[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6223292B2 - - Google Patents

Info

Publication number
JPS6223292B2
JPS6223292B2 JP55154015A JP15401580A JPS6223292B2 JP S6223292 B2 JPS6223292 B2 JP S6223292B2 JP 55154015 A JP55154015 A JP 55154015A JP 15401580 A JP15401580 A JP 15401580A JP S6223292 B2 JPS6223292 B2 JP S6223292B2
Authority
JP
Japan
Prior art keywords
display
liquid crystal
light
polarizing plate
bright
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55154015A
Other languages
Japanese (ja)
Other versions
JPS56123517A (en
Inventor
Yukitoshi Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15401580A priority Critical patent/JPS56123517A/en
Publication of JPS56123517A publication Critical patent/JPS56123517A/en
Publication of JPS6223292B2 publication Critical patent/JPS6223292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はネマテイツク液晶の電界効果モードを
用い、偏光板を使用して電気的変調を受けた部分
を文字、数字等として検出する液晶表示装置に関
するものである。更に詳しくは透過型液晶表示装
置に於いて、液晶分子の配向変化を液晶セル前後
の光路中に設けた偏光板によつてパターンを現出
させ、この光路中に鏡を設け、光路を鏡で反射さ
せ鏡像を読みとる方式に関するもので、これ等の
配置に於て背景もしくは明視野部分をセル外側に
設けた透過性拡散板によつて得る為の拡散板及び
偏光板の配置に関するものである。 液晶表示器は従来外光が強ければすなわち周囲
が明るければ明るいほど表示が見易いと云われて
いたが、実際は周囲が明るすぎると、液晶表示面
での外光の反射や迷光によつて識別したパターン
に煩しい光が混入し、表示面の見掛上のコントラ
ストの低下が生じて見にくくなる欠点があり、又
充分なコントラストを得ようとすると、表示が暗
くなり補助的な照明手段が必要になつたり、更に
高い商品性を持つ為カラー表示にしようとすると
やはり表示の輝度が得られない等実用的表示を行
うのに種々の欠点を有していた。 この発明はこれ等従来方法を詳細に検討し、こ
れ等の欠点を取り除く極めて高いコントラストの
しかも明るく見易い表示を液晶の有する長所を失
わずに実現し得る方法を見出したことに基く。 即ち従来方法に於いての有する欠点を第1表に
示す。
The present invention relates to a liquid crystal display device that uses a field effect mode of a nematic liquid crystal and uses a polarizing plate to detect electrically modulated portions as characters, numbers, etc. More specifically, in a transmission type liquid crystal display device, a pattern is created by changing the orientation of liquid crystal molecules using a polarizing plate installed in the optical path before and after the liquid crystal cell, and a mirror is installed in this optical path to change the optical path. This relates to a method of reading a reflected mirror image, and in these arrangements, it relates to the arrangement of a diffuser plate and a polarizing plate so that a background or bright field portion is obtained by a transparent diffuser plate provided outside the cell. It used to be said that the stronger the outside light, the brighter the surroundings, the easier it was to see the display on LCDs, but in reality, when the surroundings were too bright, it was difficult to identify them by reflection of outside light on the LCD screen or stray light. This has the disadvantage that annoying light enters the pattern, reducing the apparent contrast of the display surface and making it difficult to see.Also, when trying to obtain sufficient contrast, the display becomes dark and requires supplementary lighting means. However, when attempts are made to display the display in color in order to obtain a higher marketability, it has various drawbacks for practical display, such as the inability to obtain display brightness. The present invention is based on a detailed study of these conventional methods and the discovery of a method that eliminates these drawbacks and can realize an extremely high contrast, bright and easy-to-see display without losing the advantages of liquid crystal. That is, Table 1 shows the drawbacks of the conventional method.

