[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62246532A - Alkylation of phenol - Google Patents

Alkylation of phenol

Info

Publication number
JPS62246532A
JPS62246532A JP61087636A JP8763686A JPS62246532A JP S62246532 A JPS62246532 A JP S62246532A JP 61087636 A JP61087636 A JP 61087636A JP 8763686 A JP8763686 A JP 8763686A JP S62246532 A JPS62246532 A JP S62246532A
Authority
JP
Japan
Prior art keywords
alkylation
phenol
catalyst
reaction
type zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61087636A
Other languages
Japanese (ja)
Other versions
JPH0244820B2 (en
Inventor
Eiji Takahashi
英二 高橋
Kazuo Ozaki
尾崎 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
Original Assignee
Maruzen Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd filed Critical Maruzen Petrochemical Co Ltd
Priority to JP61087636A priority Critical patent/JPS62246532A/en
Publication of JPS62246532A publication Critical patent/JPS62246532A/en
Publication of JPH0244820B2 publication Critical patent/JPH0244820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:In the alkylation of phenol with an alcohol, the reaction is effected in liquid phase using Y-zeolite containing palladium and nickel or the like to enable the dominant production of p-alkylated product in high efficiency suppressing the meta-alkylation. CONSTITUTION:In the alkylation of a phenolic compound such as phenol with an alcohol and/or an ether such as diethyl ether, the reaction is carried out in the presence of a Y-type zeolite catalyst containing a) at least one selected from Ni, Co, Cu, Zn or Ag, preferably Ni and b) palladium to suppress the formation m-alkylated product which is difficult to be separated and produce p-alkylated phenol such as p-ethylphenol dominantly which is used as a feedstock for antioxidants and synthetic resins. Moreover, stabilized catalyst performance is maintained for a log period of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フェノール類のアルキル化方法に関するもの
である。さらに詳しくは、フェノール類?アルコールま
たは(および)エーテルでアルキル化するにあたり、特
定の触媒の存在下に液相で灰石を行なうことにより、メ
タ位アルキル化を抑制し、バラ位アルキル化物を効率よ
く合成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for alkylating phenols. More details: Phenols? This invention relates to a method for efficiently synthesizing a para-alkylated product by suppressing alkylation at the meta-position and performing alkylation with an alcohol or (and) ether in a liquid phase in the presence of a specific catalyst.

フェノールまたは置換フェノールなどのフェノール類の
オルン位およびパラ位を選択的にア/LEA’ル化して
得られるアルキルフェノール類は。
Alkylphenols obtained by selectively arylating the oron and para positions of phenols such as phenol or substituted phenols.

工業上重要な用途な有するものである。なかでもp−ア
ルキルフェノール類1例えばp−クレゾール、p−エチ
ルフェノールは、酸化防止剤。
It has important industrial uses. Among them, p-alkylphenols such as p-cresol and p-ethylphenol are antioxidants.

合成樹脂などの中間原料として重要な位置な占めている
It occupies an important position as an intermediate raw material for synthetic resins and other products.

(従来の技術) このよ5 tcアルキルフェノール類を合成する最も一
般的な方法は、固体酸触媒、フリーデル−クラフッ触媒
などな用いて、フェノール類をオレフィンでアルキル化
する方法である。
(Prior Art) The most common method for synthesizing these 5tc alkylphenols is to alkylate phenols with olefins using solid acid catalysts, Friedel-Krach catalysts, and the like.

一方、比較的短鎖のアルキル基をフェノール類に導入す
る方法として、アルコールによるアルキル化方法も古(
から知られている。無定形固体酸触媒を用いる通常の方
法のほか、ゼオライト触媒を用いて気相アルキル化する
方法がある。ゼオライト触媒を用いた方法としては、イ
ソプロパツールによるフェノールの気相アルキル化にH
−ZSM−5触媒を用いた米国特許第4391998号
記載のような方法、エタノールによるフェノールの気相
アルキル化にリンで修飾したZSM−5触媒を用いた米
国特許第4532368号記載のような方法が知られて
いる。また、固体酸性を付与したY型ゼオライト触謀を
用いて、気相でフェノールとメタノールと?反応させ、
p−クレゾールを製造する方法が、特公昭52−121
81号に記載されている。ここで触媒としては、HY型
ゼオライトおよびアルカリ金属、アルカリ土類金属、希
土類。
On the other hand, as a method for introducing relatively short-chain alkyl groups into phenols, the alkylation method using alcohol is also an old method (
known from. In addition to the usual method using an amorphous solid acid catalyst, there is also a gas phase alkylation method using a zeolite catalyst. A method using a zeolite catalyst is the gas phase alkylation of phenol using isopropanol.
- A method as described in U.S. Pat. No. 4,391,998 using a ZSM-5 catalyst, and a method as described in U.S. Pat. Are known. In addition, using Y-type zeolite catalyst with solid acidity, phenol and methanol can be mixed in the gas phase. react,
A method for producing p-cresol was published in Japanese Patent Publication No. 52-121.
It is described in No. 81. Here, the catalysts include HY type zeolite, alkali metals, alkaline earth metals, and rare earths.

