JPS62230693A - Vapor growth apparatus - Google Patents
Vapor growth apparatusInfo
- Publication number
- JPS62230693A JPS62230693A JP7448886A JP7448886A JPS62230693A JP S62230693 A JPS62230693 A JP S62230693A JP 7448886 A JP7448886 A JP 7448886A JP 7448886 A JP7448886 A JP 7448886A JP S62230693 A JPS62230693 A JP S62230693A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas
- reaction tube
- space
- susceptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 73
- 238000004140 cleaning Methods 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 239000013078 crystal Substances 0.000 claims abstract description 15
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 10
- 150000004678 hydrides Chemical class 0.000 claims description 13
- 238000001947 vapour-phase growth Methods 0.000 claims description 10
- 150000002902 organometallic compounds Chemical class 0.000 claims description 8
- 229910021478 group 5 element Inorganic materials 0.000 claims description 4
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 22
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 17
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- 239000007864 aqueous solution Substances 0.000 abstract description 2
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 56
- 238000000034 method Methods 0.000 description 12
- 239000010408 film Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 101100450563 Mus musculus Serpind1 gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
- C23C16/0236—Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は、有機金属化合物を原料としてm−v族化合物
半導体薄膜結晶を成長させる気相成長装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a vapor phase growth apparatus for growing an m-v group compound semiconductor thin film crystal using an organometallic compound as a raw material.
(従来技術とその問題点)
有機金属化合物としてトリメチルガリウム(TMG)を
用い、■族の水素化物としてアルシンガスを用いてGa
As結晶を成長させる場合について従来技術を説明する
。(Prior art and its problems) Ga
A conventional technique for growing an As crystal will be described.
従来は、第1図に示すように、TMGガス導入口1とア
ルシンガス導入口2を備え、カーボンなど導電性のある
サセプタ4を反応管6中に固定配置し、そのサセプタ4
上に基板3を配置する構造になっていた。結晶を成長さ
せるには、高周波加熱用コイル5に高周波を印加し、誘
導加熱法によりサセプタ4を750℃に加熱する。次に
、TMGとアルシンガスを反応管6内に導入すると、各
々のガスは熱せられている基板3の近傍で分解し、Ga
Asとなって基板3上に成長する。このような成長にお
いて、高品質な化合物半導体結晶を得るためには、基板
3の表面の清浄度が重要である。特にシリコン上に化合
物半導体結晶を成長させるいわゆるヘテロエピタキシャ
ル成長の場合には、反応管6内を水素雰囲気にしてシリ
コン基板を1000℃程度の高温に保ち、基板3の表面
の汚れや自然酸化膜を除去する清浄化処理が必須となる
。しかしながら、従来の装置では前回の成長時に基板3
より下流の反応管6の管壁に堆積したGaAs結晶やT
MCの分解生成物がGaAs成長温度より高い上記清浄
化処理時の1000℃の高温によりその反応管6の管壁
から蒸発し、基板3に付着するため、その清浄化処理に
よりかえって汚染してしまうという問題があった。その
汚染により5i(100)基板を用いた場合にGaAs
(100)とGaAs (100)が混在するいわゆ
るアンチフェーズドメインが発生する。Conventionally, as shown in FIG. 1, a susceptor 4, which is equipped with a TMG gas inlet 1 and an arsine gas inlet 2 and is conductive such as carbon, is fixedly placed in a reaction tube 6.
It had a structure in which a substrate 3 was placed on top. To grow the crystal, high frequency is applied to the high frequency heating coil 5, and the susceptor 4 is heated to 750° C. by induction heating. Next, when TMG and arsine gas are introduced into the reaction tube 6, each gas decomposes near the heated substrate 3, and Ga
It becomes As and grows on the substrate 3. In such growth, the cleanliness of the surface of the substrate 3 is important in order to obtain a high quality compound semiconductor crystal. Particularly in the case of so-called heteroepitaxial growth in which compound semiconductor crystals are grown on silicon, the inside of the reaction tube 6 is kept in a hydrogen atmosphere and the silicon substrate is kept at a high temperature of about 1000°C to remove dirt and natural oxide film on the surface of the substrate 3. Cleaning treatment is essential. However, in the conventional apparatus, the substrate 3 was removed during the previous growth.