【表】【table】

【表】 第1表のA〜Hまでは従来用いられたり試られ
た方法で、これ等について簡単に説明する。 Aは従来最も良く知られた構造のもので、電圧
の印加によつて光学的変化を受けた液晶はいわゆ
る動的散乱(Dynamic Scattering=DS)現象を
生じ、光を散乱する効果を有する。この散乱部と
非散乱部の光学的差異によつて所定パターンを識
別しようとするものである。現在までの技術に於
いてはこの散乱の強度は充分大きくなく、従つて
透明電極間に形成されたこの散乱像を暗い背景の
前で観測しようとすると極めて見難く、従つて対
向する一方の電極又は面を反射鏡とし、弱い光拡
散性を光路を往復させることによつて実質的に散
乱強度を上昇させている。然しこの構成に於いて
は光学的変化を生じていない部分は透明であるの
で鏡面部はそのまま観測者の顔や背景を映し、表
示しようとするパターンとの認別を煩しくすると
同時に明るい背景を映し、表示しようとするパタ
ーンとの認別に於いては実質上のコントラスト低
下を招く。この欠点を改良する目的で、Bの例で
示したものは観測者の正反射位置に対し黒い物体
等の背景を設けるべくフードを配置することがで
きるが、これは観測者が表示面に対して正面の配
置で見ることを防げ視野角の制限を与えるもので
ある。透過型でそのまま使用するC例は前記の通
り散乱強度が不足するため実用性が低く、D例で
示す如く適当な配置に設けた光源によつて、この
欠点を補うものがある。これは液晶の一つの大き
な特徴である低電力消費という特徴を失うもので
ある。更に動的散乱モードを利用した液晶表示セ
ルに対し、より低電圧、低電力消費でしかも高い
コントラストを得られる特徴を持つものとして電
界効果モードを利用したものが近年活発に応用さ
れつゝある。ここでいう電界効果モードとは電界
によつて液晶分子の配向が変化し、この変化を二
枚の偏光板によつて検出し得るものを云い、均一
垂直配向分子、均一平行配向分子、または均一平
行配向分子を電極面に垂直な方向でらせん状に配
列したもの等である。電界効果モードを用いた表
示器の動的散乱モードを用いた表示器との外形、
構造的差異は第1図に示す様に二枚の透明電極
5,5′を有する透明支持体2,2′に液晶を挾持
した液晶セル1がその外側両面に直線偏光板6,
6′を配置し効果的に電気的変化を受けた部分を
識別し得る点にある。これ等のコントラストは電
圧に対し分子配向が飽和状態で変位した時と、無
印加時の分子配向との差で、ほぼ二枚の直線偏光
板6,6′をその偏光方向が平行に配置された時
と直交に配置された時の比に相当する値が容易に
得られる。従つてこれ等は明視野と暗視野の対比
によつて所定のパターンとして得られ、当初の偏
光板の偏光方向を平行とするか、直交とするか、
又当所のセル内の分子配向を分子長軸が電極面に
対し垂直配向(誘電異方性が負の液晶使用)とす
るか、水平螺施配向(誘電異方性が正の液晶使
用)とするかによつて、電界印加時に明視野から
暗視野へ、又は暗視野から明視野へといずれの変
化も生じ得る。これは識別しようとするパターン
をネガ表示もしくはボジ表示のいずれも作り得る
ことを意味している。又電圧に対して非飽和時点
での分子配向は分子長軸が電極面に傾斜した状態
で保持することも可能で、この時は二軸性結晶を
二枚の偏光板内で傾けリターデーシヨンによる特
定波長の透過をするのに類似し、カラー表示を作
り得ることも含まれる。このような電界効果モー
ドを利用した液晶表示装置で従来実用化が進めら
れている例を示す。Eの例は最もこれ等を用いた
典型的例で、偏光板、電界効果液晶セル、偏光
板、拡散反射板を有する構造のものでパターン部
分を暗視野に周囲を明視野とするポジ表示のもの
である。 この表示装置における欠点は直線偏光板を使用
する点に関するものが一つの大きな問題である。
直線偏光板は通常実用化し得るものとしては二色
性分子等を配合した延伸したプラスチツクフイル
ムを基板のフイルムと貼り合せたものが最も通常
用いられるが、これ等一般に実用性の高いプラス
チツク偏光板は一つは原理的に、一つの実用的価
格面に於いて光透過率が充分大きくできない。そ
の限度は非偏光に対して約50%の直線偏光を通過
するものまでしか得られない。そして透過率を限
界値に近づけるに従つて偏光能力は低下し、この
ことが本質的問題として表示の明るさに限度を与
えている。今表示をできる限り明るくしようとす
る時、このEの例で示される構造では充分背景が
明るく、しかもパターンが濃い状態を得るには観
測者が直接電界によつて変化した部分を二枚の偏
光板を通して見ると同時に、外光によつてこの変
化を受けた部分の陰影部を見ることの重ね合せに
よつて見掛上変化を受けた部分の濃度が二倍にな
つた状態で見ることができる。これは実用的な見
地からセルに用いる基板ガラスに厚さの限界があ
り、直接観測する部分と陰影部とのズレを生じる
こととなり、二重像の形成となる。特に大きい面
積の組合せとなる表示パターンでは良いが細い線
や点状のパターンの組合せでは非常に煩しく、特
に斜めから見る時支障が大きくなる。又この陰影
部をできるだけ薄い影として観測者に識別できな
いようすることもでき、これは用いる基板ガラス
の背面側を厚くしたり、反射板の拡散性を上昇さ
せれば良いが、前記偏光能力が少なくなる時、光
学的濃度が低下する問題に帰する。又反射板の拡
散性をあまり大きくすると観測者に達する明視野
の光量が減じられ、背景が実質的に暗くなる。反
射型構造を持つたポジテイブ表示はこのような欠
点を持つているが、正面から観測した場合には充
分なコントラストを持ち、実用的に使用すること
もできるが、多くの光学的素子に要求されるよう
に、液晶表示器に於いてもより汎用性があり、例
えば暗い室内での使用、即ち通常の印刷物が読め
る限度に等しい暗さの中でも同等に見えるような
要求に対しては満足のゆくものではない。一方F
の例に示されるようネガ表示は原理的には前述の
通り可能であるが、これは表示パターンが細い線
や小さい点によつて成り立つている。比較的小面
積の集合としてパターンを形成するような場合に
は、Eの例で述べた丁度逆の効果として二枚の距
離を置いて配置された偏光板が、この小さい光学
的変調を受けた部分の上下のみ開口しているスリ
ツト状の効果を持ち、これ等光学的変調部への周
囲から光を反射板に到達し難い。このように比較
的垂直入射に近い光以外は明視野部に到達し難い
欠点はパターンの明視野が充分な光量を得られな
い結果となる。従つて前者の反射型のポジ表示よ
り実質的な価値は低くなる。電界効果モードを用
いた透過型セルは反射型と同様のセルを用い、拡
散反射板の替りに拡散透過板をセル背後に用い、
この背後の拡散透過板の方向から外光を貫つて明
視野の背景とするものである。この方式はG及び
Hに示される例であるが、前述したDS表示に於
けると類似の欠点を持ち、Gに於いて特に背後が
明るい窓や天上光とする時には極めて良いコント
ラストと明るさを持つが卓上や通常の台に置いて
表示を見下す角度でこれを見ようとする配置に於
いては拡散透過光をそのように明るい外光の元で
透過表示させ得ない、又光源の使用は前記同様電
力消費が大きくなるので限定された応用になる。 本発明による方法はこれ等従来方法を詳細に検
討した結果、窓や天上光を背後の外光として最大
限に利用し、然も卓上や台の上に置いて表示を観
測し得る配置を考慮したものに基く、これ等は背
景の反射像が見えることもなく視野角も任意に選
択でき、充分明るく高いコントラストで見る事が
できる。更に二重像の出ることがなく、ネガ表示
に於いても極めて良好な結果を得ることができ、
更に液晶本来の特徴である低電力消費を維持し、
付け加え得るに正面配置で表示を観測でき、しか
も表示の拡大、縮少による効果も任意に利用でき
る。別の効果として電界効果型表示のカラー化の
実現にも最も適している構造を与えるものであ
る。又文字通り周囲が明るければ明るい程見易い
表示を与え、一方暗い室内等で通常白い紙に印刷