銅、亜鉛、カドミウム、クロム、マンガン、コバルト、
ニッケルなどの遷移金属でイオン交換したY型ゼオライ
トが提示されており、なかでもHY型ゼオライトがp−
クレゾールの生成に適していること、ゼオライトの酸性
点が減少スるにしたがってp−クレゾールの選択生成は
低下すること、金MY型ゼオライトはむしろアニソール
の生成に適していることが記されている。
Copper, zinc, cadmium, chromium, manganese, cobalt,
Y-type zeolites ion-exchanged with transition metals such as nickel have been proposed, and among them, HY-type zeolites are p-
It is described that it is suitable for producing cresol, that as the acidic point of zeolite decreases, the selective production of p-cresol decreases, and that gold MY type zeolite is rather suitable for producing anisole.

(発明が解決しようとする問題点) 上記の公知方法のうち、フェノール類をオレフィンでア
ルキル化する方法は−アルキル化剤が分校オレフィンで
あるときにはパラ位アルキル化物を収率よく合成するこ
とができる。しかし、アルキル化剤が低分子量の直鎖オ
レフィンであるときには異性体混合物を生じ、有用なパ
ラ位アルキル化物の収率は低い。例えば、エチレンを用
いてフェノールをアルキル化すると。
(Problems to be Solved by the Invention) Among the above-mentioned known methods, the method of alkylating phenols with olefins can synthesize para-alkylated products in good yield when the alkylating agent is a branched olefin. . However, when the alkylating agent is a low molecular weight linear olefin, a mixture of isomers is produced and the yield of useful para-alkylated product is low. For example, when phenol is alkylated using ethylene.

0−エチルフェノール、m−エチルフェノール。0-ethylphenol, m-ethylphenol.

p−エチルフェノールの混合物が生成する。こコテ、エ
チルフェノールの上記3異性体の沸点は、それぞれオル
ソ体が204℃、メタ体が214℃、パラ体が218℃
であり、オルソ体とパラ体との沸点差は比較的大きいの
で精留に 。
A mixture of p-ethylphenol is produced. The boiling points of the above three isomers of ethylphenol are 204°C for the ortho form, 214°C for the meta form, and 218°C for the para form.
The difference in boiling point between the ortho form and the para form is relatively large, so it is suitable for rectification.

よる分離が可能である。しかし、メタ体が共存するとき
は、パラ体の沸点と近接しているために、パラ体のn1
11分離が非常に困難になる。メタ体の生成は、パラ体
の収率低下をもたらすのみでなく、このようにパラ体の
分離す著しく困難にするという重大な欠点でもある。
separation is possible. However, when the meta body coexists, n1 of the para body is close to the boiling point of the para body.
11 separation becomes very difficult. The formation of the meta-form is a serious drawback, not only resulting in a decrease in the yield of the para-form, but also making it extremely difficult to separate the para-form in this way.

−万、アルコールによるアルキル化反応において無定形
固体酸触媒を用いる通常の方法は。
- What is the usual method of using an amorphous solid acid catalyst in alkylation reaction with alcohol?

オルソ位アルキル化物を主体とする異性体混合物を生成
し、一般にパラ位アルキル化物の収率は著しく低い。
An isomer mixture consisting mainly of ortho-alkylated products is produced, and the yield of para-alkylated products is generally extremely low.

また、前記した米国特許第4391998号記載のよう
にイソプロパツールによるフェノールの気相アルキル化
をH−ZSM−5触媒で行なつ方法は、無定形シリカ−
アルミナ触媒を用いる方法に比べるとp−インプロ、ビ
ルフェノールの生成選択性が高いが1m−インプロピル
フェノールをはじめノルマルプロピルフェノールなどの
分離の困難な異性体が多量に副生するので。
Further, as described in the above-mentioned US Pat. No. 4,391,998, the method of gas-phase alkylation of phenol with isopropanol using an H-ZSM-5 catalyst is a method using amorphous silica-
Compared to the method using an alumina catalyst, the selectivity for producing p-impropylphenol and vinpropylphenol is higher, but a large amount of difficult-to-separate isomers such as 1m-impropylphenol and n-propylphenol are produced as by-products.

工業的方法としては不十分であった。This was insufficient as an industrial method.

又、前記した米国特許第4532368号記載のように
リンで修飾したZSM−5触謀を用いてフェノールなエ
タノールで気相アルキル化スる方法は1m−エチルフェ
ノールを中心とする異性体混合物が生成するので1選択
的アルキル化方法とは言えなかった。
Furthermore, as described in the above-mentioned US Pat. No. 4,532,368, the method of vapor phase alkylation with phenolic ethanol using a ZSM-5 catalyst modified with phosphorus produces a mixture of isomers centered on 1m-ethylphenol. Therefore, it could not be said to be a one-selective alkylation method.

前記した特公昭52−12181号記載のようにHY型
ゼオライト触媒を用いてフェノールをメタノールで気相
アルキル化する方法は、p−クレゾールの収率が高く、
かつm−クレゾールの生成量が非常に少ないというすぐ
れた特徴がある。しかし、該反応に関する報告文献(C
atalysis  by  zeolites、El
sevierScientific  Publish
ing  Company。
The method of vapor phase alkylation of phenol with methanol using a HY type zeolite catalyst as described in Japanese Patent Publication No. 52-12181 mentioned above has a high yield of p-cresol;
It also has the excellent feature that the amount of m-cresol produced is very small. However, reports on this reaction (C
analysis by zeolites, El
sevierScientificPublish
ing Company.

