる火炎先端付近は既に炎口部から離れて
おり、充分な冷却効果は得られない。このまま高温の排
ガスは排気口まで流れ、その間に生成される窒・木酸化
物は数十ppmから著しくは数百ppmにも達する。ま
た第2例の場合においても同様に、燃焼排ガス流路に放
射体を配設する場合、燃焼反応が完全に終了した後の排
ガスを放射体と接触させなければ不完全燃焼による臭気
や一酸化炭素の発生が伴うために、充分火炎と放射体と
は距離を保たなければならず、したがってその間に排ガ
ス中に多量の窒素酸化物を発生させることになる。Problems to be Solved by the Invention In the conventional method described above, 20 to 30% of the combustion heat can be used as radiant heat, but nitrogen and oxygen in the air used for combustion are exposed to high temperatures for a relatively long period of time, and a large amount The disadvantage was that nitrogen oxides were generated. That is, in the first example, although part of the combustion heat is radiated at the flame mouth, the vicinity of the flame tip where the temperature is highest is already far from the flame mouth, and a sufficient cooling effect cannot be obtained. The high-temperature exhaust gas continues to flow to the exhaust port, and the amount of nitrogen and wood oxides produced during this period reaches tens of ppm to even hundreds of ppm. Similarly, in the case of the second example, when a radiator is installed in the flue gas flow path, if the exhaust gas is not brought into contact with the radiator after the combustion reaction has completely completed, odor and monoxide will be generated due to incomplete combustion. Since carbon is generated, the flame and the radiator must be kept at a sufficient distance, resulting in the generation of a large amount of nitrogen oxides in the exhaust gas during this time.
また、一般に酸素と窒素を含む混合気中における一酸化
窒素の生成速度は
d(No)/d會ミXIC)”eXp(−135000
7’ELT lN2)[:02]いと表わされる(Gl
ick、at 、al 、 ;I 、Chem、Ph
ysics 。In general, the production rate of nitric oxide in a mixture containing oxygen and nitrogen is d(No)/d(XIC)"eXp(-135000
7'ELT lN2) [:02] (Gl
ick, at, al, ;I, Chem, Ph
ysics.
27(4)、850−857.1957)が、例えば空
気比1:4で灯油燃焼を行なわせた場合、上式から雰囲
。27(4), 850-857.1957), for example, when kerosene combustion is performed at an air ratio of 1:4, the atmosphere is calculated from the above equation.
気温度16oO℃に1秒間曝しただけで約15 ppm
のNOが発生すると計算される。これを1000°Cに
すればNoの発生量は0.01 ppm以下になり、環
境への影響はほとんど無くすることができる。Approximately 15 ppm when exposed to an air temperature of 16oO℃ for just 1 second
It is calculated that NO occurs. If this temperature is set to 1000°C, the amount of No generated will be 0.01 ppm or less, and the impact on the environment can be almost eliminated.
本発明は上記従来の欠点を解消し、窒素酸化物の発生を
抑え、かつ排ガス中に一酸化炭素や臭気物質等を排出し
ない放射型の燃焼装置を提供するものである。The present invention solves the above conventional drawbacks, and provides a radiant combustion device that suppresses the generation of nitrogen oxides and does not emit carbon monoxide, odor substances, etc. into exhaust gas.
問題点を解決するための手段
上記従来の問題点を解決するために本発明で用いる技術
的手段は、火炎が形成される炎口部と排ガスが排出され
る排ガス出口との間の火炎もしくは排ガスの流路内に、
この流路と交錯し、かつ火炎の近傍なる位置に、上流側
の面を熱線透過性材料で構成された燃焼室壁に対向させ
た放射体を配設すると共に、この放射体下流には酸化触
媒層を備えるものである。Means for Solving the Problems The technical means used in the present invention to solve the above conventional problems is to reduce the flame or exhaust gas between the flame mouth where the flame is formed and the exhaust gas outlet where the exhaust gas is discharged. In the flow path of
A radiator whose upstream surface faces the combustion chamber wall made of a heat ray transparent material is disposed at a position intersecting with this flow path and near the flame, and the downstream side of this radiator is oxidized. It is equipped with a catalyst layer.
