[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62241295A - Discharge lamp lighting apparatus - Google Patents

Discharge lamp lighting apparatus

Info

Publication number
JPS62241295A
JPS62241295A JP8210286A JP8210286A JPS62241295A JP S62241295 A JPS62241295 A JP S62241295A JP 8210286 A JP8210286 A JP 8210286A JP 8210286 A JP8210286 A JP 8210286A JP S62241295 A JPS62241295 A JP S62241295A
Authority
JP
Japan
Prior art keywords
discharge lamp
frequency
circuit
oscillation frequency
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8210286A
Other languages
Japanese (ja)
Other versions
JP2627740B2 (en
Inventor
春樹 小松
赤塚 美津雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Lighting Ltd
Original Assignee
Hitachi Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Lighting Ltd filed Critical Hitachi Lighting Ltd
Priority to JP61082102A priority Critical patent/JP2627740B2/en
Publication of JPS62241295A publication Critical patent/JPS62241295A/en
Application granted granted Critical
Publication of JP2627740B2 publication Critical patent/JP2627740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕1゜ 本発明はトランスを用いないで誘導素子と谷。[Detailed description of the invention] [Industrial application field] 1゜ The present invention uses an inductive element and a valley without using a transformer.

量素子の直列共振により放電灯を点灯させる点。The point where a discharge lamp is lit by series resonance of a quantum element.

灯装置に係り、特に電源投入時のラツシ工電流。Related to lighting equipment, especially the current generated when the power is turned on.

の低減及び放電灯の高寿命化に好適な放電灯安。A low price discharge lamp suitable for reducing energy consumption and extending the life of discharge lamps.

定器に関する。               15〔
従来の技術〕 従来の装置は例えば特開昭58−2(]9895号記。
Regarding measuring instruments. 15 [
BACKGROUND ART A conventional device is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-2 (1989) No. 9895.

載の上りにスイッチング素子をオン、オフさせ。The switching element is turned on and off at the top of the board.

る駆動回路の発振周波数は常時、所定の周波数。The oscillation frequency of the drive circuit is always the specified frequency.

に固定されているものが多い。このため、電源1.。There are many things that are fixed. For this reason, power supply 1. .

投入後のラツシエ電流、及び放電灯に印加され゛る二次
電圧の働程については細かな配慮を加え゛ることか難し
く、さらに新しい方式の駆動回路が望まれていた。また
、一方では、電源電圧の。
It is difficult to pay careful attention to the Lashier current after turning on and the operation of the secondary voltage applied to the discharge lamp, and a new type of drive circuit has been desired. Also, on the one hand, the power supply voltage.

変動に応じて発振周波数を操作し、放電灯を安・定に点
灯させようとするものも提供されている゛が、前記のよ
うに点灯過程の細かな点に関して・は、まだ十分な改良
が行なわれていないものが・多い。
There are also devices that manipulate the oscillation frequency according to fluctuations and try to light the discharge lamp stably and steadily. However, as mentioned above, there is still insufficient improvement in the details of the lighting process. There are many things that have not been done.

【発明が解決しようとする間一点〕11(さて、誘導素
子と容量素、子の直列共振を利用・して放電灯を点灯し
てゆく放電灯点灯装置の例、を第2図、第6図により説
明する。第2図は放6電灯点灯装置の基本的な回路構成
を示すものであり、1は電源、2,3は共振用のコンデ
ンサ1,56は放電灯、4,5は弊電灯6を直列共振に
よ。
[One point to be solved by the invention] 11 (Now, Figures 2 and 6 show examples of a discharge lamp lighting device that lights a discharge lamp by utilizing the series resonance of an inductive element, a capacitive element, and a child. This will be explained with the help of diagrams. Figure 2 shows the basic circuit configuration of the discharge lamp lighting device. 1 is the power supply, 2 and 3 are resonance capacitors 1, 56 is the discharge lamp, and 4 and 5 are the Make the electric light 6 series resonance.

り点灯するだめの誘導素子および容量索子を構。It consists of an inductive element and a capacitive element for lighting.

成するチョークおよびコンデンサである。7.。This is a choke and a capacitor. 7. .

8け直列共振回路を挾んでハーフブリッジ回路。Half-bridge circuit with 8 series resonant circuits in between.

を構成するだめのスイッチング素子、25はこの。This is the switching element 25 that makes up the circuit.

スイッチング索子7,8の駆動回路である。こ。This is a drive circuit for the switching cables 7 and 8. child.

のように構成した放電灯点灯装置は、直列共振により得
られる電圧で放電灯6の放電を開始してゆくことができ
る。なお、このとき、放電灯。
The discharge lamp lighting device configured as shown above can start discharging the discharge lamp 6 with the voltage obtained by series resonance. In addition, at this time, a discharge lamp.