された文字等が読みとれると同等の範囲で表示を
判読できる等種々の特徴を有している。 この発明はこれ等数々の特徴を実現し得る基本
的な構造に更に実用的に支障をもたらさない明る
い表示器を与える光学的配置を見出したことに基
く。 第2図及び第3図に本発明の基本的な構造を示
す。9は所定の第一の偏光板、光透過拡散板を備
えた液晶セル、10は反射鏡、11はこれ等表示
を必要とする機器の本体で、拡散透過板、第一の
偏光板、電界効果型液晶セル、第二の偏光板(図
示せず)、及び第二の偏光板の前で電界効果型液
晶セルの後に反射鏡を、光の入射側よりこの順で
設けている。8は外光で、7は観測者である。1
2は観測者が直接見る表示の像である。これ等液
晶セルは所定の駆動回路と接続されているが図で
は省略している。第4図は第2図、第3図に示さ
れた構造に於いて、aでは10の反射鏡を凹面鏡
となし拡大表示するものであり、bでは10は凸
面鏡となし縮小表示となすものである。更に反射
鏡が凸及び凹である円筒状のものも使用出来る。 これ等基本的構造に付け加えて、本発明は拡散
透過板の配置を水平部分を垂直部分より多くする
ことを特徴とするもので、水平、垂直の意味はこ
れ等が通常用いられる機器等の状態に於いて、第
5図に示す如く拡散板の外光入射面に関して水平
成分hと垂直成分vとのことである。 本発明はこのように水平成分hを多くとること
によつて最も多くの場合効果的に外光を採光し得
ることを見出したことに基く。即ちこれ等が使用
される種々の状況について試験した結果、70%以
上上方向から来る外光を利用して読み取りを行う
事が判明した。即ち天上灯による場合でも日中の
窓を通じた外光による場合でも屋外使用に於いて
もこれ等を使用する機器を見下す配置で読みとる
限り上方からの採光が多く、これは通常の印刷物
の読み取り等で習慣的に明るい周囲光の影響下で
判読する行為にとつても全く同一な方法でその効
果が達成される。即ち暗い場所での読み取り時に
対象物を明るい方向に面して置き、観測者が明る
い方向を背とする場合に充分な読み取り易さを示
す配置である。このような配置を効果的に補足す
る手段としては用いられる鏡面の反射角を、これ
等上方よりの垂直入射成分に対し正反射方向で光
路を観測者へ送るよう配置することが好ましい。 これ等の機器は第5図に示されるよう水平成分
hが垂直成分vより大なる配置の拡散透過板13
は多くの上方より来る外光8′を拡散し、第一の
直線偏光板6によつて直線偏光となり電界効果液
晶セル14を通過し、これ等は図中省略されてい
るが所望パターンの電気的変調部を一部は通り、
他はこのセルの有する特性に従い通過し、他方の
第二の偏光板(図示せず)によつて、所望パター
ンの現出となる。これ等は極めて外光採光上良い
条件なので下から見ると鮮明なパターンとして識
別可能であるが、通常用いられる機器ではこのよ
うな条件が作れないので反射鏡10によつて観測
者7は鏡像12として表示を観測し得る。第6図
は本発明に基づく配置を更に実用化し得る構造の
一例を示すものである。13は拡散透過板で本発
明に基く配置を示す。15はセルの光の入射側に
第一の偏光板を用いた透過型電界効果型セルで、
反射鏡10および第二の偏光板を配置した表示窓
16によつて観測者7はパターン識別できる。 これ等本発明による方法を用いた表示器は前記
各種特徴を有し、特に明るく見易い表示を種々の
使用状況下において満足させるに適している。
[Table] A to H in Table 1 are methods that have been used or tried in the past, and will be briefly explained. A has the most well-known structure in the past, in which the liquid crystal undergoes an optical change due to the application of a voltage, causing a so-called dynamic scattering (DS) phenomenon, which has the effect of scattering light. The purpose is to identify a predetermined pattern based on the optical difference between the scattering part and the non-scattering part. In the technology up to now, the intensity of this scattering is not large enough, and therefore it is extremely difficult to see the scattered image formed between the transparent electrodes in front of a dark background. Alternatively, the scattering intensity is substantially increased by using the surface as a reflecting mirror and reciprocating the optical path with weak light diffusivity. However, in this configuration, the parts that do not undergo any optical changes are transparent, so the mirrored parts directly reflect the observer's face and background, making it difficult to distinguish them from the pattern being displayed, and at the same time making the bright background invisible. This results in a substantial reduction in contrast when distinguishing between the pattern and the pattern to be projected or displayed. In order to improve this drawback, in the case shown in example B, a hood can be placed to provide a background such as a black object to the specular reflection position of the observer, but this does not allow the observer to face the display surface. This prevents viewing when placed in front and limits the viewing angle. Example C, which is a transmission type and is used as it is, has low practicality due to the insufficient scattering intensity as described above, and as shown in Example D, this drawback can be compensated for by using a light source placed in an appropriate location. This results in the loss of one of the major