JPS62233721A - Measuring method for flow rate - Google Patents
Measuring method for flow rateInfo
- Publication number
- JPS62233721A JPS62233721A JP61076805A JP7680586A JPS62233721A JP S62233721 A JPS62233721 A JP S62233721A JP 61076805 A JP61076805 A JP 61076805A JP 7680586 A JP7680586 A JP 7680586A JP S62233721 A JPS62233721 A JP S62233721A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- bubbles
- liquid
- measuring
- duct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 21
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 238000000691 measurement method Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 abstract description 22
- 238000005259 measurement Methods 0.000 description 15
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
- G01F1/7086—Measuring the time taken to traverse a fixed distance using optical detecting arrangements
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液体の流量測定方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for measuring the flow rate of a liquid.
パイプなどの閉断面流路を流れる液体の流量測定には種
々の方法が知られており、液体の性質や、測定目的、測
定条件などに応じて適宜に選択される。Nえば、一定時
間内に通過する液体の容積を直接求める容積流量計によ
る方法は、比較的精度が良好で、かつ流体の粘度や密度
の影育を受けにくいから、油類のような温度により粘度
が大同はその具体例としての回転子形流量計であり、密
閉した外箱l内に、だ円形の2個の歯車A、Bを流体に
より回転可能に噛み合せである。流入口2から流れ込む
流体を歯車と外箱との間の空間(計量室)3に充満させ
て、1回転ごとに一定体積の流体を流出口4に送り出し
、歯車の回転数から通過した流体の体積量を求めるもの
である。Various methods are known for measuring the flow rate of a liquid flowing through a closed cross-section channel such as a pipe, and are appropriately selected depending on the properties of the liquid, the measurement purpose, the measurement conditions, and the like. For example, the method using a volumetric flowmeter, which directly measures the volume of liquid passing within a certain period of time, has relatively good accuracy and is not affected by the viscosity or density of the fluid, so it is A rotor-type flowmeter is a specific example of a rotor-type flowmeter, in which two elliptical gears A and B are fitted in a sealed outer box 1 so as to be rotatable by fluid. The space (measuring chamber) 3 between the gear and the outer box is filled with the fluid flowing in from the inlet 2, and a fixed volume of fluid is sent to the outlet 4 for each rotation, and the amount of fluid that has passed is determined based on the number of rotations of the gear. This is to find the volume.
しかし、この種の流量計は、複雑な形状を有する歯車が
構成部品になっており、複数種の流体を計量する際は、
前の液体が残存して後の液体に混入し易い、従って、歯
車の噛み合いを阻害するような固形物が含まれたり、或
いは色が混ざり合ってはならない塗料の如き液体に対し
ては不適当である。However, this type of flowmeter consists of gears with complex shapes, so when measuring multiple types of fluid,
It is unsuitable for liquids where the previous liquid remains and easily mixes with the subsequent liquid, and therefore contains solids that may interfere with the meshing of gears, or liquids such as paints where colors must not mix. It is.
そこで、このような固形物を含む液体に対する流量測定
法としては、流体の容積を直接に求める代りに、流体の
流速を測定し、その値と流路の断面積とから流体容積を
間接的に求める方法が採られている。そのような間接法
による流量測定手段・)−1、Yl+ 例ン1! rp
、4間に云されふ而請舌ヲコ量二十や :j55図に示
される超音波流量計などが用いられる。第4図の面Jf
l流に計は、流体よりも比重の大きいフロート5を、−
に方に行くほど直径が大きくなる透明テーパ管6内にお
いたものである。そのテーパ管6内を下方から上方に液
体7を流すと、フロート5は流れに押し上げられるが、
上方にいく程フロート5の外径とテーパ管6の内径間の
隙間(すなわち絞り面積)が拡がるため、フロート押し
上げ力(すなわち絞りによって生じた差圧)が小さくな
り、流量に応じた位置で平衡して、フロートは上昇を停
止トする。そのフロートの位置を読み取ることにより流
速ひいては流量を知ることができる。第5図(a)は超
音波流量計における伝搬時間差法の原理を示すもので、
′ff−路8の中または管外壁に超音波発信機TI、T
2と受信fiR,,R2を取り付け、超音波が、流速V
で流れる流体中を伝搬するとき、流れに沿って音波が伝
搬するに要する時間t1と、流れに逆らって伝搬するに
要する時間t2との差Δtから流体の流速Vを求める方
法である。Therefore, in order to measure the flow rate of liquids containing solids, instead of directly determining the volume of the fluid, the flow rate of the fluid is measured, and the volume of the fluid is indirectly determined from that value and the cross-sectional area of the flow path. The desired method has been adopted. Flow rate measurement means using such an indirect method・)-1, Yl+ Example 1! rp
The ultrasonic flow meter shown in Figure 55 is used. Plane Jf in Figure 4
In the l flow, the float 5, which has a higher specific gravity than the fluid, is placed -
It is placed inside a transparent tapered tube 6 whose diameter increases toward the opposite direction. When the liquid 7 flows from the bottom to the top inside the tapered tube 6, the float 5 is pushed up by the flow.