6の放電が開始するまでの期間のチョーク4.・コンデ
ン′+j5.放電灯6を含めた負荷の等何回。
4. Choke during the period until the discharge of 6 starts.・Condens'+j5. How many times is the load including discharge lamp 6.

路は第6図のように表わすことができる。The path can be represented as shown in FIG.

ここで、負荷(チョーク4.コンデンサ5゜放電灯6を
含む直列共振回路)の共振周波数を・fo、放電灯6の
放電を開始させるだめの放電灯1l16の端管電圧(コ
ンデンサ5の端子電圧)9to・を得るためのスイッチ
ング索子7,8の発振局。
Here, the resonant frequency of the load (a series resonant circuit including a choke 4, a capacitor 5°, and a discharge lamp 6) is ・fo, and the end tube voltage of the discharge lamp 1l16 that starts the discharge of the discharge lamp 6 (the terminal voltage of the capacitor 5 ) The oscillator station of the switching cables 7, 8 to obtain 9to.

波数をFとすると、端管電圧ひ?0と発振周波数。If the wave number is F, the end tube voltage h? 0 and oscillation frequency.

yの関係は第4図に示すようになる。すなわち。The relationship between y is shown in FIG. Namely.

第4図は横軸に発振周波数F、縦軸に端管電圧、。In Figure 4, the horizontal axis represents the oscillation frequency F, and the vertical axis represents the end tube voltage.

ひを示すものであるが、従来装置でけ発根周波。This shows the rooting frequency of the conventional device.

数Fが常時固定されているため、電源1を投入。Since the number F is always fixed, turn on power 1.

すると、放電灯6には端管電圧2fgoがただちに。Then, the end tube voltage 2fgo is immediately applied to the discharge lamp 6.

印加され、放電灯乙の放電が開始されることに。is applied, and the discharge of the discharge lamp begins.

なる。しかし、電源投入と同時に定格の端管電2゜圧が
印加されることは、放電灯6がはぼコール。
Become. However, the fact that the rated end tube voltage of 2° is applied at the same time as the power is turned on causes the discharge lamp 6 to fail.

トスタートに近い状態で放電を開始することで゛あるか
ら、放電灯6の寿命を伸ばすことが難しくなってしまう
Since discharge may start in a state close to the initial start, it becomes difficult to extend the life of the discharge lamp 6.

そこで本発明の目的は、放電灯6のコールドへスタート
を防ぎ、放電灯の寿命を伸ばしてゆく゛ことができる放
電灯点灯装置を提供するもので・ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a discharge lamp lighting device that can prevent the discharge lamp 6 from starting cold and extend the life of the discharge lamp.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、直列共振点の移動を利用し、IC)放
電灯に適切な直の端管電圧を供給してゆくと。
The object of the present invention is to supply an appropriate direct end tube voltage to an IC discharge lamp by utilizing the movement of the series resonance point.

とにより達成される。This is achieved by

〔作用〕[Effect]

すなわち、本発明は負荷の直列共振の特性を巧みに利用
し、負荷の直列共振点より離れた発1゜振周波数で放電
灯の始動を始め、始動が進むに。
That is, the present invention skillfully utilizes the characteristics of the series resonance of the load to start the discharge lamp at an oscillation frequency of 1° away from the series resonance point of the load, and as the starting progresses.

つれて、発振周波数を共振点側に向けて移動し、。As the oscillation frequency moves toward the resonance point,

放電開始のだめの高い端管電圧を得るようにし、たもの
であり、本発明によれば、放電灯の予熱。
According to the present invention, a discharge lamp is preheated to obtain a high end tube voltage for starting discharge.

を十分に行った後に放電を開始することができ2゜、6
 。
Discharging can be started after sufficient 2°, 6
.

る。Ru.

〔実施例〕〔Example〕

以下1本発明の一つの実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

この実施例は、第2図ですでに説明・したと同様に、基
本的には直列共振負荷をバー・ツブリッジ回路で駆動す
るようにしたものであ・る。すなわち、10けスイッチ
ング素子7,8を・制御するための駆動回路の中核を成
すPWM信号・を得る制御用ICであり、実施例におい
ては、テギサスインスツルメンツ(株式会社) 殿TL
494などを利用している。この制御用工C10には、
任意に発振周波数を設定できる鋸歯状発振器、各種コン
パレータ、誤差増巾器、定電圧電源な。
In this embodiment, as already explained in FIG. 2, a series resonant load is basically driven by a bar bridge circuit. In other words, it is a control IC that obtains the PWM signal that forms the core of the drive circuit for controlling the 10 switching elements 7 and 8.
494 etc. are used. In this control work C10,
A sawtooth oscillator whose oscillation frequency can be set arbitrarily, various comparators, error amplifiers, and constant voltage power supplies.