作 用
上記手段により、放射体で燃焼室内の火炎および排ガス
の著しい高温化を防止し、窒素酸化物の発生を抑制する
と共に、放射効率の高い燃焼装置を提供し、併せてその
下流に設けられた酸化触媒層によって一酸化炭素や臭気
やススの原因である未燃焼物質を完全酸化除去し得るも
のである。Effect: With the above means, the radiator prevents the flame and exhaust gas in the combustion chamber from becoming extremely hot, suppresses the generation of nitrogen oxides, provides a combustion device with high radiation efficiency, and also provides a combustion device with high radiation efficiency. The oxidation catalyst layer can completely oxidize and remove carbon monoxide and unburned substances that cause odor and soot.
実施例
以下本発明の一実施例について、添付図面に基づいて説
明する。EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.
図1において、1は横長形状の炎口部で、ポンプ2から
圧送されて気化室3で気化した液体燃料と、送風77ン
4から供給された空気の一部とが予混合されて噴出し、
これに送風ファンからの残りの空気が供給されて火炎F
を形成しつつ燃焼室6内で燃焼する。燃焼室6の上部に
は、炎口部1と略対角線上の位置に排ガス出口6が開口
され、また燃焼室6内には炎口部1と排ガス出口6とを
結ぶ流路中心と交錯するように放射体了が傾斜立設され
ている。放射体Tは排ガス流路の上流に向かう面を前方
に向けており、この面と対向する燃焼室6前面には耐熱
ガラス8を備えた放射窓9が開設されている。さらに排
ガス出口6にはハニカム状のアルミナ担体に白金を担持
させた酸化触媒層1oが備えられている。11は燃料タ
ンク、12は気化室加熱用のシーズヒータである。In Fig. 1, reference numeral 1 designates a horizontally elongated flame port, through which liquid fuel that is pressure-fed from a pump 2 and vaporized in a vaporization chamber 3 is premixed with a portion of air supplied from an air blower 77 and then ejected. ,
The remaining air from the blower fan is supplied to this and the flame F
It burns in the combustion chamber 6 while forming. An exhaust gas outlet 6 is opened in the upper part of the combustion chamber 6 at a position approximately diagonal to the flame port 1, and a flow path intersects with the center of the flow path connecting the flame port 1 and the exhaust gas outlet 6 in the combustion chamber 6. The radiator is erected at an angle. The surface of the radiator T facing upstream of the exhaust gas flow path faces forward, and a radiation window 9 equipped with heat-resistant glass 8 is provided in the front of the combustion chamber 6 facing this surface. Further, the exhaust gas outlet 6 is provided with an oxidation catalyst layer 1o in which platinum is supported on a honeycomb-shaped alumina carrier. 11 is a fuel tank, and 12 is a sheathed heater for heating the vaporization chamber.