Amslerdam、  1980年、105〜111
頁)によると、フェノール転化率が1時間に約20%も
低下しているなど、触媒性能の経時変化が著しいので、
未だ工業的方法としては不十分であった。
Amslerdam, 1980, 105-111
According to Page), catalyst performance changes significantly over time, with the phenol conversion rate decreasing by about 20% per hour.
It was still insufficient as an industrial method.

本発明の目的は、上記した公知技術のもつ問題点を解消
しようとするものである。すなわち本発明は、分離の困
難なメタ位アルキル化物を生じることなく、パラ位アル
キル化物を収率よく生成し、しかも安定した触媒性能が
長時間維持できるフェノール類のアルキル化方法な提供
することを目的とする。
An object of the present invention is to solve the problems of the above-mentioned known techniques. That is, the present invention aims to provide a method for alkylating phenols that can produce alkylated products at para-position in good yield without producing alkylated products at meta-position, which are difficult to separate, and can maintain stable catalyst performance for a long time. purpose.

(問題点な解決するための手段) 本発明者ちは、上記目的の達成を目指して鋭意研究した
結果、フェノール類をアルコールまたは(および)エー
テルでアルキル化するにあタリ、(1)ニッケル、コバ
ルト、銅、亜鉛、銀から選択される一種または二種以上
と、(21/<ラジウムとな含有させたY型ゼオライト
を触媒とし、液相で反応す行なうことによって解決でき
ることな見出した。
(Means for Solving Problems) As a result of intensive research aimed at achieving the above object, the present inventors have found that (1) nickel, We have found that the problem can be solved by reacting one or more selected from cobalt, copper, zinc, and silver in a liquid phase using a Y-type zeolite containing (21/<radium) as a catalyst.

本発明のアルキル化方法に用いられる原料フェノール類
は、少なくとも接水酸基のパラ位またはオルソ位がアル
キル化可能なものであって、そのためパラ位またはオル
ソ位に、又はパラ位およびオルソ位に水素原子を有する
ものである。
The raw material phenols used in the alkylation method of the present invention are those that can be alkylated at least at the para or ortho position of the hydroxyl group, and therefore hydrogen atoms at the para or ortho position or at the para and ortho positions. It has the following.

かかるフェノール類は、種々の核置換基を有するもので
あってもよい。具体例としては、フェノール、クレゾー
ル、キシレノール、エチルフェノール、フロビルフェノ
ール、ブチルフェノール、オクチルフェノール、ノニル
フェノール。
Such phenols may have various nuclear substituents. Specific examples include phenol, cresol, xylenol, ethylphenol, flobylphenol, butylphenol, octylphenol, and nonylphenol.

ジブチルフェノール、シクロヘキシルフェノール、フェ
ニルフェノール、クミルフェノールなどの炭化水素置僕
体、クロロフェノール、ブロモフェノール、ジクロロフ
ェノールなどのハロゲン化フェノール類をどがある。
Examples include hydrocarbon derivatives such as dibutylphenol, cyclohexylphenol, phenylphenol, and cumylphenol, and halogenated phenols such as chlorophenol, bromophenol, and dichlorophenol.

本発明の方法では、アルキル化剤としてアルコールまた
は(および)エーテルが使用される。
In the process of the invention, alcohols or/and ethers are used as alkylating agents.

本発明で使用されるアルコールとしては、1〜12個の
炭′lIAす有する第一級または第二級アルコールがあ
る。具体例には、メタノール、エタノール% 1−プロ
パツール、2−プロパツール。
The alcohols used in the present invention include primary or secondary alcohols having 1 to 12 carbon atoms. Specific examples include methanol, ethanol% 1-propertool, 2-propertool.

1−ブタノール、2−ブタノール、オクタツール、デカ
ノール、ドデカノール、シクロヘキサノール、ベンジル
アルコールなどがある。また。
Examples include 1-butanol, 2-butanol, octatool, decanol, dodecanol, cyclohexanol, and benzyl alcohol. Also.

本発明で使用されるエーテルは、上記したアルコールの
分子間脱水によって得られる種類のもので、具体例には
ジメチルエーテル、ジエチルエーテル、ジー11−プロ
ピルエーテル、ジイソプロピルエーテル、’)−n −
7”fルエーテル、ジイソブチルエーテルなどがある。
The ethers used in the present invention are of the type obtained by intermolecular dehydration of the alcohols described above, and specific examples include dimethyl ether, diethyl ether, di-11-propyl ether, diisopropyl ether, ')-n-
Examples include 7"f ether and diisobutyl ether.

本発明方法のアルキル化剤は、アルコールまたはエーテ
ルのいずれであってもよく、または両者の任意の混合物
であってもよい。アルキル化剤としてアルコールを用い
て本発明の方法を冥施するとき1反応の過程でアルコー
ルの一部がエーテルに転化することがある。このような
場合は、アルコールとエーテルの混合物を回収して1両
者をアルキル化剤として再使用することができろ、 本発明の方法で使用する触媒は、(1)ニッケル、コバ
ルト、銅、亜鉛、銀から選択されろ一種または二種以上
と、(2)パラジウムとtY!Y型ゼオライト有させた
ものである。(1)の金属としては、ニッケル、コバル
トおよび亜鉛が好ましく。
The alkylating agent in the process of the invention may be either an alcohol or an ether, or any mixture of both. When carrying out the process of the present invention using alcohol as an alkylating agent, a portion of the alcohol may be converted to ether in the course of one reaction. In such cases, the mixture of alcohol and ether can be recovered and both can be reused as alkylating agents. , one or more selected from silver, and (2) palladium and tY! It contains Y-type zeolite. As the metal (1), nickel, cobalt and zinc are preferred.