As the gap between the outer diameter of the float 5 and the inner diameter of the tapered tube 6 (i.e., the throttle area) increases as you move upward, the float pushing force (i.e., the differential pressure generated by the throttle) becomes smaller, and it is balanced at a position according to the flow rate. Then the float stops rising. By reading the position of the float, the flow velocity and thus the flow rate can be determined. Figure 5(a) shows the principle of the propagation time difference method in an ultrasonic flowmeter.
'ff-Ultrasonic transmitters TI, T in the tract 8 or on the outer wall of the tube
2 and reception fiR,, R2 are installed, and the ultrasonic wave is transmitted at a flow rate V
This method calculates the fluid flow velocity V from the difference Δt between the time t1 required for a sound wave to propagate along the flow and the time t2 required for the sound wave to propagate against the flow.
すなわち、いまMi今波音速をCとすると、器間距離り
を伝搬する時間差Δtは、C;シVとみなせる故、
ΔL = L 2−t + =2LV/C2・・・・・
・(1)となり、時間差Δtを測定すれば、LおよびC
を既知として流速Vを求めることができる(時間差法)
。That is, if the sound velocity of the current wave of Mi is now C, the time difference Δt of propagation through the distance between the instruments can be regarded as C; shiV, so ΔL = L 2 - t + = 2LV/C2...
・(1), and if the time difference Δt is measured, L and C
The flow velocity V can be determined by knowing (time difference method)
.
なお、時間差Δtの代りに1位相φ=ωtを用いれば。Note that if one phase φ=ωt is used instead of the time difference Δt.
位相差Δφ=φl−φ2=2ωLV/C2・・・・・・
・・・(2)
となり、Δφを測定して流速Vを求められる(位相差法
)、また、上記時間tl、t2を周期とする周波数をそ
れぞれfl、f2とすれば、周波数差、af=f+ −
f2 =2V/L・旧・−(3)となり、音速Cの変動
の影響なしに、流速Vを求めることも可能となる(周波
数法)。Phase difference Δφ=φl-φ2=2ωLV/C2...
...(2) Then, the flow velocity V can be found by measuring Δφ (phase difference method). Also, if the frequencies whose periods are the above times tl and t2 are fl and f2, respectively, then the frequency difference, af= f+ −
f2=2V/L・Old・−(3), and it is also possible to obtain the flow velocity V without being affected by fluctuations in the sound velocity C (frequency method).
ff15図(b)は超音波流量計におけるドツプラ法の
原理を示すもので、a音波発信機Tと受信aRを管路の
対称位置に取付け、発信機Tより周波数ftでJfl
’+°?波を送り出すと、受信mRにはドツプラ効果に
より次式で与えられる周波数frが得られる。ff15 Figure (b) shows the principle of the Doppler method in an ultrasonic flowmeter, in which a sound wave transmitter T and a receiver aR are installed at symmetrical positions in the pipe, and the transmitter T transmits Jfl at a frequency ft.