GaAs crystals and T deposited on the wall of the reaction tube 6 downstream
The decomposition products of MC evaporate from the tube wall of the reaction tube 6 due to the high temperature of 1000° C. during the above-mentioned cleaning process, which is higher than the GaAs growth temperature, and adhere to the substrate 3, resulting in contamination due to the cleaning process. There was a problem. Due to the contamination, when using a 5i (100) substrate, GaAs
A so-called antiphase domain in which (100) and GaAs (100) coexist occurs.
また、従来は反応管6の管壁に付着した生成物を除去す
るため、HCJを流しエツチングにより清浄にする方法
がとられている。GaAs基板上にGaAs結晶を成長
させるホモエピタキシャル成長の場合には上記のHCJ
によるクリーニング(清浄化処理)は効果がある。しか
し、シリコンを基板3とする場合には、クリーニング後
にも反応管6内に保留している微量のHCl1が反応管
6に用いられているSingを腐食し、この5iftの
酸素成分がシリコン基板3の表面を酸化させるため、化
合物半導体結晶が成長しなくなるという欠点があった。Furthermore, conventionally, in order to remove products adhering to the wall of the reaction tube 6, a method of cleaning the reaction tube 6 by flowing HCJ and etching has been used. In the case of homoepitaxial growth of GaAs crystals on GaAs substrates, the above HCJ
cleaning (cleaning treatment) is effective. However, when silicon is used as the substrate 3, a trace amount of HCl1 retained in the reaction tube 6 even after cleaning corrodes the Sing used in the reaction tube 6, and this 5 ift oxygen component is transferred to the silicon substrate 3. This method has the disadvantage that compound semiconductor crystals cannot grow because the surface of the compound semiconductor is oxidized.
(発明の目的)
本発明の目的は、シリコン基板の表面を清浄に保ってそ
のシリコン基板上に化合物半導体を有機金属原料を用い
て結晶成長させることのできる気相成長装置を提供する
ことにある。(Objective of the Invention) An object of the present invention is to provide a vapor phase growth apparatus capable of crystal-growing a compound semiconductor on a silicon substrate using an organic metal raw material while keeping the surface of the silicon substrate clean. .
(発明の特徴)
本発明は、V族元素の水素化物ガスが流れ、かつ基板を
一時収納できるようにした清浄化処理スペースを反応管
内に備えてその清浄化処理スペース内で基板の清浄化処
理を行いその清浄化処理スペースから流出した■族元素
の水素化物ガスと■族元素の有機金属化合物ガスとが合
流する位置に基板を移動して気相成長をすることができ
るように構成したことを最も主要な特徴とする。従来の
技術では、基板を反応管内に固定し、その基板に■族元
素の有機金属化合物ガスと■族元素の水素化物ガスの混
合ガスを送る構成である。上記の点で従来技術とは異な
る。(Features of the Invention) The present invention provides a cleaning processing space in a reaction tube through which a hydride gas of a group V element flows and in which a substrate can be temporarily stored, and the substrate is cleaned within the cleaning processing space. The structure is such that vapor phase growth can be performed by moving the substrate to a position where the hydride gas of the group III element and the organometallic compound gas of the group III element flowing out from the cleaning treatment space join together. is the most important feature. In the conventional technique, a substrate is fixed in a reaction tube, and a mixed gas of an organometallic compound gas of a group Ⅰ element and a hydride gas of a group Ⅰ element is sent to the substrate. This differs from the prior art in the above points.
(実施例) 以下本発明の実施例について詳細に説明する。(Example) Examples of the present invention will be described in detail below.
第2図は本発明による気相成長装置の構成図である。本
実施例では、トリメチルガリウムとアルシンを用いてG
aAs結晶をSt基板上に成長させる例を説明するが、
本発明は上記組合わせだけに限定するものではなく、ト
リメチルガリウム、トリメチルインジウム、ホスフィン
などを用いてGaP。FIG. 2 is a block diagram of a vapor phase growth apparatus according to the present invention. In this example, G
An example of growing an aAs crystal on a St substrate will be explained.
The present invention is not limited to the above combinations, but uses trimethylgallium, trimethylindium, phosphine, etc. to form GaP.
InP等の化合物半導体を成長させる場合にも適用する
ことができる。It can also be applied when growing compound semiconductors such as InP.