どが組み込まれており、端子A、Bに接続した時定数回
路により定まる周波数で、内部トラン1、ジスタの出力
を反転(個々の内部トランジスタ、は時定数により定ま
る周波数の4)するよう 。
It is designed to invert the output of the internal transistor 1 and the transistor at a frequency determined by the time constant circuit connected to terminals A and B (individual internal transistors have a frequency determined by the time constant 4).

構成している。It consists of

さらに説明を続けると、9はスイッチング素。Continuing the explanation further, 9 is a switching element.

子7,8を駆動するだめのパルストランスであ5.1、
4 。
5.1 is the pulse transformer that drives the children 7 and 8.
4.

す、入力側は制御用ICの内部トランスに、出力側はス
イッチング素子7,8のそれぞれのべ−“ス回路に接続
される。抵抗16とツヱナーダイオ゛−ド17の並列回
路と、抵抗18の直列回路は制御・用工C10の駆動用
電源を得るだめの定電圧電源回路、コンデンサ14と抵
抗13の直列回路と、これ・に並列に接続した抵抗は、
制御用IC1oの発振周波数を変化させるためのもので
あり、コンデン・す14の一端に接続したダイオード1
5は消灯時に・コンデンサ14の電荷を放電させるだめ
のものでIl+ある。
The input side is connected to the internal transformer of the control IC, and the output side is connected to the respective base circuits of switching elements 7 and 8. The series circuit is a constant voltage power supply circuit for obtaining power for driving the control/utility C10, and the series circuit of capacitor 14 and resistor 13, and the resistor connected in parallel with this circuit, are as follows:
This is for changing the oscillation frequency of the control IC 1o, and the diode 1 connected to one end of the capacitor 14
5 is for discharging the charge of the capacitor 14 when the light is turned off, and is Il+.

さて、動作の説明に移る前に、実施例に使用。Now, before moving on to the explanation of the operation, let's use an example.

する制御用ICI Qの発振周波数fの設定方法に。How to set the oscillation frequency f of the control ICI Q.

ついて説明する。この制御用工C10のA端子に。explain about. To the A terminal of this control device C10.

は抵抗器(以下、 RTと称す)が、また、B端子、5
にはコンデンサ(以下、Gと称す)がそれぞれ。
is a resistor (hereinafter referred to as RT), and the B terminal, 5
Each has a capacitor (hereinafter referred to as G).

接続され、とのB端子に接続されたコンデンサ。A capacitor connected to the B terminal of and.

CTは、A端子に接続した抵抗器RTの値により。CT is determined by the value of the resistor RT connected to the A terminal.

て決定される定電流によって充電される。そし。The battery is charged with a constant current determined by stop.

て、制御用工C10はコンデンfc?の充電電圧が所定
の電圧に達すると、この電荷を放電し、1゜サイクルを
終了する。このときの制御用工(10・の発振周波数1
は。
So, is the control equipment C10 a condenser fc? When the charging voltage reaches a predetermined voltage, this charge is discharged and the 1° cycle is completed. At this time, the control equipment (oscillation frequency of 10.
teeth.

/ #1 / RT 、 CT となるが、スイッチング素子7,8の実際の発−・振周
波数Fは、これらがプツノーブル動作とな・るだめ、 Fζt/2 となる。
/ #1 / RT and CT, but the actual oscillation frequency F of the switching elements 7 and 8 is Fζt/2 since these are putnoble operations.

本実施例においては、このような特性を利用1(・し、
抵抗器RTに流れる電流を電源1の投入時か。
In this example, such characteristics are utilized 1 (.
Is the current flowing through resistor RT when power supply 1 is turned on?

ら徐々に低下(等測的には抵抗器RTの直を大きくして
ゆくことと同一)させ、発振周波数を変。
(isometrically, it is the same as increasing the resistance of resistor RT) to change the oscillation frequency.

化させるものである。It is something that makes you change your mind.

次に、このように構成した実施例の動作につ1、いて説
明する。まず、電源1が投入されるとコ。
Next, the operation of the embodiment configured as described above will be explained. First, when power 1 is turned on.

ンデンサ14の電位は、これと直列に接続した抵。The potential of the capacitor 14 is determined by a resistor connected in series with the capacitor 14.

抗13との時定数により徐々に上昇してゆく。従って、
抵抗13に流れる電流は徐々に低下してゆくことになる
。このため、制御用工C10のA端子から見た抵抗器R
Tの時間変化に対応する発振周波数Fの変化は第5図の
ようになる。すなわち、。
It gradually increases due to the time constant with resistor 13. Therefore,
The current flowing through the resistor 13 will gradually decrease. For this reason, the resistor R seen from the A terminal of the control circuit C10
The change in the oscillation frequency F corresponding to the time change in T is as shown in FIG. In other words.