銅および銀は、これらの金属と同様効果があるが、反応
結果に変動が多く反応結果の再現性に問題がある。含有
させろ方法としては、イオン交換操作または含浸操作に
よって、またはゼオライト合反中に混合することによっ
てY型ゼオライト中に沈着させるのが好まし7い。上記
金属な沈着させた後、金aな元素状金属形態に還元する
か又は焼底により酸化することによって所定の位置に固
定することができろ。Y型ゼオライト中の上記金属の含
有量は、金属の種類によって好ましい範囲が異なるが1
元累状態での金属の合計量として約0.1〜約15重量
%の範囲、より好ましくは約0.2〜約1oN量%な例
示することかできる。パラジウムは、ごく少量の添加で
効果があるが、前記金属合計景の例示のうち約0.01
〜5重量%の範囲、特に0.05〜3重量%を占めるの
が好ましい。
Copper and silver have the same effects as these metals, but there are many variations in reaction results and there are problems with reproducibility of reaction results. Preferably, it is deposited in the Y-type zeolite by an ion exchange operation or an impregnation operation, or by mixing it during zeolite synthesis. After the metal has been deposited, it can be fixed in place by reduction to the elemental metal form or by oxidation by burning. The preferable range of the content of the above metals in the Y-type zeolite varies depending on the type of metal, but 1
For example, the total amount of metal in the original state is in the range of about 0.1 to about 15% by weight, more preferably about 0.2 to about 10% by weight. Palladium is effective when added in a very small amount, but about 0.01% of the metal
Preferably it accounts for a range of 5% by weight, especially 0.05-3% by weight.

本発明において、YWゼオライトは、前記した金属な含
有すると同時に、その他の金属を含有しても差支えない
。その他の金属としては、アルカリ金属、アルカリ土類
金属が好ましく。
In the present invention, the YW zeolite may contain other metals as well as the metals described above. As other metals, alkali metals and alkaline earth metals are preferred.

特にアルカリ金属に属するリチウム、ナトリウム、カリ
ウムが好ましい。しかし、Y型ゼオライトのイオン交換
点を水素で置換すること、すなわちHY型ゼオライトの
構造を形成させて酸性点を付与することは、フェノール
類のエーテル化物の副生量を多くし、かつパラ位アルキ
ル化物の収率を低下させるので得策ではない。
Particularly preferred are lithium, sodium, and potassium, which belong to alkali metals. However, replacing the ion exchange points of Y-type zeolite with hydrogen, that is, forming the structure of HY-type zeolite and adding acidic points, increases the amount of by-products of etherified phenols and This is not a good idea as it reduces the yield of the alkylated product.

本発明の方法においては、原料フェノール類とアルキル
化剤との仕込み比率を予め調整して反応を行なうことが
好ましい。仕込み比率は。
In the method of the present invention, it is preferable to adjust the charging ratio of raw material phenols and alkylating agent in advance to carry out the reaction. What is the preparation ratio?

フェノール類1モルに対してアルコールまたは(および
)エーテル0.1〜10モルの範囲が適切であり、特に
0.5〜5モルの範囲が好ましい。
A range of 0.1 to 10 moles of alcohol or (and) ether per mole of phenol is appropriate, and a range of 0.5 to 5 moles is particularly preferred.

本発明の方法は、アルキル化反応な液相で実施する。し
たがって、原料フェノール類およびアルキル化剤が実質
的に気化逸散しない圧力下で反応させろ必要がある。反
応圧力は、一般に自然発生圧力〜約150気圧が適切で
あるが。
The process of the invention is carried out in the liquid phase of the alkylation reaction. Therefore, it is necessary to carry out the reaction under pressure at which the raw material phenols and the alkylating agent do not substantially vaporize and escape. Suitable reaction pressures are generally from naturally occurring pressure to about 150 atmospheres.

特に自然発生圧力〜約120気圧が好ましい。Particularly preferred is a naturally occurring pressure to about 120 atmospheres.

自然発生圧力よりも高い圧力下で反応させる場合は、窒
素等の不活性ガスで加圧することができるほか、水素ガ
スによる加圧も可能である。
When the reaction is carried out under a pressure higher than the naturally occurring pressure, it is possible to pressurize with an inert gas such as nitrogen, or with hydrogen gas.

反応温度は1通常100〜400℃の範囲で選べるが1
灰石速度および選択性の面から200〜320℃が好ま
しい。
The reaction temperature can usually be selected within the range of 100 to 400℃, but 1
The temperature is preferably 200 to 320°C in terms of scheelite rate and selectivity.