第2図において、11はトリメチルガリウムガスを入口
、12はアルシンガス導入口、13はシリコン基板、1
4はカーボン製のサセプタ、15は高周波加熱用コイル
、16はアルシンが流れかつ基板を一時収納できる清浄
化処理スペース、17は排気口、工8は基板を移動させ
るための棒、19はしぼり、20は反応管、21はトリ
メチルガリウムガスの流れ、22はアルシンガスの流れ
である。トリメチルガリウムガス導入口11は反応管2
0内をクリーニングする際のHIJガスの導入口を兼ね
る。H(Jガスの導入口はアルシンガスと同一の流路と
ならないことが重要で他に導入口を設置してもよい0反
応管20は、すべて石英ガラス製である。第3図は基板
を一時収納する清浄化処理スペース16に基板13を収
納した場合を示した。このような基板13の配置ではア
ルシンガスの流れ22により基板を一時収納する清浄化
処理スペース16外にあるアルシン以外のガス成分は押
し流され、この清浄化処理スペース内に入ることはない
。In FIG. 2, 11 is an inlet for trimethyl gallium gas, 12 is an arsine gas inlet, 13 is a silicon substrate, 1
4 is a carbon susceptor, 15 is a high-frequency heating coil, 16 is a cleaning space where arsine flows and can temporarily store the substrate, 17 is an exhaust port, 8 is a rod for moving the substrate, 19 is a squeezer, 20 is a reaction tube, 21 is a flow of trimethyl gallium gas, and 22 is a flow of arsine gas. Trimethyl gallium gas inlet 11 is connected to reaction tube 2
It also serves as an inlet for HIJ gas when cleaning the inside of 0. It is important that the inlet for H (J gas is not in the same flow path as the arsine gas, and other inlets may be installed.) The reaction tube 20 is entirely made of quartz glass. A case is shown in which the substrate 13 is stored in the cleaning processing space 16 in which the substrate is stored.With this arrangement of the substrate 13, gas components other than arsine outside the cleaning processing space 16 in which the substrate is temporarily stored are removed by the arsine gas flow 22. They will not be swept away and will not enter this cleaning treatment space.
上記装置を用いてSt基板13上にGaAsを成長させ
るには次のように実施する。Si基板13を洗浄した後
、表面に形成されている自然酸化膜をHF水溶液で除去
し、直ちに反応管20内に入れる。基板13を載せたサ
セプタ14を清浄化処理スペース16内の第3図に示す
位置に移動し、導入口11.12よりHzガスを導入す
る。高周波加熱コイル15に高周波電力を印加し、基板
13を1000℃に加熱して基板13の表面にある自然
酸化膜や汚れを除去する清浄化処理を行う。次に、基板
13の温度を400℃に低下させ導入口12によりアル
シンガスを導入し22に示すように流す。次に、導入口
11よりトリメチルガリウムガスを導入し、ガス流21
が定常になった後、棒18を移動させて基板を清浄化処
理スペース16より引き出し、第2図に示すようにトリ
メチルガリウムガス流21とアルシンガス流22とが合
流する合流領域に基板13が配置されるようにして成長
を開始する。2分後に再び基板13を第3図に示された
配置状態にして成長を止める。このような成長工程によ
り、St基板13上には膜厚、200人のGaAs膜が
成長した。次に、750℃に基板13の温度を上昇させ
再び第2図の配置にして30分間保った。このような工
程によりSt基板13上には膜厚2.5μmで基板13
の方位を引き継いだ鏡面状のGaAs膜が成長した。成
長した膜の結晶性をX線2結晶回折法で調べたところ、
バルクGaAs結晶の回折線半値幅と同等なアンチフェ
ーズドメインのない単結晶であった。The growth of GaAs on the St substrate 13 using the above-mentioned apparatus is carried out as follows. After cleaning the Si substrate 13, the natural oxide film formed on the surface is removed with an HF aqueous solution, and the Si substrate 13 is immediately placed into the reaction tube 20. The susceptor 14 carrying the substrate 13 is moved to the position shown in FIG. 3 in the cleaning processing space 16, and Hz gas is introduced from the inlet 11.12. High frequency power is applied to the high frequency heating coil 15 to heat the substrate 13 to 1000° C. to perform a cleaning process to remove natural oxide films and dirt on the surface of the substrate 13. Next, the temperature of the substrate 13 is lowered to 400° C., and arsine gas is introduced through the inlet 12 to flow as shown at 22. Next, trimethyl gallium gas is introduced from the inlet 11, and the gas flow 21
After the temperature becomes steady, the rod 18 is moved to pull out the substrate from the cleaning processing space 16, and the substrate 13 is placed in the confluence area where the trimethyl gallium gas flow 21 and the arsine gas flow 22 merge, as shown in FIG. Start growing. After 2 minutes, the substrate 13 is placed in the position shown in FIG. 3 again to stop the growth. Through such a growth process, a GaAs film with a thickness of 200 mm was grown on the St substrate 13. Next, the temperature of the substrate 13 was raised to 750° C. and maintained again for 30 minutes in the arrangement shown in FIG. Through such a process, the substrate 13 is coated with a film thickness of 2.5 μm on the St substrate 13.