制御用工C10の発振周波数Fは始動開始周波数F1よ
り始まり、始動完了周波数F2に向けて変。
The oscillation frequency F of the control mechanism C10 starts from the start-up frequency F1 and changes toward the start-up completion frequency F2.

化し、始動完了周波数Fyに落ち着くことになるλFl
 # j /RT 、 CT F2彎1/RT、CT ただし、始動初期時はコンデンサ14の充電電流。
, and settles at the starting completion frequency Fy.
#j/RT, CT F2 1/RT, CT However, at the initial stage of startup, the charging current of the capacitor 14.

が流れるため、抵抗器RTの匝は抵抗12と抵抗。flows, so the resistance of resistor RT is equal to resistance 12.

13の合成抵抗の値となる。′また。始動完了時10は
コンデンサ14の充電電流が減少するため、抵・抗器R
Tの直は抵抗12の値に等しくなる。   ・この時の
放電灯6の端管電圧vroの変化を第・6図、第7図に
示す。この実施例においては、・電源1の投入時、制御
用■C10の発振は、負荷1)の直列共振周波数10よ
り十分離れた(直列共。
This is the value of 13 combined resistances. 'Also. When starting is completed, the charging current of the capacitor 14 decreases, so the resistor R
The directivity of T is equal to the value of resistor 12.・Changes in the end tube voltage vro of the discharge lamp 6 at this time are shown in FIGS. 6 and 7. In this embodiment, when the power supply 1 is turned on, the oscillation of the control C10 is sufficiently far away from the series resonance frequency 10 of the load 1 (both series).

振周波数foよりも十分高い)始動開始周波数F+。(sufficiently higher than the oscillation frequency fo) start-up starting frequency F+.

より始まり、徐々に発振周波数Fを下げながら、。, and gradually lower the oscillation frequency F.

共振周波数IOよりも高い始動完了周波数F2で。At the starting completion frequency F2 which is higher than the resonant frequency IO.

落ち着くよう、各回路の定数を選定している。2゜・ 
7 ・ まだ、この実施例では、始動完了周波数F?が共゛振周
波数10にあまり近づき過ぎないよう5定数゛設定に十
分配慮するものである。これは、直列共振点で負荷の運
転が行なわれた場合、負荷電・流が定格を越えて上昇し
てしまうことも考えられるからである。第7図により若
干の説明を加・えると、始動開始周波数F+が直列共振
周波数IO・より大きく離れているから、このときの放
電灯・6の端管電圧はヒ20 と小さく1発振周波数F
が・直列共振周波数711に近づくに従い端管電圧は 
1.。
The constants for each circuit are selected to ensure peace of mind. 2゜・
7 - In this embodiment, the starting completion frequency F? Sufficient consideration is given to the setting of 5 constants so that the value does not become too close to the resonance frequency of 10. This is because if the load is operated at the series resonance point, the load current/current may rise beyond the rated value. Adding a slight explanation to Fig. 7, since the starting frequency F+ is far away from the series resonance frequency IO, the end tube voltage of discharge lamp 6 at this time is as small as 1 oscillation frequency F.
・As the series resonant frequency approaches 711, the end tube voltage becomes
1. .

pea−7で上昇する。この過程で放電灯6のフイ。It rises at pea-7. During this process, discharge lamp 6 is removed.

2メントの予熱が十分性なわれ、放電灯6は端。The preheating of the second lamp is sufficient and the discharge lamp 6 is turned off.

管電圧が1ptoに達した段階で放電を開始すると。Discharge starts when the tube voltage reaches 1 pto.

とになる。放電灯6の放電開始後、この端管電圧は放電
電圧まで低下することになる。   1、このような放
電灯6の点灯を行ない、電源1゜を切り離すと、コンデ
ンサー14の電荷はダイオ。
It becomes. After the discharge lamp 6 starts discharging, this end tube voltage decreases to the discharge voltage. 1. When the discharge lamp 6 is turned on and the power source 1° is disconnected, the charge on the capacitor 14 becomes diode.

−ド15を介して放電され、次の始動の準備が行。- It is discharged through the power cord 15, and preparations are made for the next start.

なわれることになる。It will be called.

次に、第8図に示す実施例を説明する。この2゜、 8
 。
Next, the embodiment shown in FIG. 8 will be described. This 2°, 8
.