本発明において、アルキル化反応はバッチ式にも連続的
にも行なうことができる。連続的な方法としては固定床
、懸濁床あるいは流動床のいずれも可能である。例えば
、粉末状の触ak用いてパッチ式反応を行なう場合は、
触媒使用量は原料フェノール類の約2〜約401:8%
の範囲が適切であり、反応は通常0.2〜5時間で終了
する。また、成環触媒な用いる固定床反応では、触媒を
基準として重量時間空間速度(WH8V10.2〜15
、好ましくは0.5〜5で装入原料流と接触させること
ができる。
In the present invention, the alkylation reaction can be carried out either batchwise or continuously. As continuous methods, fixed bed, suspended bed or fluidized bed methods are possible. For example, when performing a patch reaction using powdered axes,
The amount of catalyst used is about 2% to about 401:8% of the raw material phenols.
A range of 0.2 to 5 hours is appropriate, and the reaction is usually completed in 0.2 to 5 hours. In addition, in a fixed bed reaction using a ring-forming catalyst, the weight hourly space velocity (WH8V10.2~15
, preferably from 0.5 to 5, can be contacted with the feed stream.

(作用) 本発明の液相アルキル化触媒を用いて気相でアルキル化
反応を行なうと、殆ど触媒活性を示さないか、或いは反
応を数時間継続すると触媒活性が消失するので1本発明
の目的が達成できない。また、#記した特公昭52−1
2181号によると、メタノールによるフェノールの気
相アルキル化方法において、p−クレゾールの生成には
HYWY型ゼオライト触最適であり、金属Yをゼオライ
ト触妹はむしろアニソールの生成に適している旨の記載
があるが1本発明の液相アルキル化方法では、全く逆の
傾向な示す。
(Function) When an alkylation reaction is carried out in the gas phase using the liquid phase alkylation catalyst of the present invention, it exhibits almost no catalytic activity, or the catalytic activity disappears after the reaction is continued for several hours. cannot be achieved. In addition, the special public service marked # is 52-1
According to No. 2181, in the gas phase alkylation method of phenol using methanol, it is stated that HYWY type zeolite catalyst is most suitable for producing p-cresol, and that zeolite catalyst for metal Y is rather suitable for producing anisole. However, the liquid phase alkylation method of the present invention exhibits a completely opposite tendency.

すなわち1本発明の液相アルキル化方法によると、HY
型ゼオライト触媒はアニソールのようなフェノール類の
エーテル化物を多量に生成するがアルキル化物の収率は
低く、逆に本発明記載の金属を含有するY型ゼオライト
が良好な触媒性能を示す、 本発明の方法においては、Y型ゼオライトに含有させる
(1)ニッケル、コバルト、銅、亜鉛。
That is, according to the liquid phase alkylation method of the present invention, HY
The Y-type zeolite catalyst produces a large amount of etherified products of phenols such as anisole, but the yield of alkylated products is low; on the contrary, the Y-type zeolite containing the metal described in the present invention exhibits good catalytic performance. In the method, (1) nickel, cobalt, copper, and zinc are contained in the Y-type zeolite.

銀から選択される一種または二種以上と、(2)パラジ
ウムとが相乗的に作用して、パラ位アルキル化の選択性
を高めると同時に、フェノール類の架橋生成物を主体と
する重質物の生成を抑制する効果?発現する。これは、
いずれか−万の金属のみtY型ゼオライトに含有させた
触媒では認められない特性である。
One or more selected from silver and (2) palladium act synergistically to increase the selectivity of alkylation at the para-position, and at the same time improve the selectivity of heavy substances mainly consisting of crosslinked products of phenols. Effect of suppressing generation? manifest. this is,
This is a characteristic that cannot be observed in a catalyst containing only any one of the ten thousand metals in the tY-type zeolite.

(発明の効果) 本発明の方法によると、重質物の副生が少なく、かつ分
離の困難なメタ位アルキル化物す全く、または殆ど副生
ずることがなく、パラ位アルキル化物な収率よく得るこ
とができる。また。
(Effects of the Invention) According to the method of the present invention, it is possible to obtain a para-alkylated product in high yield with less heavy by-products and no or almost no meta-alkylated product that is difficult to separate. I can do it. Also.

本発明の方法でアルキル化すると、安定した触媒性能が
長時間維持できるので1例えばバッチ式反応では触媒を
繰り返して使用でき、また連続式反応では長時間の継続
使用が可能である。
When alkylated by the method of the present invention, stable catalyst performance can be maintained for a long period of time, so that the catalyst can be used repeatedly in batch reactions, for example, and can be used continuously for long periods in continuous reactions.

(実施例および参考例) 以下に実施例および参考例を用いて1本発明をさらに詳
しく説明するが1本発明は実施例に限定されるものでは
ない。
(Examples and Reference Examples) The present invention will be explained in more detail below using Examples and Reference Examples, but the present invention is not limited to the Examples.