上記構成において、炎口部1で形成された火炎Fの先端
の一部は放射体7に接触しており、また下部で反応が終
了した高温の排ガスもこの放射体7で熱交換されるから
、放射体7は赤熱状態となって輻射放熱し、放射窓9か
ら耐熱ガラス8を経て前面に熱供給される。放射体7よ
り下流側では上記放熱によって排ガス温度は著しく低下
し、従って前記反応速度式から明らかなように窒素酸化
物の生成はごく微少に抑えることができる。一方放射体
7では赤熱状態(aOO〜900℃)にあるから、未反
応物を含んだ火炎Fが接触しても、なおここで酸化反応
を促進し、−酸化炭素や臭気物質(アルデヒド類やケト
ン類等)は大部分除去されるが、さらに排ガス出口6に
備えられた酸化触媒層1oによって完全に浄化され、燃
焼室6から排出される排ガスは、窒素酸化物および一酸
化炭素、臭気物質のいずれも少ない、または皆無に等し
い状態にすることができる。また放射体Tは一部を火炎
Fに接触する位置まで近接させることが可能であるから
、充分温度を上昇させることができ、従って前面への放
射熱量も従来以上に増大できて、放射効率の高い燃焼装
置となる。なお放射体7は耐熱性クロム鋼等の金属網あ
るいはパンチング板で構成してもよいが、酸化反応を促
進させると共に放射率を向上させ、かつ耐熱性にも優れ
るハニカム状セラミック板を用いるとより効果的である
。特に放射体7は、より高温になる上流側の面を放射窓
9に対向させているから、従来のような熱伝導による損
失もなく、高効率の輻射放熱が可能である。In the above configuration, a part of the tip of the flame F formed at the flame port 1 is in contact with the radiator 7, and the high temperature exhaust gas whose reaction has finished at the lower part is also heat exchanged with the radiator 7. , the radiator 7 becomes red-hot and radiates heat, and heat is supplied to the front surface from the radiation window 9 through the heat-resistant glass 8. On the downstream side of the radiator 7, the temperature of the exhaust gas is significantly lowered by the heat dissipation, and therefore, as is clear from the reaction rate equation, the production of nitrogen oxides can be suppressed to a very small amount. On the other hand, since the radiator 7 is in a red-hot state (aOO~900°C), even if the flame F containing unreacted substances comes into contact with it, the oxidation reaction is still promoted, and - carbon oxide and odorous substances (aldehydes, etc.) Ketones, etc.) are mostly removed, but the exhaust gas is also completely purified by the oxidation catalyst layer 1o provided at the exhaust gas outlet 6, and the exhaust gas discharged from the combustion chamber 6 is free of nitrogen oxides, carbon monoxide, and odorous substances. Both of these can be reduced or eliminated. In addition, since a part of the radiator T can be brought close to the position where it comes into contact with the flame F, the temperature can be raised sufficiently, and the amount of heat radiated to the front surface can also be increased more than before, increasing the radiation efficiency. It becomes an expensive combustion device. Note that the radiator 7 may be composed of a metal mesh made of heat-resistant chromium steel or a punched plate, but it is more preferable to use a honeycomb-shaped ceramic plate, which promotes oxidation reaction, improves emissivity, and has excellent heat resistance. Effective. In particular, since the upstream surface of the radiator 7, which is at a higher temperature, faces the radiation window 9, there is no loss due to heat conduction as in the conventional case, and highly efficient radiant heat radiation is possible.
また酸化触媒層1oは放射体7の下流側であれば位置に
限定はなく、触媒作用の最も活性な温度領域に設置する
ことができる。従って例えば第2図に示すように、放射
体7と酸化触媒層1oを一体に構成した、アルミナを主
成分とするハニカム構造体7とし、上流側は未処理のま
まで放射体7とし、下流側には白金触媒を担持させて酸
化触媒層10とすることも可能で、簡潔かつ安価にして
効果的な高放射率・低窒素酸化物の燃焼装置とすること
ができる。Further, the oxidation catalyst layer 1o is not limited in its position as long as it is downstream of the radiator 7, and can be placed in the temperature range where the catalytic action is most active. Therefore, for example, as shown in FIG. 2, a honeycomb structure 7 whose main component is alumina, in which a radiator 7 and an oxidation catalyst layer 1o are integrated, is used, and the upstream side is left untreated as the radiator 7, and the downstream side is left untreated. It is also possible to support a platinum catalyst on the side to form the oxidation catalyst layer 10, and it is possible to provide a simple, inexpensive, and effective combustion device for high emissivity and low nitrogen oxides.