実施例は負荷回路中にカレントトランス19を設・け、
負荷電流に応じ、しかも始動状態(運転状態)の各過程
に応じて適切な発振周波数Fを得ようとするものである
。すなわち、この実施例・では負荷の始動完了周波数F
2を直列共振周波数“・IOより、さらに低い発振周波
数Fに設定した所・に特徴がある。これを第9図で説明
すると、  ・始動完了周波数Fy (直列共振周波数
10   ・〈始動開始周波数1  ・ の関係がある。               11)
さて、カレントトランス19により取り出した、電流信
号はダイオードブリッジ20により全波整。
In the embodiment, a current transformer 19 is installed in the load circuit,
The aim is to obtain an appropriate oscillation frequency F in accordance with the load current and in accordance with each process of the starting state (operating state). That is, in this embodiment, the load starting completion frequency F
2 is set to an oscillation frequency F that is even lower than the series resonant frequency ``IO.'' This is explained in Fig. 9 as follows: ・Start completion frequency Fy (Series resonant frequency 10 ・〈Start start frequency 1・There is a relationship. 11)
Now, the current signal taken out by the current transformer 19 is full wave rectified by the diode bridge 20.

流され、抵抗22と抵抗23より成る直列回路に分。It is divided into a series circuit consisting of resistor 22 and resistor 23.

圧される。制御用工C10のA端子にはベースを先の分
圧回路に接続したトランジスタ21が接続六、れる。こ
のトランジスタ21は、ランプ電流が比。
be pressured. A transistor 21 whose base is connected to the aforementioned voltage dividing circuit is connected to the A terminal of the control circuit C10. This transistor 21 has a lamp current ratio of 1.

較的大きく流れる放電灯6の予熱期間のみに導。It is introduced only during the preheating period of the discharge lamp 6 where the flow is relatively large.

通となるよう分圧回路の抵抗22,25.および。The resistors 22, 25 . and.

抵抗24などの回路定数を選択している。Circuit constants such as the resistor 24 are selected.

このような実施例の動作を説明すると、本実。。The operation of such an embodiment will be explained below. .

流側においても、先に説明した実施例と同様にA端子に
接続したコンデンサ14の影響により、制御用I(1Q
の発振周波数Fは始動開始周波数F+より徐々に低下す
ることになる。同時に、う。
On the flow side as well, the control I (1Q
The oscillation frequency F gradually decreases from the starting frequency F+. At the same time, huh.

ンプ電流(予熱電流)の増加により、トランジスタ21
が導通し、制御用IC1oのA端子の見掛・け上の抵抗
値がランプ電流に応じて低下する。・したがって、制御
用工C10の発振周波数Fは、・負荷の直列共振周波数
ioより離れ、これより高・い始動開始周波数F1より
始まり、徐々に直列共1rl振周波数IOに近づく。し
かし、直列共振点に近・づくに従い、負荷電流が増える
と、トランジス。
Due to the increase in pump current (preheating current), transistor 21
conducts, and the apparent resistance value of the A terminal of the control IC 1o decreases in accordance with the lamp current. - Therefore, the oscillation frequency F of the control mechanism C10 is - separated from the series resonance frequency io of the load, starts from a starting start frequency F1 higher than this, and gradually approaches the series resonance frequency IO. However, as the load current increases as it approaches the series resonance point, the transistor

り21の抵抗値が低下するから、発振周波数Fの・低下
は鈍り始動開始周波数F1より直列共振周波数/IIに
近い5例えば周波数F’2で一時的に均衡す5る。この
状態で、放電灯6の予熱が完了し、放。
Since the resistance value of the oscillation frequency F decreases, the decrease in the oscillation frequency F slows down and is temporarily balanced at a frequency F'2, for example, which is closer to the series resonance frequency /II than the starting frequency F1. In this state, preheating of the discharge lamp 6 is completed and discharged.

直が始まると、負荷電流の減少によりトランジ。When the shift starts, a transition occurs due to the decrease in load current.

スタ21が非導通となる。すると、A端子よりの。The star 21 becomes non-conductive. Then, from the A terminal.

見掛は上の抵抗値が大きく増加することになる。The apparent resistance value will increase significantly.

から、制御用工C10の発振周波数Fは、直列共、。Therefore, the oscillation frequency F of the control mechanism C10 is as follows.

部局波数foを越えていつきに低Fし、始動完了・周波
数Fzに落ち着くことになる。
When the local wave number fo is exceeded, F suddenly becomes low, and the start is completed and the frequency settles down to Fz.

このように、実施例においては、カレントトランス19
とトランジスタ21を設けることにより、・放電灯6の
予熱時、および、予熱完了後も回路5動作上安全な発振
周波数Fで運転を続けること・ができるものである。
In this way, in the embodiment, the current transformer 19
By providing the transistor 21, the circuit 5 can continue to operate at an oscillation frequency F that is safe for the operation of the circuit 5 during preheating of the discharge lamp 6 and even after completion of preheating.

さて、第10図〜第12図により、この実施例・の回路
定数の選択に関して説明を続ける。実施・例のように、
誘導素子と容量素子の直列共振を10利用して負荷を駆
動するものにおいては、運転。
Now, with reference to FIGS. 10 to 12, the explanation regarding the selection of circuit constants for this embodiment will be continued. Implementation/Example:
For those that drive a load using the series resonance of an inductive element and a capacitive element, operation.