突11’!i夕111〜3 (1)触媒 市販の粉末状NaY型ゼオライ) I: Linde裂
5K−40:  組成(重量%) SiO□;64゜A
l2O3”23. Na20=13 ;  (モル比)
Si 02/A1203= 4.7. Na2O/A1
203=0.93)xoo、9を1ffl定の揃酸ナト
リウム水溶液1.51中に分散させ、80℃の恒温槽中
で8時間加熱した。ついで、1規定の酢酸ニッケル水溶
液ll中に分散させ、80℃の恒温槽中で2時間加熱し
た。酢酸ニッケル水溶液を更新して同様のイオン交換操
作を合計3回行ない、十分に水洗したのち、120℃で
乾燥し、さらに430℃で3時間焼成し、NiY型ゼオ
ライトを調製した。原子吸光法による分析値(重量%)
は、 Ni =9.0. Na=2.4であつた。テト
ラミンジクロロパラジウム−水和物1.24 、Pを溶
かした水を上記NiY型ゼオライトに含浸させ、120
℃で乾燥、さらに430℃で3時間焼成し、0.5%の
Pdを含むNiY型ゼオライト触媒を作製した。
Tsu 11'! 111-3 (1) Catalyst (commercially available powdered NaY-type zeolite) I: Linde crack 5K-40: Composition (wt%) SiO□; 64°A
l2O3”23. Na20=13; (molar ratio)
Si02/A1203=4.7. Na2O/A1
203=0.93) xoo, 9 was dispersed in 1 ffl constant sodium chloride aqueous solution 1.51 and heated in a constant temperature bath at 80° C. for 8 hours. Then, it was dispersed in 1 N aqueous nickel acetate solution and heated in a constant temperature bath at 80° C. for 2 hours. The nickel acetate aqueous solution was renewed and the same ion exchange operation was performed a total of three times, followed by thorough washing with water, drying at 120°C, and further calcining at 430°C for 3 hours to prepare NiY-type zeolite. Analysis value by atomic absorption spectrometry (weight%)
is, Ni =9.0. Na=2.4. The above NiY type zeolite was impregnated with water in which 1.24% of tetramine dichloropalladium hydrate and P was dissolved.
The mixture was dried at 430° C. for 3 hours to produce a NiY-type zeolite catalyst containing 0.5% Pd.

前記酢酸ニッケルの代わりに酢酸コバルト。Cobalt acetate instead of nickel acetate.

1化亜鉛な用い、同様の方法により、それぞれCo Y
、 Zn Y Wゼオライトを調製した。また、これら
をテトラミンジクロロパラジウム水溶液で上記と同様に
処理し、それぞれ0.5%Pd−CoY、0.5%Pd
−ZnY型ゼオライト触謀全作製した。
Co Y
, Zn Y W zeolite was prepared. In addition, these were treated with tetramine dichloropalladium aqueous solution in the same manner as above, and 0.5% Pd-CoY and 0.5% Pd
- ZnY type zeolite fibers were completely prepared.

(2)アルキル化反応 加熱およびかきまぜ装Wjtな備えた容量100m/の
5US316製オートクレーブに、上記の方法で作成し
た触m511、フェノールを20.31エタノールを1
9−7.9入れ、系内な窒素ガス置換したのち、かきま
ぜながら250℃に昇温した。
(2) Alkylation reaction In a 5US316 autoclave with a capacity of 100 m/m equipped with heating and stirring equipment, add the catalyst prepared by the above method, 20.31 phenol and 1 ethanol.
9-7.9, and after purging the system with nitrogen gas, the temperature was raised to 250°C while stirring.

(3)結果 250℃で2時間反応させ1表−1の組成(アルキル化
剤を除く)の反応i ttq尋た。
(3) Results The reaction was carried out at 250° C. for 2 hours, and the reaction was performed using the composition shown in Table 1 (excluding the alkylating agent).

参考例1〜3 た以外は実施例1〜3と同様の方法でアルキル化反応を
行ない、表−2の組成(アルキル化剤を除く)の反応液
を得た。
Reference Examples 1 to 3 Alkylation reactions were carried out in the same manner as in Examples 1 to 3, except for the above, to obtain reaction solutions having the compositions shown in Table 2 (excluding the alkylating agent).

参考例4 実権例1〜3で触媒調製原料として用いたと同じNaY
型ゼオライ)100.!il’kl規定の硝酸ナトリウ
ム水溶液1.5j中に分散させ、80℃の@温槽中で8
時間加熱した。水洗後、テトラミンジクロロパラジウム
−水和物1.24 Nを溶かした水?含浸させ、120
℃で乾燥、さらに430℃で3時間焼成し、0.5%の
Pdを含むNaY型ゼオライト触媒を作製した。
Reference Example 4 The same NaY used as the raw material for catalyst preparation in Actual Examples 1 to 3
type zeolite) 100. ! Disperse in 1.5j of il'kl specified sodium nitrate aqueous solution and incubate at 80°C @ warm bath.
heated for an hour. After washing with water, add 1.24 N of tetramine dichloropalladium hydrate in water? impregnated, 120
The mixture was dried at 430° C. for 3 hours to produce a NaY-type zeolite catalyst containing 0.5% Pd.

上記の0.5%Pd −Na Y型ゼオライト触媒とし
た以外は実施例1〜3と同様の方法でアルキル化反応を
行ない、表−2の組成(アルキル化剤を除く)の反応液
を得た。
The alkylation reaction was carried out in the same manner as in Examples 1 to 3 except that the above 0.5% Pd-Na Y-type zeolite catalyst was used to obtain a reaction solution having the composition shown in Table 2 (excluding the alkylating agent). Ta.