A mirror-like GaAs film was grown that inherited the orientation of . When the crystallinity of the grown film was examined using X-ray two-crystal diffraction method, it was found that
It was a single crystal without an antiphase domain, which had a diffraction line half width equivalent to that of a bulk GaAs crystal.
上記成長工程を行った後には、サセプタ14上にもGa
As多結晶が成長している。これを除去するため、第2
図の配置にサセプタ14を保ち、導入口11よりHCj
!ガスを導入し、サセプタ14を1000℃に加熱して
、GaAs多結晶を除去した。続いてHC4’ガスを止
め、Htガスを流し、サセプタ14中に染め込んだHC
4ガス成分を揮発させた。この清浄化処理工程中温入口
12よりH2ガスを常に流し、清浄化処理スペース16
にはHCI!成分が入り込まないようにした。再び前記
実施例で述べたGaAs結晶をSt基板上13上に成長
させる工程を繰り返したが、第1回目と同じく良好に成
長させることができ、再現性が確認された。これは反応
管20やサセプタ14が良く清浄化され残留H(/lや
GaAsがなく、S1基板13上が清浄に保たれている
ことによるものである。After performing the above growth process, Ga is also formed on the susceptor 14.
As polycrystals are growing. To remove this, the second
Keep the susceptor 14 in the arrangement shown in the figure, and insert the HCj from the inlet 11.
! Gas was introduced and the susceptor 14 was heated to 1000° C. to remove the GaAs polycrystal. Next, the HC4' gas was stopped, the Ht gas was supplied, and the HC4' gas soaked into the susceptor 14 was removed.
4 gas components were volatilized. In this cleaning treatment process, H2 gas is constantly flowed from the medium temperature inlet 12, and the cleaning treatment space 16
HCI! Prevented ingredients from entering. The process of growing the GaAs crystal on the St substrate 13 described in the above example was repeated again, and as with the first time, the growth was successful and reproducibility was confirmed. This is because the reaction tube 20 and susceptor 14 are well cleaned, there is no residual H(/l) or GaAs, and the top of the S1 substrate 13 is kept clean.
第4図(at (blは本発明の第2の実施例を示す縦
断面図及び横断面図である。本実施例の装置は縦型であ
り、円板状のサセプタ34上に基板33を配置しサセプ
タ34の回転により第1の実施例で説明したように基板
33の移動を行う。成長は第1の実施例と同様に基板3
3をサセプタ34上に乗せ、サセプタ回転軸38の操作
により、アルシンガス導入口32の直下の清浄化処理ス
ペース36内に基板33を配置する。39はしぼりであ
る。先ずH2ガスをアルシンガス導入口32より導き、
高周波加熱用コイルにより、基板33を加熱してその基
板33の表面上の自然酸化膜を除去するための清浄化処
理を行う。次に、アルシンガスの流れ42とトリメチル
ガリウムガスの流れ41とをそれぞれの導入口32.3
1より入れ、サセプタ34を回転させ、アルシンガスと
トリメチルガリウムガスが合流する合流領域に第4図(
a) (b)に点線で示すように基板33を位置させて
成長を行う。FIG. 4 (at (bl) is a vertical cross-sectional view and a cross-sectional view showing a second embodiment of the present invention. By rotating the susceptor 34, the substrate 33 is moved as explained in the first embodiment.