'+°? When a wave is sent out, a frequency fr given by the following equation is obtained at the receiving mR due to the Doppler effect.
fr=2Vcosθft 7 c =−−−(4)従っ
て、ドツプラ周波数frを測定すれば、音線をできるだ
け鋭く絞って管内中心部の流速Vを知ることができる。fr=2Vcosθft 7 c =---(4) Therefore, by measuring the Doppler frequency fr, the flow velocity V at the center of the pipe can be determined by constricting the sound ray as sharply as possible.
しかしながら、」二連のような従来の流速を測ることに
より流量を求めるようにした液体用の流量測定方法にあ
っては、次のような問題点があった。However, conventional liquid flow rate measuring methods such as those in which the flow rate is determined by measuring the flow velocity in two series have the following problems.
(イ):54図に示される面積式流量計による方法は、
テーパ管6内を流れる液体がフロート5に加える抵抗力
に基づいて、流量を測定するものであるから、液体の粘
度変化による測定誤差が大きい。(b): The method using an area flowmeter shown in Figure 54 is as follows:
Since the flow rate is measured based on the resistance force exerted on the float 5 by the liquid flowing in the tapered tube 6, measurement errors due to changes in the viscosity of the liquid are large.
(ロ)第5図に示される超音波流量計による方法は、管
内の流れの一部分の流速を測定することにk 41 P
’ a * 歩冶スムのプ諷ス礒、ニ 醗シIIコルル
爪粘度変化や流速変化により管内の流速分布が変化する
と、測定誤差が大きくなる。(b) The method using an ultrasonic flowmeter shown in FIG.
If the flow velocity distribution in the pipe changes due to changes in viscosity or flow velocity, measurement errors will increase.
なおまた、その他の流量測定法として、例えば電磁流量
計による方法なども、固形物を含む流体に適用可能であ
るが、一般に高価になり、かつ非導電性液体には使用で
きない。Other flow rate measurement methods, such as a method using an electromagnetic flowmeter, can be applied to fluids containing solids, but are generally expensive and cannot be used for non-conductive liquids.
この発明は、このような従来の問題点に着目してなされ
たもので、流体中の固形物の有無や粘度変化或いは流速
分布の変動などの影響を受けずに正確な流量測定が可能
であり、また液体の種類の変化にも即応できる。簡便な
流量測定方法を提供することを目的としている。This invention was made by focusing on these conventional problems, and it is possible to accurately measure the flow rate without being affected by the presence or absence of solids in the fluid, changes in viscosity, or fluctuations in the flow velocity distribution. , it can also respond quickly to changes in the type of liquid. The purpose is to provide a simple flow rate measurement method.
上記の目的を達成するこの発明は、閉断面構造の液体流
路に気体を注入して流路内壁に全種する気泡を形成し、
下流域でその気泡の属性速度を測定することを特徴とす
る流量測定方法である。The present invention achieves the above object by injecting gas into a liquid channel having a closed cross-section structure to form all kinds of bubbles on the inner wall of the channel,
This flow measurement method is characterized by measuring the attribute velocity of the bubbles in the downstream region.
この発明に係る液体の流量測定方法は、流路内に注入さ
れた気泡が、濠路内壁に仝接しつつPi休に押されて流
体の平均速度で管内を流れる。従って、その気泡の運行
速度を、状況に応じて選定可能な公知の測定手段で測定
すればよく、固形物の有無や粘度の変化や流速分布など
の変動の影響を最少限に押え、しかも液種の変化にも即
応できる。In the method for measuring the flow rate of a liquid according to the present invention, bubbles injected into a flow path are pushed by Pi while in contact with the inner wall of the moat, and flow through the pipe at an average velocity of the fluid. Therefore, it is sufficient to measure the traveling speed of the bubbles using a known measuring means that can be selected depending on the situation, minimizing the effects of fluctuations such as the presence of solids, changes in viscosity, and flow velocity distribution. It can also respond quickly to changes in species.
以下、この発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.
第1図は、この発明の一実施例を示す図である。なお、
この実施例にあっては、被測定流体をシルバーメタリッ
ク色の自動車用上pIi塗料とした場合につき述べる。FIG. 1 is a diagram showing an embodiment of the present invention. In addition,
In this example, a case will be described in which the fluid to be measured is a silver metallic color pIi paint for automobiles.