パラジウムを含有しない触媒を使用した参考例1〜3(
表−2)は、パラジウム含有触媒を使用した面記実権例
1〜3(表−1)に比べて重買物の副生が多い。一方、
パラジウムのみを含有させた参考例4(表−2)の触媒
は、前記実権例1〜3(表−1)の触媒に比べて活性が
低い。
Reference Examples 1 to 3 using catalysts that do not contain palladium (
In Table 2), there were more heavy by-products than in Examples 1 to 3 (Table 1) using palladium-containing catalysts. on the other hand,
The catalyst of Reference Example 4 (Table 2) containing only palladium has lower activity than the catalysts of Actual Examples 1 to 3 (Table 1).

実権例4 実施例1〜3で用いたと同じオートクレーブに、実施例
1の0.5%Pd−N1Y型ゼオライト触媒な5g、フ
ェノールを20.31エタノールに19.7.9入れ、
250℃で2時間反応させた。
Practical Example 4 Into the same autoclave as used in Examples 1 to 3, 5 g of the 0.5% Pd-N1Y type zeolite catalyst of Example 1 and 19.7.9 g of phenol in 20.31 ethanol were added.
The reaction was carried out at 250°C for 2 hours.

灰石終了後、触媒をガラスろ過器に捕集し、エタノール
で洗浄したのち、再使用した。
After finishing the scour, the catalyst was collected in a glass filter, washed with ethanol, and then reused.

このようにして同一触媒の回収再使用を21回繰り返し
たところ、触媒性能の変化は殆ど認められなかった。
When the same catalyst was collected and reused 21 times in this manner, almost no change in catalyst performance was observed.

実権例5 実施例1〜3で用いたと同じオートクレーブに、実施例
1の0.5%Pd−N1YWゼオライト触媒を5JF、
フェノールな20.3.9.メタノールを20.9入れ
、300℃で2時間反応させた。
Practical Example 5 In the same autoclave as used in Examples 1 to 3, 0.5% Pd-N1YW zeolite catalyst of Example 1 was added with 5JF,
Phenolic 20.3.9. 20.9 methanol was added and reacted at 300°C for 2 hours.

反応液の組成(アルキル化剤を除く)は、表−3のとお
りであった。
The composition of the reaction solution (excluding the alkylating agent) was as shown in Table 3.

参考例5 実施例1〜3で触媒調製原料として用いたと℃の恒温槽
中で2時間加熱した。硝酸アンモニウム水溶液を更新し
て同様のイオン交換操作な合計4回繰り返したのち水洗
し、120℃で転機の反応を行ない1表−30組底(ア
ルキル化剤を除く)の反応液を得た。HY型ゼオライト
触媒は、アニソールは生成し得るが、クレゾールの収率
は低い。
Reference Example 5 The material used as a raw material for catalyst preparation in Examples 1 to 3 was heated in a constant temperature bath at °C for 2 hours. After renewing the ammonium nitrate aqueous solution and repeating the same ion exchange operation a total of four times, the mixture was washed with water, and the inverter reaction was carried out at 120°C to obtain a reaction solution of Table 1-30 (excluding the alkylating agent). The HY type zeolite catalyst can produce anisole, but the yield of cresol is low.

実施例6 実施例1〜3で用いたと同じオートクレーブに、実施例
1の0.5%Pd−N1Y型ゼオライト触媒を51.フ
ェノールを20.31%ジエチルエーテルを189入れ
、250℃で2時間反応させた。反応液の組成(アルキ
ル化剤を除く)は、下記のとおりであった。
Example 6 Into the same autoclave as used in Examples 1 to 3, 51% of the 0.5% Pd-N1Y type zeolite catalyst of Example 1 was added. 20.31% phenol and 189% diethyl ether were added and reacted at 250°C for 2 hours. The composition of the reaction solution (excluding the alkylating agent) was as follows.

未反応フェノール     28.3(重量%)0−エ
チルフェノール   12.6 m−エチルフェノール    0.1 p−エチルフェノール   24.5 ジエチルフエノール類    7.1 フエネトール       16.5 エチルフエネトール類    5.0 重質物    5.9 j;jl、、−・・
Unreacted phenol 28.3 (wt%) 0-ethylphenol 12.6 m-ethylphenol 0.1 p-ethylphenol 24.5 Diethylphenols 7.1 Phenetol 16.5 Ethylphenetol 5.0 Weight matter 5.9 j; jl,, -...

Claims (1)

【特許請求の範囲】 1、フェノール類をアルコールまたは(および)エーテ
ルでアルキル化するにあたり、(1)ニッケル、コバル
ト、銅、亜鉛、銀から選択される一種または二種以上と
、(2)パラジウムとを含有させたY型ゼオライトを触
媒とし、液相で反応を行なうことを特徴とするフェノー
ル類のアルキル化方法。 2、該(1)で示される金属がニッケル、コバルトおよ
び亜鉛からなる群から選択された一種または二種以上で
ある特許請求の範囲第1項記載の方法。 3、ニッケルとパラジウムとを含有させたY型ゼオライ
トを触媒とする特許請求の範囲第1項記載の方法。 4、フェノール類がフェノールである特許請求の範囲第
1項ないし第3項のいずれかに記載の方法。 5、アルコールまたは(および)エーテルがエタノール
または(および)ジエチルエーテルである特許請求の範
囲第1項ないし第4項のいずれかに記載の方法。
[Claims] 1. In alkylating phenols with alcohol or (and) ether, (1) one or more selected from nickel, cobalt, copper, zinc, and silver; and (2) palladium. A method for alkylating phenols, characterized in that the reaction is carried out in a liquid phase using Y-type zeolite containing as a catalyst. 2. The method according to claim 1, wherein the metal represented by (1) is one or more selected from the group consisting of nickel, cobalt, and zinc. 3. The method according to claim 1, wherein the catalyst is Y-type zeolite containing nickel and palladium. 4. The method according to any one of claims 1 to 3, wherein the phenol is phenol. 5. The method according to any one of claims 1 to 4, wherein the alcohol or (and) ether is ethanol or (and) diethyl ether.
JP61087636A 1986-04-16 1986-04-16 Alkylation of phenol Granted JPS62246532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61087636A JPS62246532A (en) 1986-04-16 1986-04-16 Alkylation of phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61087636A JPS62246532A (en) 1986-04-16 1986-04-16 Alkylation of phenol

Publications (2)

Publication Number Publication Date
JPS62246532A true JPS62246532A (en) 1987-10-27
JPH0244820B2 JPH0244820B2 (en) 1990-10-05

Family

ID=13920463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61087636A Granted JPS62246532A (en) 1986-04-16 1986-04-16 Alkylation of phenol

Country Status (1)

Country Link
JP (1) JPS62246532A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451248A (en) * 1990-07-19 1995-09-19 The Boc Group Plc Storage and transportation of goods under controlled atmospheres
CN1055876C (en) * 1996-01-25 2000-08-30 中国石油化工总公司 Alkylated catalyst for preparation of alkylbenzene
JP2003040822A (en) * 2001-07-30 2003-02-13 Dainippon Ink & Chem Inc Method for producing 4-tertiary butylphenol
CN1114493C (en) * 1999-06-24 2003-07-16 中国石油化工集团公司 Catalyst and process for prodn. of alkyl benzene
JP2004203861A (en) * 2002-12-09 2004-07-22 Kuraray Co Ltd Method for producing 4-alkylphenol
JP2006255575A (en) * 2005-03-16 2006-09-28 Tottori Univ Catalyst for alkylation reaction, and manufacturing method of alkyl substituted aromatic compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451248A (en) * 1990-07-19 1995-09-19 The Boc Group Plc Storage and transportation of goods under controlled atmospheres
CN1055876C (en) * 1996-01-25 2000-08-30 中国石油化工总公司 Alkylated catalyst for preparation of alkylbenzene
CN1114493C (en) * 1999-06-24 2003-07-16 中国石油化工集团公司 Catalyst and process for prodn. of alkyl benzene
JP2003040822A (en) * 2001-07-30 2003-02-13 Dainippon Ink & Chem Inc Method for producing 4-tertiary butylphenol
JP2004203861A (en) * 2002-12-09 2004-07-22 Kuraray Co Ltd Method for producing 4-alkylphenol
JP2006255575A (en) * 2005-03-16 2006-09-28 Tottori Univ Catalyst for alkylation reaction, and manufacturing method of alkyl substituted aromatic compound

Also Published As

Publication number Publication date
JPH0244820B2 (en) 1990-10-05

Similar Documents

Publication Publication Date Title
EP0029333B1 (en) Long-chain alkylphenols
US4731497A (en) Alkylation of aromatics with alpha-olefins
KR100720219B1 (en) Catalyst and method for the alkylation of hydroxyaromatic compounds
Wieland et al. Solid base catalysts for side-chain alkylation of toluene with methanol
US4110253A (en) Method for the disproportionation of highly alkylated phenols with phenol
CN1212251A (en) Suppression of highly alkylated phenols in catalytic alkylation reaction of phenol
JPS62246532A (en) Alkylation of phenol
CA2076503A1 (en) Catalytic process for the selective alkylation of polycyclic aromatic compounds
US4060560A (en) Disproportionation of xylenols with phenol to form cresols
EP0129065A2 (en) Method for ortho-alkylation of hydroxyaromatic compounds
US4582944A (en) Process for producing hydroxydiphenyl ethers
EP0127833A2 (en) Copper-magnesium catalyst and method for alkylation of hydroxyaromatic compounds therewith
CN115745751A (en) Liquid-solid phase reaction method for continuously producing anisole by using phenol and methanol raw materials on fixed bed reactor
CA1144181A (en) Catalytic steam dealkylation of alkyl phenols
JPS62240637A (en) Alkylation of phenolic compound
US4331566A (en) Catalyst for hydrodealkylation process
RU2331622C2 (en) Hydrocracking of diphenylalkanes
JPH0346448B2 (en)
US6951966B1 (en) Orthoalkylation catalyst for phenol and process for producing orthoalkylated phenol with use thereof
DE69613482T2 (en) METHOD FOR PRODUCING ORTHO-SUBSTITUTED PHENOL
CA1284662C (en) Phenol alkylation process
US4126749A (en) Phenolics methylation using a modified alumina catalyst
JPH0251890B2 (en)
JPS59130823A (en) Production of o-alkylphenol
EP0080759A1 (en) Process for the preparation of 3,5-dimethylphenol