さらに第3図に示すように、炎口部1を円形構造として
予混合ガスを周方向に噴出する構成とし、この炎口部と
同径あるいはやや小径の円筒形の放射体7を立設して放
射体7の略中心上部に排ガス出口6を備えることによっ
て、上記効果はそのまま得られると共に、全周方向へ輻
射放熱が可能な燃焼装置とすることができ、例えば室内
暖房装置として用いるに効果的である。この場合におい
ても、第3図のように酸化触媒層1oを排ガス出口6付
近に備えても、あるいは第4図のように放射体7と一体
構成としてもよく、前記効果を損なうものではない。Furthermore, as shown in FIG. 3, the flame port 1 is configured to have a circular structure to eject the premixed gas in the circumferential direction, and a cylindrical radiator 7 having the same diameter or a slightly smaller diameter as this flame port is erected. By providing the exhaust gas outlet 6 approximately at the upper center of the radiator 7, the above effects can be obtained as is, and the combustion device can radiate heat in the entire circumferential direction, making it effective for use as an indoor heating device, for example. It is true. Even in this case, the oxidation catalyst layer 1o may be provided in the vicinity of the exhaust gas outlet 6 as shown in FIG. 3, or may be integrated with the radiator 7 as shown in FIG. 4, without impairing the above-mentioned effects.
上記実施例はいずれも液体燃料を用いた場合を主に説明
したが、気体燃料(例えば都市ガス)でも同様であり、
同じ効果を発現し得る。また上記実施例では炎口部から
予混合された燃料/空気混合ガスを噴出させ、これにさ
らに二次空気を供給して燃焼させる構成にしているが、
燃焼用空気は全て予混合させる、いわゆる全−次燃焼で
あっても効果は同じであり、あるいは予混合せずに燃料
のみ供給する、いわゆる拡散燃焼を用いるものであって
も同様であるが、特に窒素酸化物の発生し易い(すなわ
ち火炎温度が高くなる)一部子混合あるいは拡散燃焼を
用いた場合においてより効果は著しい。Although the above embodiments have mainly been explained using liquid fuel, the same applies to gaseous fuel (e.g. city gas).
The same effect can be achieved. Furthermore, in the above embodiment, the premixed fuel/air mixture gas is ejected from the flame port, and secondary air is further supplied to it to cause combustion.
The effect is the same even if all the combustion air is premixed, so-called full-stage combustion, or if only the fuel is supplied without premixing, so-called diffusion combustion. The effect is particularly significant when using single-molecule mixing or diffusion combustion, which tends to generate nitrogen oxides (that is, increases the flame temperature).
発明の効果
以上のように本発明は、火炎が形成される炎口部と排ガ
スが排出される排ガス出口との間の火炎もしくは排ガス
の流路内に、との流路と交錯し、かつ火炎の近傍なる位
置に、上流側の面を熱線透過性材料で構成された燃焼室
壁に対向させた放射体を配設すると共に、この放射体下
流には酸化触媒層を備えることにより、窒素酸化物の発
生を抑制しつつ一酸化炭素や臭気物質等の排出も防止し
、かつ輻射放熱量を増大し得る燃焼装置を提供し得るも
のである。Effects of the Invention As described above, the present invention provides a structure in which the flame or exhaust gas flow path between the flame opening where the flame is formed and the exhaust gas outlet where the exhaust gas is discharged intersects with the flow path of the flame or the exhaust gas. A radiator whose upstream surface faces the combustion chamber wall made of a heat-transparent material is installed near the radiator, and an oxidation catalyst layer is provided downstream of the radiator to reduce nitrogen oxidation. It is possible to provide a combustion device that can suppress the generation of carbon monoxide, odor substances, etc., and increase the amount of radiant heat dissipation.
第1図は本発明の一実施例である燃焼装置の要部断面図
、第2図、第3図および第4図は他の実施例なる燃焼装
置の要部断面図である。
1・・・・・・炎口部、6・・・・・・燃焼室、6・・
・・・・排ガス出口、7・・・・・・放射体、9・・・
・・・放射窓、10・・・・・・酸化触媒層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図
第4図FIG. 1 is a sectional view of a main part of a combustion apparatus according to one embodiment of the present invention, and FIGS. 2, 3, and 4 are sectional views of main parts of a combustion apparatus according to other embodiments. 1...flame port, 6...combustion chamber, 6...