図において、lOは閉断面構造の液体流路としての管路
であり、この管内に空気を注入するための空気注入口1
1を備えている。管lOの設置は、少なくとも後述する
流速測定区域の部分では、浮力による影響を防止するた
め水平に設置するのが良い、また、管lOの材質は、こ
の実施例にあっては透明なガラス管であるが、一般には
。In the figure, lO is a pipe as a liquid flow path with a closed cross-section structure, and an air injection port 1 for injecting air into this pipe.
1. It is best to install the tube IO horizontally, at least in the flow rate measurement area described later, to prevent the influence of buoyancy.In addition, the material of the tube IO is, in this example, a transparent glass tube. But in general.
泡が’′rFlOの内壁の全周に接し易くするため、液
体の接触角の大きなものが望ましく1例えばシリコン樹
脂やテフロン樹脂製もしくはそれらの樹脂で内面コーテ
ィングされたものなどが適する。In order to make it easier for the bubbles to come into contact with the entire circumference of the inner wall of ``rFlO, it is preferable to use a material with a large contact angle with the liquid.For example, materials made of silicone resin or Teflon resin, or materials coated with such resins are suitable.
12は前記空気注入口11に接続された空気注入機であ
り、空気配管13を介して空気源14に連なる糸路を開
閉する電磁弁及び空気吐出ノズルからの空気流量を調整
する可変絞りなど(図示せず)を内蔵している。15は
この空気注入4ai12により管lO内に形成された泡
を表わし、管lOの内壁周囲全体に接した状態(全接状
態)にある、16と17は受段光器からなる2組の光電
管であり、ガラス管lOを透過して泡15の通過を検知
できるように所定間隔りを距てて設置されている。−h
配置間りが流速測定区域となる。Reference numeral 12 denotes an air injector connected to the air inlet 11, which includes a solenoid valve that opens and closes a thread path connected to an air source 14 via an air pipe 13, a variable throttle that adjusts the air flow rate from an air discharge nozzle, etc. (not shown) is built-in. Reference numeral 15 represents a bubble formed in the tube 10 by this air injection 4ai12, which is in contact with the entire inner wall of the tube 10 (total contact state). 16 and 17 are two sets of photocells consisting of receiving stage light devices. They are installed at predetermined intervals so that the passage of the bubbles 15 through the glass tube IO can be detected. -h
The area between the locations is the flow rate measurement area.
18は泡運行速度計算機であり、光電管16による第1
測定点01と、光電’F?17による第2側定点02に
おける泡15の通過信号を受信し、例えばその間のクロ
ックパルスをカウンタでカウントすることにより両点0
1〜02間の通過時間TLを計測すると共に、距離りが
既知であることから泡15の速さ、すなわち、管路lO
内流体の平均流速V=L/TLを演算し、その結果と同
じく既知の管10断面積とから流体流量Qを算出して流
量表示機19に、その結果を送信する機能を有する。流
量表示4i119はその信号を受けで瞬時流量や積算流
量或いはその両者等を必要に応じて表。18 is a bubble traveling speed calculator, and the first
Measurement point 01 and photoelectric 'F? 17 at the second side fixed point 02, and for example, by counting the clock pulses during that time with a counter, both points 0
In addition to measuring the transit time TL between 1 and 02, since the distance is known, the speed of the bubble 15, that is, the pipe lO
It has a function of calculating the average flow velocity V=L/TL of the internal fluid, calculating the fluid flow rate Q from the result and the known cross-sectional area of the pipe 10, and transmitting the result to the flow rate display 19. The flow rate display 4i119 receives the signal and displays instantaneous flow rate, cumulative flow rate, or both as necessary.
示するものである。It is meant to show.
20は上記空気注入機12と泡運行速度計算機18との
作動を相関的に制御する制御機であり。Reference numeral 20 denotes a controller that controls the operations of the air injector 12 and the bubble traveling speed calculator 18 in a correlated manner.
例えばマニュアルで計測開始を指令するスタートスイッ
チ(図示せず)を備え、このスタートスイッチのONに
より、予めタイマにより設定可能な所定時間の間、空気
注入機12に空気注入信号を発信すると共に、泡運行速
度計算fi18に対して計算指令信号を発信するように
なっている。For example, a start switch (not shown) is provided to manually command the start of measurement, and when the start switch is turned on, an air injection signal is sent to the air injection device 12 for a predetermined time that can be set in advance by a timer, and the air injection device 12 is A calculation command signal is sent to the travel speed calculation fi18.