周波数が共振周波数と一致すると過大電流が流。When the frequency matches the resonant frequency, excessive current flows.

れ、回路、あるいは負荷を破壊する恐れが生じ。This may cause damage to the circuit or load.

る。したがって1回路部品のバラツキなどを考。Ru. Therefore, consider variations in each circuit component.

慮して、発振周波数の設定には十分な注意が必1゜要と
なる。また、合わせて周囲温度の上昇、電。
Taking this into account, sufficient care must be taken when setting the oscillation frequency. In addition, the ambient temperature increases and electricity increases.

源電圧の低下などに対しても安全に運転を続け。Continues safe operation even in the event of a drop in power supply voltage.

られるものでなければならない。まず、第10図。It must be something that can be done. First, Figure 10.

において5制御用■C10の温度特性を見ると、常温よ
り温度が上昇するに従い、発振周波数は低、。
Looking at the temperature characteristics of C10 for control 5, as the temperature rises from room temperature, the oscillation frequency decreases.

、116 下する傾向にある。すなわち、始動完了周波数・Flを
直列共振周波数11より低く選んでおけば、。
, 116. That is, if the starting completion frequency Fl is selected to be lower than the series resonance frequency 11.

周囲温度が上昇した場合、これの発振周波数Fは直列共
振周波数faより一層離れることになり。
If the ambient temperature increases, its oscillation frequency F will become further apart from the series resonant frequency fa.

回路自身の発熱が抑制されると同時に、回路の破壊を防
ぐことができる。次に、実施例に使用。
The heat generation of the circuit itself is suppressed, and at the same time, destruction of the circuit can be prevented. Next, used in the example.

しだ制御用工C10は、B端子に接続したコンテ。The weld control work C10 is a conte connected to the B terminal.

ンサCTを定電流で充電し、との充電電圧が、内。The sensor CT is charged with a constant current, and the charging voltage is within.

部電圧とある一定の値になったとき、この充電。This charging occurs when the voltage reaches a certain value.

電荷を放電し、このB端子に三角波を発生して1,1い
るが、この定電流充電の基本となる基準電圧。
The charge is discharged and a triangular wave is generated at this B terminal, which is the reference voltage that is the basis of this constant current charging.

は第11図に示すように電源電圧Vccの低下と共に低
下する。したがって、電源電圧Vccが低下すると、コ
ンデンサCTの充電時間が伸び、結果として制御用IC
10の発振周波数Fが低下する。−1、ことになる。す
なわち、これは、直列共振周波数IOより始動完了周波
数Fyを低く選んでおけば、電源電圧が低下した場合も
放電灯6を安全に点灯し続けることができる。いずれに
おいても、実施例の発振条件を満足すれば、直列共振・
12 φ 点での運転を避け、放電灯6を安全に点灯する゛ことが
できる。
As shown in FIG. 11, the voltage decreases as the power supply voltage Vcc decreases. Therefore, when the power supply voltage Vcc decreases, the charging time of the capacitor CT increases, and as a result, the control IC
The oscillation frequency F of 10 decreases. -1, that's a big deal. That is, if the starting completion frequency Fy is selected to be lower than the series resonance frequency IO, the discharge lamp 6 can continue to be lit safely even when the power supply voltage drops. In either case, if the oscillation conditions of the example are satisfied, series resonance and
It is possible to avoid operation at the 12φ point and safely light the discharge lamp 6.

次に、第13図に示す他の実施例を説明する。Next, another embodiment shown in FIG. 13 will be described.

この実施例は、始動開始周波数F1を第14図に。In this embodiment, the starting frequency F1 is shown in FIG.

示すように、直列共振周波数fOより十分離れた5位置
に選択し、始動完了周波数F7をこれより直列共振周波
数戸に近い所に高めて放電灯6の点灯を行なうものであ
る。すなわち、制御用ICIQのA端子には電源との間
にコンデンサ14が接続・され、電源投入時A端子の見
掛は上の抵抗値は10第15図に示すよう高い値からし
だいに低下して・ゆく。これに伴い制御用IC1oの発
振周波数Fは、始動開始周波数F1より始動完了周波数
Pp、で・上昇し、放電灯6の予熱0点灯が行なわれる
。・なお、コンデンサ14と直列に接続したダイオゴラ
ド25は、コンデンサ14の放電防止のだめのもの、コ
ンデンサ14と並列に接続した抵抗26は。
As shown, five positions sufficiently distant from the series resonance frequency fO are selected, and the discharge lamp 6 is lit by increasing the starting completion frequency F7 to a position closer to the series resonance frequency. That is, a capacitor 14 is connected between the A terminal of the control ICIQ and the power supply, and when the power is turned on, the apparent resistance value of the A terminal is 10, which gradually decreases from a high value as shown in Figure 15. Let's go. Accordingly, the oscillation frequency F of the control IC 1o increases from the startup start frequency F1 to the startup completion frequency Pp, and the discharge lamp 6 is preheated and lit.・The diogorado 25 connected in series with the capacitor 14 is used to prevent discharge of the capacitor 14, and the resistor 26 connected in parallel with the capacitor 14 is used to prevent discharge of the capacitor 14.