...Exhaust gas outlet, 7...Radiator, 9...
... Radiation window, 10... Oxidation catalyst layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure 4
Claims (4)
を形成する炎口部と、底部に前記炎口部を配設し頂部に
排ガス出口を開設した燃焼室と、前記燃焼室内の前記炎
口部と前記排ガス出口を結ぶ火炎もしくは排ガスの流路
中心に交錯して火炎近傍に配設された放射体と、前記放
射体の下流側に配置された酸化触媒層とを有し、前記放
射体は排ガス流路の上流に向かう面を前記燃焼室壁面に
対向させると共に、前記燃焼室壁面は少なくとも前記放
射体に対向する部分を熱線透過性材料で構成した燃焼装
置。(1) A flame port for ejecting fuel or a mixed gas of fuel and air to form a flame; a combustion chamber having the flame port disposed at the bottom and an exhaust gas outlet at the top; a radiator disposed near the flame intersecting with the center of the flame or exhaust gas flow path connecting the flame port and the exhaust gas outlet; and an oxidation catalyst layer disposed downstream of the radiator; The radiator has a surface facing upstream of the exhaust gas flow path facing the wall surface of the combustion chamber, and at least a portion of the wall surface of the combustion chamber facing the radiator is made of a heat ray transparent material.
第1項記載の燃焼装置。(2) The combustion device according to claim 1, in which the radiator and the catalyst layer are integrated.
る位置に備えた特許請求の範囲第1項記載の燃焼装置。(3) The combustion device according to claim 1, wherein the radiator is provided at a position in contact with a part of the flame formed at the flame nozzle.
噴出口は前記放射体の外径より大にし、かつ排ガス出口
は前記放射体の内径より小にして、この三者を略同心状
に配列した特許請求の範囲第1項または第2項もしくは
第3項記載の燃焼装置。(4) The radiator is made cylindrical, the mixed gas outlet at the flame port is made larger than the outer diameter of the radiator, and the exhaust gas outlet is made smaller than the inner diameter of the radiator, so that these three parts are approximately A combustion device according to claim 1 or 2 or 3, which is arranged concentrically.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8733186A JPS62242710A (en) | 1986-04-16 | 1986-04-16 | Combustion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8733186A JPS62242710A (en) | 1986-04-16 | 1986-04-16 | Combustion device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62242710A true JPS62242710A (en) | 1987-10-23 |
Family
ID=13911890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8733186A Pending JPS62242710A (en) | 1986-04-16 | 1986-04-16 | Combustion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62242710A (en) |
-
1986
- 1986-04-16 JP JP8733186A patent/JPS62242710A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62242710A (en) | Combustion device | |
JPS62711A (en) | Combustion device | |
JPH06180108A (en) | Combustion process for surface combustion burner and surface combustion burner | |
JPS58129106A (en) | Combustion device | |
JP3595720B2 (en) | Catalytic combustion heating device | |
JPS61291820A (en) | Catalytic burner | |
JP2576680B2 (en) | Fuel combustion device | |
JPS5862416A (en) | Catalytic combustor | |
JPS61246512A (en) | Burner | |
JPS5833016A (en) | Combustion device | |
JPH11141821A (en) | Hybrid catalyst combustion device and catalyst combustion method | |
JPH08587Y2 (en) | Catalytic combustion device | |
JPS61186708A (en) | Kerosene burner | |
JP3487676B2 (en) | Catalytic combustion device | |
JPH0220583Y2 (en) | ||
JPS6193305A (en) | Liquid fuel burner | |
JPS58123013A (en) | Catalytic combustion device | |
JPS5828914A (en) | Combustion apparatus | |
JPH02154906A (en) | Burning device | |
JPS61237909A (en) | Burner | |
JPH01306704A (en) | Combustion device | |
JPS5824707A (en) | Low nox burner | |
JPH03195861A (en) | Immersion pipe heater | |
JPH01134106A (en) | Catalytic burning apparatus | |
JPS61291817A (en) | Catalyst combustion device |