次に作用を説明する。Next, the effect will be explained.
管10を流れる流体の流量を測定する際は、制御機20
に設けられているスタートスイッチをONにする。これ
により、制御a20がら空気注入る。これを受けて空気
注入4112は、内蔵している空気注入路開閉電磁弁を
開き、可変絞りを介して予め調整された空気流量で、空
気注入信号の発信されている間空気注入口11を通して
管lO内へ空気を注入する。これにより泡15が形成さ
れるが、この泡15は管IOの内周壁に全種しているこ
とが必要であり(それにより、泡の流速が流体の平均流
速として検出可能となる)、そのためには、空気注入時
間と空気流量の調整が重要である。また、既に述べたよ
うに、管10の内壁に対する液体の接触角の影響も考慮
した方が良い、空気注入時間経過と同時に、制御l@2
0は泡運行速度計算機18に計算指令信号を出力する。When measuring the flow rate of fluid flowing through the pipe 10, the controller 20
Turn on the start switch provided. As a result, air is injected under control a20. In response to this, the air injection 4112 opens the built-in air injection passage opening/closing solenoid valve, and passes the air injection port 11 through the air injection port 11 at a pre-adjusted air flow rate via a variable throttle. Inject air into the IO. As a result, bubbles 15 are formed, but it is necessary that the bubbles 15 are all present on the inner circumferential wall of the pipe IO (so that the flow velocity of the bubbles can be detected as the average flow velocity of the fluid). It is important to adjust the air injection time and air flow rate. In addition, as already mentioned, it is better to consider the influence of the contact angle of the liquid on the inner wall of the tube 10.At the same time as the air injection time elapses, the control
0 outputs a calculation command signal to the bubble traveling speed calculator 18.
泡15は液体の流れとともに図の左から右へ移動し、第
1測定点01続いて第2計測点02を通過する。The bubbles 15 move from left to right in the figure along with the flow of the liquid, passing through the first measurement point 01 and then the second measurement point 02.
各計測点Or、0.2における光電管16.17は、泡
15の通過による透光度変化のパルス信号を泡運行速度
計算機18に送信する。該計算Ja18は制御機20か
らの計算指令信号に基づき、上し、その計算結果と、予
め与えられている管lOの流路断面積とから流体流量Q
t−算出し、流量表示機19に算出データを送信して流
星を表示する。The phototubes 16 and 17 at each measurement point Or, 0.2 transmit a pulse signal of a change in light transmittance due to passage of the bubble 15 to the bubble traveling speed calculator 18. The calculation Ja18 is performed based on a calculation command signal from the controller 20, and the fluid flow rate Q is calculated from the calculation result and the flow path cross-sectional area of the pipe IO given in advance.
t- is calculated, and the calculated data is transmitted to the flow rate display device 19 to display a meteor.
第2図には他の実施例を示す。FIG. 2 shows another embodiment.
この実施例は、m I J1定点01と第2JIl定点
02における泡15の検出手段として、光電管に代えて
既に述べた公知の超音波センサ(a音波送受信器)T、
Rを用いた点が上記第1実施例と異なっている。In this embodiment, as means for detecting the bubbles 15 at the m I J1 fixed point 01 and the second JIl fixed point 02, the already-mentioned known ultrasonic sensor (sonic wave transmitter/receiver) T, instead of the phototube, is used.
This embodiment differs from the first embodiment in that R is used.