電源を切り離した際、コンデンサ14の電荷を放電し、
これの再始動に備えるためのものである。
When the power supply is disconnected, the charge in the capacitor 14 is discharged,
This is to prepare for the restart.

この実施例においても、始動完了周波数F?をb2゜安
全な運転が保障される範囲で直列共振周波数・7oより
低い1直に選択すれば、先に説明した実 ・雄側と同様
な理由により、周囲温度の変化、あるいけ電源電圧の変
動に対しても安全な運転が・確保されるものである。
Also in this embodiment, starting completion frequency F? If b2゜ is selected to be lower than the series resonant frequency 7o within the range that ensures safe operation, the actual Safe operation is ensured even in the face of fluctuations.

もちろん、以上の実施例においても、予熱が・十分に行
なわれてから放電灯6の点灯が始まる・から、放電灯6
の寿命を短くすることなく安定・しだ点灯を続けること
ができる。また、電源投。
Of course, in the above embodiments as well, the discharge lamp 6 starts lighting after the discharge lamp 6 has been sufficiently preheated.
It is possible to continue lighting stably and gradually without shortening the service life of the lamp. Also, turn on the power.

入時には、負荷の直列共振点より十分に離れた1゜周波
数で運転が始まるから、始動初期のラック。
At startup, operation begins at a frequency of 1°, which is sufficiently far away from the load's series resonance point, so the rack is in the initial stage of startup.

二電流の発生なども防ぐことができる。なお、−発明者
らの実験によれば、電源投入から点灯に6移るまでの予
熱時間は、0.8〜1秒程程度なるよう各回路定数を選
定するのが、放電灯の寿命上1゜好ましいことが判明し
た。
It is also possible to prevent the occurrence of double current. According to experiments conducted by the inventors, it is important to select circuit constants so that the preheating time from turning on the power to turning on the lamp is about 0.8 to 1 second.゜It turned out to be preferable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、誘導性素子と容量性素子
の直列共振を利用して放電灯を点灯させる点灯装置にお
いて、電源投入時から放電灯が点灯するまでの期間、点
灯装置の発振周波。
As explained above, the present invention provides a lighting device that lights a discharge lamp by using series resonance between an inductive element and a capacitive element, and the oscillation frequency of the lighting device is increased during the period from power-on until the discharge lamp is lit. .

数を変化させることにより、十分な予熱を行な。Perform sufficient preheating by changing the number.

つてから放電灯を点灯するものである。しだがって本発
明によれば、放電灯を理想的な状態で。
The discharge lamp is then turned on. According to the invention, therefore, the discharge lamp is in ideal conditions.

点灯することができ、放電灯の電灯寿命上有利・。Can be lit, which is advantageous for the lifespan of discharge lamps.

となるものである。This is the result.

【図面の簡単な説明】 第1図は本発明の一つの実施例を説明するた。 めの回路図、第2図は従来の点灯装置の回路図。 第3図は第2図の放電灯が放電を開始するため1゜の負
荷の等何回路、第4図は第3図における発。 部局波数と二次電圧(端管電圧)との関係を示。 す図、第5図、第6図、第7図はそれぞれ第1゜図に示
す実施例の動作を説明するための線図1、第8図は本発
明の他の実施例を示す回路図、第、59図、第10図、
第11図、第12図はそれぞれ第8図に示す実施例の動
作を説明するための線図、第13図は本発明のさらに他
の実施例を示す回路図、第14図、第15図はそれぞれ
第16図暉示す実施例の動作を説明するための線図であ
る。、?・ 15・ 1・・・電源       4・・・誘導性素子5・・
・容量性素子    6・・・放電灯F・・・発振周波
数。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates one embodiment of the present invention. Figure 2 is a circuit diagram of a conventional lighting device. Figure 3 shows the equivalent circuit with a load of 1° for the discharge lamp in Figure 2 to start discharging, and Figure 4 shows the circuit for the discharge lamp in Figure 3. Shows the relationship between local wave number and secondary voltage (end tube voltage). Figures 5, 6, and 7 are diagrams for explaining the operation of the embodiment shown in Figure 1, respectively; Figure 1 is a circuit diagram showing another embodiment of the present invention; , Figure 59, Figure 10,
11 and 12 are diagrams for explaining the operation of the embodiment shown in FIG. 8, FIG. 13 is a circuit diagram showing still another embodiment of the present invention, and FIGS. 14 and 15. 16 are diagrams for explaining the operation of the embodiment shown in FIG. 16, respectively. ,?・ 15・ 1... Power supply 4... Inductive element 5...
・Capacitive element 6...Discharge lamp F...Oscillation frequency.