3 on the susceptor 34, and by operating the susceptor rotating shaft 38, the substrate 33 is placed in the cleaning processing space 36 directly under the arsine gas inlet 32. 39 is a squeeze. First, H2 gas is introduced from the arsine gas inlet 32,
A high-frequency heating coil heats the substrate 33 to perform a cleaning process to remove a natural oxide film on the surface of the substrate 33. Next, the arsine gas flow 42 and the trimethyl gallium gas flow 41 are introduced into respective inlets 32.3.
1, rotate the susceptor 34, and place it in the confluence area where arsine gas and trimethyl gallium gas meet as shown in Figure 4 (
a) Growth is performed with the substrate 33 positioned as shown by the dotted line in (b).
上記実施例1.2では加熱に高周波誘導加熱法を行った
が赤外線ランプを用いてもよい。また、第1.第2の実
施例においてアルシンガス、トリメチルガリウムガス各
々にH2ガスを混合してキャリアガスとして用いても良
いことは言うまでもない。また、第4図では基板を一枚
としたが複数枚室いてもよい。In Example 1.2 above, the high frequency induction heating method was used for heating, but an infrared lamp may also be used. Also, 1st. It goes without saying that in the second embodiment, H2 gas may be mixed with arsine gas and trimethylgallium gas and used as the carrier gas. Further, although the number of substrates is one in FIG. 4, a plurality of substrates may be used.
(発明の効果)
以上説明したように、本発明による気相成長装置は、反
応管内にV族元素の水素化物ガスが流れかつ基板を一時
収納できる清浄化処理スペースを備え、この清浄化処理
スペースのガス流出口において前記の■族元素の水素化
物ガスと■族有機金属化合物ガスとが合流する合流領域
が得られるようにし、かつ前記の清浄化処理スペース内
と前記合流領域に基板が移動できるようにした機構を持
つ構造であるため、サセプタや反応管の清浄化にHCl
を用いても、基板をその清浄化処理スペース内に一時退
避させてお(ことにより、その基板を成長直前まで残留
HCffiのない雰囲気に保つことができる。そのため
、成長時に基板の表面を清浄に保つことが出来るので、
再現性良くアンチフェーズドメインのない化合物半導体
を成長させることができる。またI(Cfを使用した後
、残留HCIIを反応管より追い出すための長時間のパ
ージを行う必要がないため装置の使用効率が上がるとい
う効果が得られる。(Effects of the Invention) As explained above, the vapor phase growth apparatus according to the present invention is provided with a cleaning treatment space in which a hydride gas of a group V element flows in a reaction tube and in which a substrate can be temporarily stored. A confluence region where the group (III) element hydride gas and the group (III) organometallic compound gas meet at the gas outlet is obtained, and the substrate can be moved into the cleaning processing space and into the confluence region. Because the structure has such a mechanism, HCl can be used to clean the susceptor and reaction tube.
Even if the substrate is used for growth, the substrate can be kept in an atmosphere free of residual HCffi until immediately before the growth by temporarily retracting the substrate into the cleaning processing space. Because it is possible to keep
Compound semiconductors without antiphase domains can be grown with good reproducibility. Further, after using I(Cf), there is no need to perform a long purge to expel residual HCII from the reaction tube, resulting in the effect of increasing the efficiency of use of the apparatus.