これは、管10が不透明のものでもよく、かつ被計測液
体が透明で泡15が光電管では検出しにくいような場合
に効果的である。また、液体の粘度が高く、そのため管
10の内壁と泡15との間に不透明液体の膜が介在する
ような場合にも、確実に@15の通過を検出できる利点
がある。上記各実施例によれば、液体の種類や、粘度変
化、流速分布変動に左右されずに正確な流量測定が可使
となるのみでなく、泡により分割した流体の混合がない
から、例えば自動車用上塗自動塗装機のカラーチェンジ
機構の後に取り付けて、1台の流量計で多色に対応する
こともできる。また、使用する機器の構成が単純Φコン
パクトなため、適用範囲が広がる。This is effective when the tube 10 may be opaque and the liquid to be measured is transparent and the bubbles 15 are difficult to detect with a phototube. Further, even when the viscosity of the liquid is high and therefore a film of opaque liquid is interposed between the inner wall of the tube 10 and the bubble 15, there is an advantage that the passage of @15 can be reliably detected. According to each of the above embodiments, not only is it possible to accurately measure the flow rate regardless of the type of liquid, changes in viscosity, and fluctuations in flow velocity distribution, but also there is no mixing of fluids separated by bubbles, for example in automobiles. It can also be installed after the color change mechanism of an automatic top coating machine to handle multiple colors with a single flowmeter. Furthermore, since the configuration of the equipment used is simple and compact, the scope of application is widened.
以上説明してきたように、この発明によれば。 As explained above, according to the present invention.
閉断面構造の液体流路に、流路内壁に全種する気泡を形
成するべく気体を注入し、その気泡の運行速度を測定し
て流量を求めるものとしたため、以下のような効果が得
られる。Gas is injected into a liquid channel with a closed cross-section structure to form all kinds of bubbles on the inner wall of the channel, and the flow rate is determined by measuring the velocity of the bubbles, resulting in the following effects. .
(イ)液体の種類や、粘度変化などに左右されずに正確
な流量′測定が可能である。(a) Accurate flow rate measurement is possible regardless of the type of liquid or changes in viscosity.
(ロ)液体の粘度や流速の変化により、管内流速分布が
変化しても、常に平均流速が測定可能で、測定誤差が小
さく安定した測定値が得られる。(b) Even if the flow velocity distribution in the pipe changes due to changes in the viscosity or flow velocity of the liquid, the average flow velocity can always be measured, and stable measurement values with small measurement errors can be obtained.
(ハ)スラリ状の固形物を含んだメタリック等の塗料の
場合でもセンサが破損することがない。(c) The sensor will not be damaged even in the case of paint such as metallic paint containing slurry-like solids.
F!Sf図はこの発明に係る流量測定方法の一実施例の
原理を説明する模式図、第2図は同じく他の実施例を示
す模式図、第3図ないし第5図は従来の各種流量測定方
法の原理を説明する模式図で。
第3図(a)、(b)はそれぞれ回転子形流量計による
もの、第4図は面積式流量計によるもの、第5図(a)
は超音波流量計における伝書時間差法によるも″の、第
5図(b)は同じく超音波流量計におけるドツプラ法に
よるものである。
10・・・・・・・・・管(閉断面構造の液体流路)i
t・・・・・・・・・空気注入口
12・・・・・・・・・空気注入機
14・・・・・・・・・空気源
15・・・・・・・・・泡
16.17・・・・・・光電管
T、R・・・・・・超音波送受信機
18・・・・・・・・・泡属性速度計算機19・・・・
・・・・・流量表示機
20・・・・・・・・・制mm
なお、図中同一符号は同−又は相当部分を表わす。
第1図
第2図
第3図
第5
(a)
第4図
図
(b)F! The Sf diagram is a schematic diagram explaining the principle of one embodiment of the flow rate measuring method according to the present invention, FIG. 2 is a schematic diagram showing another embodiment, and FIGS. 3 to 5 are various conventional flow rate measuring methods. With a schematic diagram explaining the principle of. Figures 3 (a) and (b) are based on a rotor type flowmeter, Figure 4 is an area type flowmeter, and Figure 5 (a)
Figure 5(b) is based on the message time difference method in an ultrasonic flowmeter, and Fig. 5(b) is also based on the Doppler method in an ultrasonic flowmeter. liquid flow path)i
t...... Air inlet 12... Air injector 14... Air source 15... Foam 16 .17...Phototube T, R...Ultrasonic transmitter/receiver 18...Bubble attribute speed calculator 19...