Claims (1)

【特許請求の範囲】[Claims] 誘導性素子と容量性素子の直列共振を利用して放電灯を
点灯させる点灯装置において、電源投入時から放電灯が
点灯するまでの期間、前記点灯装置の発振周波数を変化
させたことを特徴とする放電灯点灯装置。
A lighting device for lighting a discharge lamp using series resonance of an inductive element and a capacitive element, characterized in that the oscillation frequency of the lighting device is changed during a period from when the power is turned on until the discharge lamp is lit. discharge lamp lighting device.
JP61082102A 1986-04-11 1986-04-11 Discharge lamp lighting device Expired - Lifetime JP2627740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61082102A JP2627740B2 (en) 1986-04-11 1986-04-11 Discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61082102A JP2627740B2 (en) 1986-04-11 1986-04-11 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JPS62241295A true JPS62241295A (en) 1987-10-21
JP2627740B2 JP2627740B2 (en) 1997-07-09

Family

ID=13765048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61082102A Expired - Lifetime JP2627740B2 (en) 1986-04-11 1986-04-11 Discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP2627740B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038298A (en) * 1989-06-05 1991-01-16 Sanyo Electric Co Ltd Lighting device for discharge lamp
JPH0311594A (en) * 1989-06-09 1991-01-18 Sanyo Electric Co Ltd Discharge lamp lighting device
JPH0374087A (en) * 1989-08-11 1991-03-28 Sanyo Electric Co Ltd Discharge lamp lighting device
EP1991033A2 (en) * 2007-05-11 2008-11-12 Osram-Sylvania Inc. Program start ballast
US7692392B2 (en) 2004-09-14 2010-04-06 Seiko Epson Corporation Lighting of discharge lamp by frequency control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194493A (en) * 1981-05-14 1982-11-30 Philips Nv Electric circuit for starting and energizing discharge lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194493A (en) * 1981-05-14 1982-11-30 Philips Nv Electric circuit for starting and energizing discharge lamp

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038298A (en) * 1989-06-05 1991-01-16 Sanyo Electric Co Ltd Lighting device for discharge lamp
JPH0311594A (en) * 1989-06-09 1991-01-18 Sanyo Electric Co Ltd Discharge lamp lighting device
JPH0374087A (en) * 1989-08-11 1991-03-28 Sanyo Electric Co Ltd Discharge lamp lighting device
US7692392B2 (en) 2004-09-14 2010-04-06 Seiko Epson Corporation Lighting of discharge lamp by frequency control
US7999482B2 (en) 2004-09-14 2011-08-16 Seiko Epson Corporation Lighting of discharge lamp by frequency control
EP1991033A2 (en) * 2007-05-11 2008-11-12 Osram-Sylvania Inc. Program start ballast
EP1991033A3 (en) * 2007-05-11 2014-06-11 OSRAM GmbH Program start ballast

Also Published As

Publication number Publication date
JP2627740B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
TWI242923B (en) DC-AC converter and controller IC thereof
CN100423438C (en) DC-AC transformer and controller IC thereof
JPH1050489A (en) Electric power source with high-frequency for cold cathode type fluorescent lamp
JPH05242987A (en) Information processing system with liquid crystal display
WO2004047279A1 (en) Dc/ac converter and its controller ic
WO2004051835A1 (en) Dc/ac converter and its controller ic
JPS6212097A (en) Fluorescent lamp lighting apparatus
JPS62241295A (en) Discharge lamp lighting apparatus
US4987347A (en) Lamp driver circuit
JP3621217B2 (en) Self-oscillation drive control circuit
JPS63175389A (en) Discharge lamp lighter
JP3379159B2 (en) Discharge lamp lighting device
CN1956616B (en) Illumining device for discharge lamp
JPH0713200Y2 (en) Discharge lamp lighting device
JPH06140181A (en) Discharge lamp lighting device
JPH10248279A (en) Starting device for motor
JPH10312893A (en) Inverter device
JP3319882B2 (en) Discharge lamp lighting device
JPS63198297A (en) Discharge lamp lighter
JP2812649B2 (en) Inverter circuit
JPS6226791A (en) Discharge lamp lighting apparatus
JPH0834699B2 (en) Power supply
JPS5818759B2 (en) Hoden's ladybug
JP2000331787A (en) Discharge lamp lighting device
JPH01248971A (en) Power converter