第1図は従来の気相成長装置の概念を示す断面略図、第
2図は本発明装置の第1の実施例を示す縦断面略図、第
3図は本発明装置の動作を説明するための縦断面略図、
第4図(a) (blは本発明の第2の実施例を示す縦
断面図およびIV−II/面に沿う横断面図である。
1・・・トリメチルガリウムガス導入口、2・・・アル
シンガス導入口、 3・・・基板、4・・・サセプタ
、 5・・・高周波加熱用コイル、11・・・トリメチ
ルガリウムガス導入口、12・・・アルシンガス導入口
、 13・・・基板、14・・・サセプタ、 15・・
・高周波加熱用コイル、16・・・清浄化処理スペース
、 17・・・排気口、18・・・基板を移動させる棒
、 19・・・しぼり、20・・・反応管、 2工・・
・トリメチルガリウムガスの流れ、 22・・・アルシ
ンガスの流れ、31・・・トリメチルガリウムガス導入
口、32・・・アルシンガス導入口、 33・・・基板
、34・・・サセプタ、 35・・・高周波加熱用コイ
ル、36・・・清浄化処理スペース、 37・・・排気
口、38・・・サセプタ回転軸、 39・・・しぼり、
41・・・トリメチルガリウムガスの流れ、42・・・
アルシンガスの流れ。FIG. 1 is a schematic cross-sectional view showing the concept of a conventional vapor phase growth apparatus, FIG. 2 is a schematic vertical cross-sectional view showing a first embodiment of the apparatus of the present invention, and FIG. 3 is a schematic cross-sectional view showing the operation of the apparatus of the present invention. Longitudinal cross-sectional diagram,
FIG. 4(a) (bl is a longitudinal cross-sectional view and a cross-sectional view along plane IV-II/, showing a second embodiment of the present invention. 1... trimethyl gallium gas inlet, 2... Arsine gas inlet, 3... Substrate, 4... Susceptor, 5... High frequency heating coil, 11... Trimethyl gallium gas inlet, 12... Arsine gas inlet, 13... Substrate, 14 ...Susceptor, 15...
・High frequency heating coil, 16... Cleaning processing space, 17... Exhaust port, 18... Rod for moving the substrate, 19... Squeezer, 20... Reaction tube, 2nd...
- Flow of trimethyl gallium gas, 22... Flow of arsine gas, 31... Trimethyl gallium gas inlet, 32... Arsine gas inlet, 33... Substrate, 34... Susceptor, 35... High frequency Heating coil, 36... Cleaning processing space, 37... Exhaust port, 38... Susceptor rotating shaft, 39... Squeezing,
41... Flow of trimethyl gallium gas, 42...
Arsine gas flow.
Claims (3)
を水素化物ガスで反応管内に輸送して該反応管内に収容
された基板上にIII−V族化合物半導体結晶を成長させ
る気相成長装置においてV族元素の水素化物ガスが流さ
れることによって前記有機金属化合物ガスが流れ込まな
いように形成されかつ前記基板を一時収納できるように
した清浄化処理スペースを前記反応管内に備え、該清浄
化処理スペースのガス流出口において前記水素化物ガス
と前記有機金属化合物ガスとが合流する合流領域が得ら
れるように形成され、かつ前記清浄化処理スペース内と
前記合流領域に前記基板が移動できるようにした機構を
備えたことを特徴とする気相成長装置。(1) Vapor phase growth in which Group III elements are transported into a reaction tube using an organometallic compound gas and Group V elements are transported using a hydride gas to grow a III-V group compound semiconductor crystal on a substrate housed in the reaction tube. A cleaning treatment space is provided in the reaction tube, which is formed so that the organometallic compound gas does not flow in when a hydride gas of a group V element is flowed in the apparatus, and in which the substrate can be temporarily stored; A confluence region is formed at the gas outlet of the processing space where the hydride gas and the organometallic compound gas meet, and the substrate is configured to be movable within the cleaning treatment space and into the confluence region. A vapor phase growth apparatus characterized by being equipped with a mechanism.
導入口に連結されかつ前記反応管内に該水素化物ガスの
流れを導くしぼり付開口を有する小室よりなり、該しぼ
り付開口を介して前記基板が該清浄化処理スペースと前
記反応管内の前記合流領域との間で相互移動可能なるよ
うに形成されたことを特徴とする特許請求の範囲第1項
記載の気相成長装置。(2) The cleaning processing space consists of a small chamber having an opening with a throttle connected to the inlet of the hydride gas and guiding the flow of the hydride gas into the reaction tube, and the cleaning processing space is connected to the inlet of the hydride gas and has an opening with a throttle for guiding the flow of the hydride gas into the reaction tube, and 2. The vapor phase growth apparatus according to claim 1, wherein the substrate is formed to be movable between the cleaning processing space and the merging region in the reaction tube.