. . . Flow rate indicator 20 . Figure 1 Figure 2 Figure 3 Figure 5 (a) Figure 4 (b)
Claims (1)
する気泡を形成し、下流域でその気泡の運行速度を測定
することを特徴とする流量測定方法。A flow rate measurement method characterized by injecting gas into a liquid flow channel with a closed cross-section structure to form bubbles that are in full contact with the inner wall of the flow channel, and measuring the traveling speed of the bubbles in the downstream region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61076805A JPS62233721A (en) | 1986-04-04 | 1986-04-04 | Measuring method for flow rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61076805A JPS62233721A (en) | 1986-04-04 | 1986-04-04 | Measuring method for flow rate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62233721A true JPS62233721A (en) | 1987-10-14 |
Family
ID=13615869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61076805A Pending JPS62233721A (en) | 1986-04-04 | 1986-04-04 | Measuring method for flow rate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62233721A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5708218A (en) * | 1994-07-14 | 1998-01-13 | Siemens Aktiengesellschaft | Method and device for locating accumulations of pollutants |
WO2010084268A1 (en) * | 2009-01-23 | 2010-07-29 | Institut National Des Sciences Appliquees De Toulouse | Measuring method and portable measure bench for liquid micro-flows, and application for characterising micro-pumps for medical use |
GB2537165A (en) * | 2015-04-10 | 2016-10-12 | Stratec Biomedical Ag | Flow monitoring device |
-
1986
- 1986-04-04 JP JP61076805A patent/JPS62233721A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5708218A (en) * | 1994-07-14 | 1998-01-13 | Siemens Aktiengesellschaft | Method and device for locating accumulations of pollutants |
WO2010084268A1 (en) * | 2009-01-23 | 2010-07-29 | Institut National Des Sciences Appliquees De Toulouse | Measuring method and portable measure bench for liquid micro-flows, and application for characterising micro-pumps for medical use |
FR2941527A1 (en) * | 2009-01-23 | 2010-07-30 | Inst Nat Sciences Appliq | METHOD OF MEASUREMENT AND PORTABLE MEASUREMENT BENCH OF LIQUID MICROBORDS, APPLICATION TO THE CHARACTERIZATION OF MICRO PUMPS FOR MEDICAL USE |
GB2537165A (en) * | 2015-04-10 | 2016-10-12 | Stratec Biomedical Ag | Flow monitoring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8555729B2 (en) | Method of measuring flow properties of a multiphase fluid | |
US3818757A (en) | Dual path ultrasonic fluid flow metering system and method | |
US7296482B2 (en) | Flowmeter | |
US20110112773A1 (en) | Measuring properties of stratified or annular liquid flows in a gas-liquid mixture using differential pressure | |
US6769293B2 (en) | Detection of liquid in gas pipeline | |
GB2139755A (en) | Ultrasonic flowmeter | |
US10082486B2 (en) | Method for recognizing the presence of liquid in a gas flow | |
WO1988008516A1 (en) | Ultrasonic fluid flowmeter | |
US7240566B2 (en) | Device for positioning a clamp-on flowmeter on a container | |
US7412902B2 (en) | Device for determination and/or monitoring of the volumetric and/or mass flow of a medium and having coupling element including two element portions | |
WO2010002432A1 (en) | Insertable ultrasonic meter and method | |
EP0481141B1 (en) | Borehole fluid flow monitoring apparatus | |
JPS62233721A (en) | Measuring method for flow rate | |
US20090019945A1 (en) | Ultrasonic Flowmaster | |
US3815414A (en) | Method of increasing the measuring resolution of a flow measuring instrument where the flow is divided into sections of well defined volume | |
JPS6047973B2 (en) | Flowmeter | |
GB2177204A (en) | Measurement of fluid flows | |
US11885654B2 (en) | Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device | |
US20200386594A1 (en) | Ultrasonic Flowmeter, Use of an Ultrasonic Flowmeter in a Shut-off Device and Shut-off Device | |
KR101059931B1 (en) | Flow measurement method | |
Waluś | Mathematical modelling of an ultrasonic flowmeter primary device | |
Fowles et al. | Measurement of flow | |
CN111670342A (en) | Flow meter | |
JP2002277300A (en) | Flow rate measuring apparatus | |
GB2079455A (en) | A beer metering system |