characteristics of liquid crystals, which is low power consumption. Furthermore, in recent years, liquid crystal display cells using a field effect mode have been actively applied to liquid crystal display cells using a dynamic scattering mode, as they have the characteristics of being able to obtain high contrast with lower voltage and power consumption. The field effect mode here refers to a mode in which the orientation of liquid crystal molecules changes due to an electric field, and this change can be detected using two polarizing plates. These include parallel-aligned molecules arranged in a spiral in a direction perpendicular to the electrode surface. The external shape of the display using field effect mode and the display using dynamic scattering mode,
The structural difference is that, as shown in FIG. 1, a liquid crystal cell 1 has a liquid crystal sandwiched between transparent supports 2 and 2' having two transparent electrodes 5 and 5', and linear polarizing plates 6 and 6 on both outer sides thereof.
The point is that by arranging 6', it is possible to effectively identify a portion that has undergone an electrical change. These contrasts are due to the difference between the molecular orientation when the voltage is saturated and the molecular orientation when no voltage is applied. A value that corresponds to the ratio when placed orthogonally is easily obtained. Therefore, these can be obtained as a predetermined pattern by comparing bright field and dark field, and whether the polarization direction of the original polarizing plate is parallel or perpendicular,
In addition, the molecular orientation in our cell is either vertical to the electrode surface (using liquid crystal with negative dielectric anisotropy) or horizontally spirally aligned (using liquid crystal with positive dielectric anisotropy). Depending on the application of the electric field, either a change from bright field to dark field or from dark field to bright field may occur. This means that it is possible to create either a negative display or a positive display of the pattern to be identified. In addition, the molecular orientation at the point of non-saturation with respect to the voltage can be maintained in a state where the long axis of the molecules is inclined to the electrode surface. It also includes the ability to create color displays, similar to transmitting specific wavelengths. An example of a liquid crystal display device using such a field effect mode that has been put into practical use will be shown below. Example E is the most typical example using these devices, and has a structure that includes a polarizing plate, a field-effect liquid crystal cell, a polarizing plate, and a diffuse reflection plate. It is something. One major drawback of this display device is that it uses a linear polarizer.
The most commonly used linear polarizing plate that can be put to practical use is one in which a stretched plastic film containing dichroic molecules is bonded to a substrate film. One is that, in principle, the light transmittance cannot be made sufficiently large in terms of practical cost. The limit is that it can only pass about 50% of linearly polarized light compared to unpolarized light. As the transmittance approaches the limit value, the polarizing ability decreases, and this essentially limits the brightness of the display. When trying to make the display as bright as possible, with the structure shown in the example of E, in order to obtain a sufficiently bright background and a dark pattern, the observer can directly detect the area changed by the electric field by using two polarized lights. The combination of looking through the board and simultaneously looking at the shaded area of the area that has undergone this change due to external light allows you to see the area that has apparently undergone the change with twice the density. can. From a practical standpoint, there is a limit to the thickness of the substrate glass used for the cell, which results in a misalignment between the directly observed area and the shadowed area, resulting in the formation of a double image. This is particularly good for display patterns that are combinations of large areas, but it is very troublesome for combinations of thin lines or dotted patterns, and especially when viewed from an angle, it becomes a problem. It is also possible to make this shadow part as thin as possible so that it cannot be discerned by the observer.This can be done by thickening the back side of the substrate glass used or increasing the diffusivity of the reflector. When it decreases, it results in a problem of decreased optical density. Also, if the diffusivity of the reflector is made too large, the amount of bright field light reaching the observer will be reduced and the background will become substantially darker. Although positive displays with a reflective structure have these drawbacks, they have sufficient contrast when observed from the front and can be used for practical purposes, but they do not meet the requirements of many optical elements. As mentioned above, liquid crystal displays are also more versatile, and can satisfy the requirements for use in dark rooms, that is, to be able to see the same level of visibility even in the darkness that is equivalent to the limit that normal printed matter can be read. It's not a thing. On the other hand F
As shown in the example above, negative display is possible in principle as described above, but this is because the display pattern is made up of thin lines and small dots. When forming a pattern as a set of relatively small areas, two polarizing plates placed at a distance from each other will receive this small optical modulation, which is exactly the opposite effect mentioned in example E. It has a slit-like effect in which only the top and bottom of the part are open, making it difficult for light from the surroundings to reach the reflecting plate. This drawback that it is difficult for light other than light that is relatively close to normal incidence to reach the bright field area results in the bright field of the pattern not being able to obtain a sufficient amount of light. Therefore, the actual value is lower than that of the former reflective type positive display. A transmission type cell using field effect mode uses a cell similar to a reflection type, but uses a diffuse transmission plate behind the cell instead of a diffuse reflection plate.
Outside light passes through from the direction of the diffuser-transmitting plate behind this and forms the background of the bright field. This method is an example shown in G and H, but it has similar drawbacks to the DS display mentioned above, and in G, it has extremely good contrast and brightness, especially when there is a bright window or skylight behind it. However, if you place it on a table or a regular stand and try to view it at an angle that looks down on the display, it is not possible to display the diffused transmitted light under such bright external light, and the use of a light source is not as described above. Similarly, the power consumption is high, so the application is limited. The method according to the present invention is based on a detailed study of these conventional methods, and it takes into account a layout that makes maximum use of windows and ceiling light as external light behind the device, and allows the display to be placed on a tabletop or stand. Based on the above, these images do not show the reflected image of the background, the viewing angle can be selected arbitrarily, and the images can be viewed with sufficient brightness and high contrast. Furthermore, there is no double image, and extremely good results can be obtained even in negative display.
Furthermore, it maintains the low power consumption that is the original characteristic of LCD,
In addition, the display can be observed from the front, and the effect of enlarging or reducing the display can be used as desired. Another effect is that it provides a structure most suitable for realizing color field-effect displays. It also has various features, such as literally the brighter the surroundings, the easier it is to see the display, and on the other hand, the display can be read within the same range as characters printed on normal white paper in a dark room. The invention is based on the discovery of an optical arrangement which provides a bright display which does not present any practical problems in addition to the basic structure which makes it possible to realize these features. The basic structure of the present invention is shown in FIGS. 2 and 3. 9 is a liquid crystal cell equipped with a predetermined first polarizing plate and a light transmitting diffuser plate; 10 is a reflecting mirror; 11 is the main body of the device that requires display; An effect type liquid crystal cell, a second polarizing plate (not shown), and a reflecting mirror are provided in this order from the light incident side in front of the second polarizing plate and after the field effect type liquid crystal cell. 8 is external light and 7 is an observer. 1
2 is an image of the display directly seen by the observer. These liquid crystal cells are connected to a predetermined drive circuit, but are not shown in the figure. Fig. 4 shows the structures shown in Figs. 2 and 3, in which the 10 reflecting mirrors are used as concave mirrors in a for enlarged display, and in b the 10 are used as convex mirrors for reduced display. be. Furthermore, a cylindrical mirror with convex and concave reflecting mirrors can also be used. In addition to these basic structures, the present invention is characterized in that the diffuser-transmitting plate is arranged so that there are more horizontal parts than vertical parts. As shown in FIG. 5, there is a horizontal component h and a vertical component v with respect to the external light incident surface of the diffuser plate. The present invention is based on the discovery that by increasing the horizontal component h in this way, outside light can be brought in effectively in most cases. That is, as a result of testing various situations in which these devices were used, it was found that reading was performed using more than 70% of external light coming from above. In other words, whether it is from a ceiling light or from outside light coming through a window during the day, when used outdoors, as long as the device using these devices is placed in a position that looks down on it, there is a lot of light coming from above. The effect is achieved in exactly the same way for the act of reading under the influence of bright ambient light, which is customary in the United States. That is, when reading in a dark place, the object is placed facing the bright direction, and when the observer's back is to the bright direction, this arrangement provides sufficient readability. As a means for effectively supplementing such an arrangement, it is preferable to arrange the reflection angle of the mirror surface used so that the optical path is sent to the observer in the direction of specular reflection for these vertically incident components from above. These devices are equipped with a diffuser transmitting plate 13 arranged such that the horizontal component h is larger than the vertical component v, as shown in FIG.
diffuses a lot of external light 8' coming from above, becomes linearly polarized by the first linear polarizing plate 6, passes through the field effect liquid crystal cell 14, and although these are omitted in the figure, it produces a desired pattern of electricity. A part of it passes through the target modulation part,
The other light passes through according to the characteristics of this cell, and a desired pattern is revealed by the other second polarizing plate (not shown). These are extremely good conditions for daylighting, and can be identified as a clear pattern when viewed from below. However, since such conditions cannot be created with commonly used equipment, the observer 7 can see the mirror image 12 using the reflector 10. The display can be observed as FIG. 6 shows an example of a structure in which the arrangement according to the invention can be further put to practical use. Reference numeral 13 denotes a diffuser-transmitting plate, which is arranged according to the present invention. 15 is a transmission type field effect cell using a first polarizing plate on the light incident side of the cell,
The observer 7 can identify the pattern using the reflecting mirror 10 and the display window 16 in which the second polarizing plate is arranged. These displays using the method according to the present invention have the various features described above, and are particularly suitable for providing bright and easy-to-read displays under various usage conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液晶表示装置の一構成説明図、第2図
乃至第6図は本発明の構成例の説明図である。 1……液晶セル、2,2……基板、3,3′…
…スペーサー、4……液晶、5,5′……電極、
6,6′……偏光板、7……観測者、8……入射
光、8′……外光、9……偏光板及び拡散透過板
を内蔵する液晶セル、10……反射鏡、11……
表示機器の本体、12……表示像、13……拡散
透過板、14……電界効果型液晶セル、15……
偏光板を内蔵する電界効果型液晶セル、16……
表示窓、17……キー、18……卓上計算機。
FIG. 1 is an explanatory diagram of one configuration of a liquid crystal display device, and FIGS. 2 to 6 are explanatory diagrams of configuration examples of the present invention. 1...Liquid crystal cell, 2,2...Substrate, 3,3'...
...Spacer, 4...Liquid crystal, 5,5'...Electrode,
6, 6'... Polarizing plate, 7... Observer, 8... Incident light, 8'... External light, 9... Liquid crystal cell with built-in polarizing plate and diffuse transmission plate, 10... Reflecting mirror, 11 ……
Main body of display device, 12... Display image, 13... Diffuse transmission plate, 14... Field effect liquid crystal cell, 15...
Field-effect liquid crystal cell with built-in polarizing plate, 16...
Display window, 17...keys, 18...desk calculator.

Claims (1)

【特許請求の範囲】[Claims] 1 拡散透過板、第一の偏光板、電界効果型液晶
セル、第二の偏光板、及び第二の偏光板の前で電
界効果型液晶セルの後に反射鏡を、光の入射側よ
りこの順で設けて、前記拡散透過板の配置の水平
成分が垂直成分に等しいか又は多い様にしたこと
を特徴とする液晶表示装置。
1 Diffuse transmission plate, first polarizing plate, field effect liquid crystal cell, second polarizing plate, and in front of the second polarizing plate and after the field effect liquid crystal cell, place a reflective mirror from the light incident side in this order. A liquid crystal display device characterized in that the horizontal component of the arrangement of the diffuser-transmitting plate is equal to or greater than the vertical component.
JP15401580A 1980-11-01 1980-11-01 Liquid-crystal display device Granted JPS56123517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15401580A JPS56123517A (en) 1980-11-01 1980-11-01 Liquid-crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15401580A JPS56123517A (en) 1980-11-01 1980-11-01 Liquid-crystal display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP49054182A Division JPS5179599A (en) 1973-08-28 1974-05-15 EKISHOHYOJISOCHI

Publications (2)

Publication Number Publication Date
JPS56123517A JPS56123517A (en) 1981-09-28
JPS6223292B2 true JPS6223292B2 (en) 1987-05-22

Family

ID=15575039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15401580A Granted JPS56123517A (en) 1980-11-01 1980-11-01 Liquid-crystal display device

Country Status (1)

Country Link
JP (1) JPS56123517A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146335A3 (en) * 1983-12-13 1987-08-05 Citizen Watch Co. Ltd. Liquid crystal television receiver
JPS60256122A (en) * 1984-06-01 1985-12-17 Mitsubishi Electric Corp Liquid-crystal display device

Also Published As

Publication number Publication date
JPS56123517A (en) 1981-09-28

Similar Documents

Publication Publication Date Title
US4196973A (en) Transflector for illuminated electrooptic displays
US5255029A (en) Liquid crystal display for projection systems
US4976536A (en) Liquid crystal display for projection systems
US4763993A (en) Liquid crystal display for projection systems
CN110646984A (en) Display panel and display device
TWI514048B (en) Transparent liquid crystal display device
US7643107B2 (en) Liquid crystal display apparatus
US6636285B2 (en) Reflective liquid crystal display with improved contrast
TW200527069A (en) Liquid crystal display device
EP0070322A1 (en) Liquid crystal display unit
JP3506841B2 (en) Illumination device of reflective liquid crystal display device and reflective liquid crystal display device
US20150002781A1 (en) Sunlight readable lcd devices employing a display shutter
TW200424628A (en) LCD apparatus and electronic machine
JPH06347790A (en) Display device
US5550660A (en) STN displays having high contrast, with purple polarizer and residual birefringence causing greenish-gold or purplish-blue coloring
WO1998032047A1 (en) Ambient illuminated electro-optic display device
TW200807084A (en) Transflective LC display having backlight with temporal color separation
JP2003005181A (en) Liquid crystal display device
JPS6223292B2 (en)
JPH10186362A (en) Liquid crystal display device
CN215642156U (en) Display panel and display device
CN100504535C (en) Display device and display device mounting device
JPS5848097B2 (en) liquid crystal display device
US5227821A (en) Liquid crystal display for projection systems
JP3713996B2 (en) Light diffuser and liquid crystal display device using the same