上部管壁と該上部管壁と適宜の間隔をおいて該反応管内
に配置された基板保持用のサセプタとの間にしぼり機構
により前記反応管と区切られて形成され、該清浄化処理
スペースには前記上部管壁に前記水素化物ガスの導入口
が設けられ、前記サセプタの回転機構により該サセプタ
上の前記基板が該清浄化処理スペース外の前記反応管の
上部管壁に設けられた前記有機金属化合物ガスの導入口
近傍に形成される前記合流領域と前記清浄化処理スペー
スとの間で相互移動可能なるように形成されたことを特
徴とする特許請求の範囲第1項記載の気相成長装置。(3) The cleaning processing space is formed by a squeezing mechanism between the upper tube wall of the vertical reaction tube and a susceptor for holding a substrate disposed within the reaction tube at an appropriate distance from the upper tube wall. The cleaning treatment space is formed separated from the reaction tube, and an inlet for the hydride gas is provided in the upper tube wall, and the substrate on the susceptor is rotated through the cleaning treatment by the rotating mechanism of the susceptor. The confluence region formed near the introduction port for the organometallic compound gas provided on the upper wall of the reaction tube outside the space and the cleaning processing space are formed to be mutually movable. A vapor phase growth apparatus according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7448886A JPH0657635B2 (en) | 1986-04-01 | 1986-04-01 | Vapor phase growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7448886A JPH0657635B2 (en) | 1986-04-01 | 1986-04-01 | Vapor phase growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62230693A true JPS62230693A (en) | 1987-10-09 |
JPH0657635B2 JPH0657635B2 (en) | 1994-08-03 |
Family
ID=13548723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7448886A Expired - Fee Related JPH0657635B2 (en) | 1986-04-01 | 1986-04-01 | Vapor phase growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0657635B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000020665A1 (en) * | 1998-10-01 | 2000-04-13 | Deutsche Telekom Ag | Method for producing semiconductor layers |
EP1041612A4 (en) * | 1998-09-14 | 2001-01-10 | Shinetsu Handotai Kk | Method for heat-treating silicon wafer and silicon wafer |
-
1986
- 1986-04-01 JP JP7448886A patent/JPH0657635B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1041612A4 (en) * | 1998-09-14 | 2001-01-10 | Shinetsu Handotai Kk | Method for heat-treating silicon wafer and silicon wafer |
US6391796B1 (en) | 1998-09-14 | 2002-05-21 | Shin-Etsu Handotai Co., Ltd. | Method for heat-treating silicon wafer and silicon wafer |
WO2000020665A1 (en) * | 1998-10-01 | 2000-04-13 | Deutsche Telekom Ag | Method for producing semiconductor layers |
Also Published As
Publication number | Publication date |
---|---|
JPH0657635B2 (en) | 1994-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4840921A (en) | Process for the growth of III-V group compound semiconductor crystal on a Si substrate | |
JPS62188309A (en) | Vapor growth method and equipment therefor | |
JPS62230693A (en) | Vapor growth apparatus | |
JPH0258325A (en) | Apparatus for vapor growth of semiconductor thin film | |
JPH02291114A (en) | Vapor growth apparatus for compound semiconductor | |
JPS62128518A (en) | Vapor growth equipment | |
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor | |
JP2656029B2 (en) | Crystal growth equipment | |
JP2001035795A (en) | Vapor phase growth system | |
JPH02221196A (en) | Formation of thin film of iii-v compound semiconductor | |
JPH0547668A (en) | Crystal growth method for compound semiconductor | |
JPH0427116A (en) | Method of forming semiconductor heterojunction | |
JPS6143413A (en) | Formation of compound semiconductor single crystal thin film | |
JP2576135B2 (en) | Method of growing GaP crystal on Si substrate | |
JPH0529637B2 (en) | ||
JPS6353918A (en) | Semiconductor crystal growth apparatus | |
JPS62202894A (en) | Vapor growth method for iii-v compound semiconductor | |
JPS60109222A (en) | Device for vapor growth of compound semiconductor of iii-v group | |
JPS61294811A (en) | Semiconductor crystal manufacturing equipment | |
JPH0559080B2 (en) | ||
JPS62297295A (en) | Vapor growth by thermal decomposition of organometallic compounds and apparatus therefor | |
JPS63129616A (en) | Semiconductor device and manufacture thereof | |
JPH02291112A (en) | Vapor growth apparatus for compound semiconductor | |
JPH03232793A (en) | Cleaning of growth chamber | |
JPS63287015A (en) | Vapor growth apparatus for compound semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |