[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS62236497A - Novel glycoprotein and production thereof - Google Patents

Novel glycoprotein and production thereof

Info

Publication number
JPS62236497A
JPS62236497A JP61166710A JP16671086A JPS62236497A JP S62236497 A JPS62236497 A JP S62236497A JP 61166710 A JP61166710 A JP 61166710A JP 16671086 A JP16671086 A JP 16671086A JP S62236497 A JPS62236497 A JP S62236497A
Authority
JP
Japan
Prior art keywords
polypeptide
dna
cells
human
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61166710A
Other languages
Japanese (ja)
Other versions
JPH025395B2 (en
Inventor
Tatsumi Yamazaki
達美 山崎
Masayuki Tsuchiya
政幸 土屋
Juichi Osada
重一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to IE242786A priority Critical patent/IE63992B1/en
Priority to IE930852A priority patent/IE64489B1/en
Priority to NO863674A priority patent/NO179373C/en
Priority to DK198604432A priority patent/DK175336B1/en
Priority to HU863963A priority patent/HU209147B/en
Priority to CA000518286A priority patent/CA1341389C/en
Priority to AU62980/86A priority patent/AU598477C/en
Priority to KR1019860007835A priority patent/KR910005624B1/en
Priority to FI863757A priority patent/FI104982B/en
Priority to CN 86106815 priority patent/CN1021461C/en
Priority to IL80058A priority patent/IL80058A/en
Priority to DE8686113446T priority patent/DE3681551D1/en
Priority to EP86113446A priority patent/EP0220520B1/en
Priority to AT86113446T priority patent/ATE67517T1/en
Publication of JPS62236497A publication Critical patent/JPS62236497A/en
Priority to KR1019890006201A priority patent/KR920002312B1/en
Publication of JPH025395B2 publication Critical patent/JPH025395B2/ja
Priority to KR1019910019455A priority patent/KR920005752B1/en
Priority to HR920628A priority patent/HRP920628B1/en
Priority to SG650/93A priority patent/SG65093G/en
Priority to HK655/93A priority patent/HK65593A/en
Priority to YU75295A priority patent/YU48523B/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:A gene coding a polypeptide having stimulation factor activity to form a human granulocyte colony is separated and is made to be manifested in a host cell. CONSTITUTION:A DNA necessary for forming human granulocyte cell colony and coding a polypeptide having specific stimulation factor activity is obtained as a 15-17S fraction by sucrose density gradient centrifugation. The DNA has an amino acid sequence of formula. A host cell is transformed with a recombinant vector integrated with said DNA. The objective glycoprotein having human granulocyte colony stimulation factor activity can be separated from the culture product of the obtained transformed strain.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は17規な主としてヒト顆粒球系細胞のコロニー
形成をざぜるために必要な、特異的な刺激因子、すなわ
ちコロニー刺激因子(以下rcsFJと略記する)活性
を有する糖蛋白質、及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention utilizes 17 specific stimulating factors, mainly colony stimulating factors (hereinafter referred to as rcsFJ), necessary for stimulating colony formation of human granulocytic cells. The present invention relates to a glycoprotein having activity (abbreviated as ) and a method for producing the same.

〔従来の技術〕[Conventional technology]

2層軟寒天培養法で、上層に標的細胞として骨髄細胞を
、下層に腎細胞゛つ胎児細胞を入れて培養すると、上層
の細胞の一部が増殖分化し、好中球系顆粒球(以下[顆
粒球(granulocyte) Jと称す)や単球マ
クロファージからなるコロニーが形成されることから、
生体内にコロニー形成を促進する因子が存在することが
知られていた(Pluznikと5ach: J、 C
e11.Comp、Physiol 、 66巻319
頁(1965)、 BradleyとHetcalf 
 : Au5t、J 、 EXI) 。
When cultured using the two-layer soft agar culture method, with bone marrow cells as target cells in the upper layer and kidney cells and fetal cells in the lower layer, some of the cells in the upper layer proliferate and differentiate, forming neutrophilic granulocytes (hereinafter referred to as neutrophil-type granulocytes). Colonies consisting of granulocytes (referred to as granulocytes J), monocytes and macrophages are formed,
It was known that factors that promote colony formation exist in living organisms (Pluznik and 5ach: J, C
e11. Comp, Physiol, vol. 66, 319
Page (1965), Bradley and Hetcalf
: Au5t, J, EXI).

8io1.  Hed、  Sci、 44巻287頁
(196&))。
8io1. Hed, Sci, vol. 44, p. 287 (196&)).

C8Fと総称されるこの因子は、正常に広く生体内分イ
ロする細胞、たとえば、■細胞、単球マクロファージ、
繊維芽細胞、内皮細胞などより産生されることが知られ
ている。C3Fには顆粒球・単球マクロファージの幹細
胞に作用して、その増殖を刺激し分化を誘導して、軟寒
天中で顆粒球や単球マクロファージから成るコロニーを
形成さ才る作用をもつ顆粒球−単球マクロファージC3
F(GM−C3Fと略記する)、主として単球マクロフ
ァージのコロニーを形成させる作用をもつ単球マクロフ
ァージC3F (M−C8Fと略記する)より未分化な
多能性幹細胞に作用する多能性C8F (mu I t
 1−C3Fと略記する)、あるいは本発明の如き、主
として顆粒球系コロニーを形成させる作用をもつ顆粒球
C3F (G−C3Fと略記する)などのサブクラスが
存在し、それぞれのサブクラスによって標的細胞の分化
段階も異なることが考えられる様になってきた[ASa
nO:代謝−Hctabolisn+ and Dis
ease、 22巻249頁(1985) 。
This factor, collectively referred to as C8F, normally differentiates widely in the body, such as cells, monocytes, macrophages,
It is known to be produced by fibroblasts, endothelial cells, etc. C3F is a granulocyte that acts on granulocyte/monocyte/macrophage stem cells, stimulates their proliferation, induces their differentiation, and forms colonies consisting of granulocytes and monocytes/macrophages in soft agar. -monocyte macrophage C3
F (abbreviated as GM-C3F) is a pluripotent C8F (abbreviated as M-C8F) that acts on undifferentiated pluripotent stem cells, which mainly acts to form colonies of monocytes and macrophages. mu I t
There are subclasses such as granulocyte C3F (abbreviated as G-C3F), which mainly acts to form granulocytic colonies as in the present invention, and each subclass has a specific effect on target cells. It has come to be considered that the differentiation stages are also different [ASa
nO: Metabolism-Hctabolisn+ and Dis
ease, vol. 22, p. 249 (1985).

Yunis等;“Growth and Hatura
tion Factors”edited by Gu
roff、 John wiley &5ons、 N
Y、1巻、209頁(1983) ]。
Yunis et al.; “Growth and Hatura
tion Factors”edited by Gu
roff, John Wiley & 5ons, N
Y, vol. 1, p. 209 (1983)].

従って個々のサブクラスを精製し、その化学的性状や生
物学的性状をより詳細に調べることは造血機構や種々の
血液学的疾患の病態の解析にきわめて重要なことである
Therefore, it is extremely important to purify each subclass and investigate its chemical and biological properties in more detail for the analysis of the hematopoietic mechanism and the pathology of various hematological diseases.

中でもG−C3Fの生物学的作用として、骨髄性白血病
細胞の分化誘導と成熟顆粒球の機能亢進が注目されてお
り、特に白血病の治療と予防へのG−C3Fの臨床的有
用性が大いに期待されてきた。
Among the biological effects of G-C3F, induction of differentiation of myeloid leukemia cells and hyperfunction of mature granulocytes are attracting attention, and the clinical usefulness of G-C3F in the treatment and prevention of leukemia is highly anticipated. It has been.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

G−C3Fの単離精製のために従来性われてきた試みは
、細胞培養法を用いてその培養上清からG−C3Fを単
離する方法であるが、G−C8Fが低濃度しか産生され
ないこと、大量の培養液から微量のG−C3Fを1qる
には複雑な精製過程を必要とするなどの難点をかかえ未
だ大量の均一なG−C3Fを得るには至っていなかった
。従って、組換えDNA技術を用いてG−C3Fを大量
に製造することが渇望されていた。
Conventional attempts to isolate and purify G-C3F involve isolating G-C3F from the culture supernatant using cell culture methods, but G-C8F is only produced in low concentrations. In particular, it has not yet been possible to obtain a large amount of homogeneous G-C3F due to difficulties such as the need for a complicated purification process to extract 1 q of trace amounts of G-C3F from a large amount of culture fluid. Therefore, it has been desired to produce G-C3F in large quantities using recombinant DNA technology.

〔問題点を解決するための手段〕[Means for solving problems]

かかる状況において、本発明者らはヒトG−C3F活性
を有するポリペプチドをコードする遺伝子を単離し、当
該遺伝子を宿主細胞内で発現することに成功した。
Under such circumstances, the present inventors succeeded in isolating a gene encoding a polypeptide having human G-C3F activity and expressing the gene in host cells.

本発明は特許請求の範囲第1項に記載したアミノ酸配列
またはその一部で表わされるポリペプチドと糖鎖部分を
有しヒト顆粒球コロニー刺激因子活性を有する糖蛋白質
を提供するものである。
The present invention provides a glycoprotein having human granulocyte colony-stimulating factor activity, which has a polypeptide represented by the amino acid sequence set forth in claim 1 or a portion thereof and a sugar chain moiety.

又、本発明は上記の糖蛋白質の製造方法、即ち、ヒト顆
粒球コロニー刺激因子活性を有するポリペプチドをコー
ドする遺伝子を得、次にこれを組み込んだ組換えベクタ
ーをvA製した後、該ベクターを用いて宿主細胞を形質
転換し、次いで得られた形質転換株を培養し、その培養
物から目的糖蛋白質を採取することを特徴とする上記の
ヒト顆粒球コロニー刺激因子活性を有する糖蛋白質の製
造方法を提供するものである。
The present invention also provides a method for producing the above-mentioned glycoprotein, that is, obtaining a gene encoding a polypeptide having human granulocyte colony-stimulating factor activity, and then producing a recombinant vector incorporating this into vA, and then producing the vector. A method of producing a glycoprotein having human granulocyte colony-stimulating factor activity as described above, which is characterized in that a host cell is transformed using the above-mentioned human granulocyte colony-stimulating factor. A manufacturing method is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いられるヒトG−C3F活性を有するポリペ
プチドをコードする遺伝子としては、ショ糖密度勾配遠
心法により15〜17S画分として得られる、ヒ(〜G
−C3F活性を有するポリペプチドをコードするメツセ
ンジャーRNA (mRNA>に相補的なりNA (c
DNA)がある。
The gene encoding the polypeptide having human G-C3F activity used in the present invention includes human (~G
-Messenger RNA (mRNA) encoding a polypeptide with C3F activity
DNA).

本出願人は2系列のこのようなCDNAを得た。Applicants have obtained two series of such CDNAs.

そのうらの1つの系列のCDNAは図3(B)のポリペ
プチドエ又は■をコードする遺伝子あるいはその一部を
有するものであり、さらに詳細には図3(A)の塩基配
列の5′−末端から32〜34ヌクレオチド位のATG
から650〜652ヌクレオチド位のCCCまでの配列
、122〜124位のACCから650〜652位のC
CCまでの配列または図3(A)に記載された配列ある
いはその一部を有するものである。
One of the series of CDNAs has a gene encoding polypeptide A or ■ in Figure 3(B) or a part thereof, and more specifically, it has a gene encoding the polypeptide A or ■ in Figure 3(B), or a part thereof, and more specifically, it has a gene encoding the polypeptide A or ■ in Figure 3(B), or a part thereof. ATG at nucleotide positions 32-34
to CCC at nucleotide positions 650-652, from ACC at nucleotide positions 122-124 to CCC at nucleotide positions 650-652
It has the arrangement up to CC or the arrangement shown in FIG. 3(A), or a part thereof.

コノ系列(7)CDNAをCDNA (+VSE) と
称する。
The Kono series (7) CDNA is referred to as CDNA (+VSE).

他の系列のCDNAは図4(B)のポリペプチドエ又は
■をコードする遺伝子あるいはその一部を有するもので
あり、さらに詳細には図4(^)の塩基配列の5′−末
端から31〜33ヌクレオチド位のATGから640〜
642ヌクレオチド位のCCCまでの配列、121〜1
23位のACCから640〜642位のCCCまでの配
列または図4(A)に記載された配列あるいはその一部
を有するものである。
Other series of CDNAs have the gene encoding polypeptide A or ■ in Figure 4(B) or a part thereof, and more specifically, the nucleotide sequence from 31 to 33 from the 5'-end of the base sequence in Figure 4(^). 640~ from nucleotide position ATG
Sequence up to CCC at nucleotide position 642, 121-1
It has the sequence from ACC at position 23 to CCC at positions 640 to 642, the sequence shown in FIG. 4(A), or a part thereof.

この系列のcDNAをCDNA (−VSE)と称する
This series of cDNAs is called CDNA (-VSE).

上記の遺伝子は、例えばG−C3F活性を有するポリペ
プチドを産生ずる能力を有する哺乳動物細胞等からG−
C3FをコードするmRNAを調製した後、既知の方法
により2本鎖CDNAに変換し、このDNAを含む組換
体の集合(以下C[)NAライブラリーと称する)から
既知の方法によリスクリーニングすることによって得ら
れる。
The above gene can be obtained from mammalian cells having the ability to produce polypeptides having G-C3F activity, for example.
After preparing mRNA encoding C3F, it is converted into double-stranded CDNA by a known method, and rescreened from a collection of recombinants containing this DNA (hereinafter referred to as a C[)NA library) by a known method. obtained by

又、本発明で用いられる遺伝子はヒトG−C3F活性を
有するポリペプチドをコードするヒト染色体由来の遺伝
子であってもよい。この遺伝子は転写調節に関与する塩
基配列を含んでいるものでおり、詳しくは図5に示され
る塩基配列または、その一部を有するものである。
Furthermore, the gene used in the present invention may be a gene derived from a human chromosome that encodes a polypeptide having human G-C3F activity. This gene contains a base sequence involved in transcriptional regulation, and specifically has the base sequence shown in FIG. 5 or a portion thereof.

該染色体由来の遺伝子は、例えばヒト細胞からヒト染色
体遺伝子を含む組換え体の集合(以下、ヒト染色体遺伝
子ライブラリーと称する)を調製した後、既知の方法に
よりスクリーニングすることによって得ることができる
The chromosome-derived genes can be obtained, for example, by preparing a collection of recombinants containing human chromosomal genes (hereinafter referred to as a human chromosomal gene library) from human cells, and then screening the library by a known method.

この場合ヒト染色体遺伝子の供給源としては、ヒト細胞
であれば全て実施することができ、肝。
In this case, as a source of human chromosomal genes, any human cells can be used, including the liver.

腎等の摘出細胞や腫瘍細胞等の培養細胞等を用いること
ができる。
Extracted cells such as kidney cells, cultured cells such as tumor cells, etc. can be used.

また、ヒト細胞からヒト染色体遺伝子ライブラリーを調
製するには、既知の方法[Haniatis等:Ce1
115巻687頁(1978)および)laniati
s等;Mo1ecular cloning、Co1d
 Spring tlarbor Laborator
y 269頁(1982)等を参照コに従って行えばよ
く、例えばヒト胎児肝等からヒト染色体DNAをフェノ
ール等にて抽出し、得られたDNAを制限酵素で部分的
に、若しくは完全に消化させて、適当な長さに断片化さ
れたDNA@得、この断片化されたDNAをT4DNA
リガーゼ等を用いて、ざらには必要に応じてEC0RI
等の切断部位を含むリンカ−を付加して、λフアージベ
クターDNA断片に挿入する。次いでインビトロパッケ
ージング法によりλフアージ粒子を得、それにより大腸
菌などの宿主細胞を形質転換させることによって作成す
ることができる。
In addition, to prepare a human chromosomal gene library from human cells, known methods [Haniatis et al.: Ce1
Vol. 115, p. 687 (1978) and) laniati
s etc.; Molecular cloning, Co1d
Spring Laborator
For example, human chromosomal DNA is extracted from human fetal liver with phenol, etc., and the resulting DNA is partially or completely digested with restriction enzymes. , obtain DNA fragmented to an appropriate length, and convert this fragmented DNA into T4 DNA.
Using ligase etc., EC0RI is added to the grains as necessary.
A linker containing a cleavage site such as the following is added and inserted into the λ phage vector DNA fragment. Lambda phage particles are then obtained by in vitro packaging methods and can be made by transforming host cells such as E. coli.

上記ベクターとして用いたλファージは、例えばCha
rOn4AやEMBL−3,4などが挙げられる。
The λ phage used as the above vector is, for example, Cha
Examples include rOn4A and EMBL-3,4.

一方、前記mRNAの供給源となる哺乳動物細胞は本発
明においては、ヒドロ腔底癌由来の細胞株CHU −2
(Cot Iection Nationale De
 Cu1tures  De )ficroorgan
ismes  (C,N、  C,M) 寄託番号l−
483>であるが、腫瘍細胞株にかぎらず、哺乳動物か
ら分離できる細胞、あるいは樹立した他の細胞株でもよ
い。
On the other hand, in the present invention, the mammalian cell serving as the source of the mRNA is the cell line CHU-2 derived from hydrocaval carcinoma.
(Cot Iection Nationale De
Cultures De )ficroorgan
ismes (C, N, C, M) Deposit number l-
483>, but it is not limited to tumor cell lines, but may also be cells that can be isolated from mammals or other established cell lines.

又、mRNAの調製はすでに他のいくつかの生理活性タ
ンパクの遺伝子をクローン化する際、用いられた方法、
例えば、バナジウム複合体等を用いてリボヌクレアーゼ
インヒビター存在下に界面活性剤処理、フェノール処理
を行う(Ber(lerとBirkenmeier :
 Biochemistry18i5143頁(197
9)を参照)か、グアニジンチオシアナート処理後、C
3CI密度勾配遠心を行う(Chir(lWin等: 
Biochemistry貝巻5294頁(1979)
を参照)ことによって、全RNAを得た後、オリゴ(d
T)−セルロースやセファロース2Bを担体とするポリ
U−セファ0−ス等を用いたアフィニティーカラム法あ
るいはバッチ法によりポリ(A” )RNA (mRN
A)を(7ることができる。またショ糖密度勾配遠心法
等によりポリ(A  )RNAを更に分画することもで
きる。
In addition, the preparation of mRNA is carried out using a method that has already been used to clone the genes of several other physiologically active proteins.
For example, surfactant treatment and phenol treatment are performed using a vanadium complex etc. in the presence of a ribonuclease inhibitor (Ber(ler and Birkenmeier:
Biochemistry18i5143 pages (197
9)) or after treatment with guanidine thiocyanate, C
Perform 3CI density gradient centrifugation (Chir (Win et al.:
Biochemistry Kaimaki 5294 pages (1979)
After obtaining the total RNA by
Poly(A”) RNA (mRNA
A) can be obtained by (7). Poly(A) RNA can also be further fractionated by sucrose density gradient centrifugation or the like.

上記の如くして得られたmRNAが、G−C3F活性を
もつポリペプチドをコードするものであることを確認す
るためには、mRNAをタンパク質に翻訳させ、生理活
性を調べるか、抗G−C3F抗体を用いてそのタンパク
を同定する等の方法を行えばよい。例えば、アフリカッ
メガエル(Xen0pus 1aevis)の卵母細胞
にmRNAを注入して翻訳させたり(GLIrdOn等
: Nature、  233巻177頁(1972)
を参照)、あるいはウサギ網状赤血球(Reticul
ocyte)系や小麦胚芽(Wheat germ)系
を利用した翻訳反応が行われている(Schleifと
wens inに:“Practical Metho
ds in Mo1ecular Biology”、
 Springer−Verlag、 NY、 (19
81))。
In order to confirm that the mRNA obtained as described above encodes a polypeptide with G-C3F activity, it is necessary to translate the mRNA into protein and examine its physiological activity, or to use anti-G-C3F A method such as identifying the protein using an antibody may be used. For example, mRNA was injected into the oocytes of the African frog (Xen0pus 1aevis) and translated (GLIrdOn et al.: Nature, Vol. 233, p. 177 (1972)).
), or rabbit reticulocytes (see
Translation reactions are being carried out using the cyte and wheat germ systems (Schleif and Wens in: “Practical Method
ds in Molecular Biology”,
Springer-Verlag, NY, (19
81)).

G−C3F活性の検定は骨髄細胞を用いた軟寒天培養法
を適用して実施できる。それらの手法については総説が
ある()letcalf ; ”Hemopoieti
cColonies” 、 Springcr−Ver
lag、 Berlin、 He1deibero、 
N Y (1977) )。
G-C3F activity can be assayed by applying a soft agar culture method using bone marrow cells. There is a review article on those methods.
cColonies”, Springcr-Ver
lag, Berlin, Heldeibero,
N Y (1977)).

前述の如き方法で得たmRNAを鋳型にして1本鎖cD
NAを合成した後、この1本鎖CDNAから2本鎖CD
NAを合成し、適当なベクターDNAとの組換えプラス
ミドを作成する。これで大腸菌(Escherichi
a col i )などを形質転換して、形質転換株の
DNA群(cDNAライブラリー)を得る。
Single-stranded cD was generated using the mRNA obtained by the method described above as a template.
After synthesizing NA, double-stranded CD is extracted from this single-stranded CDNA.
Synthesize NA and create a recombinant plasmid with appropriate vector DNA. Now Escherichia
a coli) etc. to obtain a DNA group (cDNA library) of the transformed strain.

mRNAから2本鎖CDNAを得るには、例えばmRN
Aの3′−末端にあるポリへ−鎖に相補的なオリゴ(d
T>をプライマーとして逆転写酵素で処理するか、また
はG−C3Fタンパクのアミノ酸配列の一部に相応する
オリゴヌクレオチドを合成し、これをプライマーとして
逆転写酵素で処理してmRNAに相補的なcDNAを合
成する。
To obtain double-stranded CDNA from mRNA, for example, mRNA
An oligo (d
T> is used as a primer and treated with reverse transcriptase, or an oligonucleotide corresponding to a part of the amino acid sequence of G-C3F protein is synthesized, and this is used as a primer and treated with reverse transcriptase to generate cDNA complementary to mRNA. Synthesize.

2本鎖CDNAは、アルカリ処理でmRNAを分解・除
去した後、得られた1本鎖CDNAを逆転写酵素又はD
NAポリメラービ■(例えばに+enow断片等)処理
後Stヌクレアーゼ等で処理して得るか、あるいは、直
接RNaSe  HおよびDNAポリメラーゼ(例えば
、大腸菌のDNAポリメラーゼエ等)等で処理すること
によっても得ることができる(例えば、Haniati
s等: HOleClJIar cloning 、 
Co1d Spring 1larborLabora
tory(1982)およびGublerとHoffm
an ;Gene25巻263頁(1983)を参照)
Double-stranded CDNA is prepared by decomposing and removing mRNA by alkaline treatment, and then treating the resulting single-stranded CDNA with reverse transcriptase or D
It can be obtained by treating with NA polymerase (e.g., +enow fragment, etc.) and then with St nuclease, or by directly treating with RNASe H and DNA polymerase (e.g., Escherichia coli DNA polymerase, etc.). Can be done (for example, Haniati
s et al.: HOleClJIar cloning,
Col1d Spring 1larborLabora
tory (1982) and Gubler and Hoffm.
an; see Gene vol. 25, p. 263 (1983))
.

このようにして得られた2本鎖CDNAを適当なベクタ
ー、例えば、psclol 、 pDF41. Co 
l El、 pMB9. pBR322、pBR327
The double-stranded CDNA thus obtained is transferred to an appropriate vector, such as pscroll, pDF41. Co
l El, pMB9. pBR322, pBR327
.

DACYClなどに代表されるEK型プラスミドベクタ
ーや、λat、λC1λgtio、λgtWEsなどに
代表されるファージベクターなどに組み込んだ後、大腸
菌(X1776 : HB 101 : DH1、C6
00株など)等を形質転換してCDNAライブラリーを
(7ることができる(例えば、前出“HOIeCLIf
ar cloning”を参照)。
After integrating into EK-type plasmid vectors such as DACYCl or phage vectors such as λat, λC1λgtio, λgtWEs, etc., E. coli (X1776: HB 101: DH1, C6
00 strain, etc.) to create a CDNA library (7) (for example, the above-mentioned “HOIeCLIf strain”).
ar cloning”).

2本鎖CDNAをベクターと連結させるには、DNA末
端に連結可能な末端をつけるべく、適当な化学合成りN
A断片を付加し、予め制限酵素を用いて開裂させたベク
ターDNAとATP存在下にT4ファージDNAリガー
ゼで処理することにより行うことができる。あるいは、
予め制限酵素を用いて開裂させたベクターDNAと2本
鎖CDNAのそれぞれにdG、dC−鎖(あるいはdA
To ligate double-stranded CDNA to a vector, use an appropriate chemical synthesis method to attach ligatable ends to the ends of the DNA.
This can be carried out by adding the A fragment and treating with T4 phage DNA ligase in the presence of ATP and vector DNA that has been previously cleaved using a restriction enzyme. or,
dG, dC-strand (or dA
.

dT−鎖)を付加した後、例えば両DNAを含む溶液を
徐冷することによっても行うことができる(前記Mo1
ecular cloningを参照)。
dT-chain) and then slowly cooling the solution containing both DNAs (Mo1
(see ecular cloning).

こうして得られた組換えDNA体による宿主細胞の形質
転換は、例えば宿主細胞が大腸菌の場合11anaha
nが詳細に記述している如き方法(J、N。
Transformation of a host cell with the thus obtained recombinant DNA can be carried out, for example, when the host cell is E. coli.
The method as described in detail by J.N.

l 、 Biol、  :  1競巻557頁(198
3)) 、すなわち、CaCl  やMOCI2又はR
bC+を共存させて調製したコンピテント細胞に該組換
えDNA体を加えることにより実施することができる。
l, Biol, 1 volume 557 pages (198
3)), i.e., CaCl, MOCI2 or R
This can be carried out by adding the recombinant DNA body to competent cells prepared in the coexistence of bC+.

目的とする遺伝子を保有する細胞を検索するには、イン
ターフェロンCDNAのクローン化で用いられたプラス
−マイナス法(丁aniguchi 等;proc、 
Jpn 、ACad、55巻Ser 、 [3,464
頁(1979) )や、ハイブリダイゼーション−トラ
ンスレーションアッセイ法(Na(lata等: Na
ture 284巻316頁(1980) )なと、又
は該タンパク質のアミノ酸配列をもとにして化学合成し
たオリゴヌクレオチドプローブを用いたコロニーあるい
はプラークハイブリダイゼーション法(Wallace
等: NuCIeiCAc1ds Res 、9巻87
9頁(1981)およびBentOnとDav ise
 : 5cience 196巻180頁(1977)
 )などを用いればよい。
To search for cells harboring the gene of interest, the plus-minus method used in cloning interferon CDNA (Daniguchi et al.; proc,
Jpn, ACad, Volume 55 Ser, [3,464
(1979)) and the hybridization-translation assay (Na (lata et al.: Na
ture 284, p. 316 (1980)), or colony or plaque hybridization method using oligonucleotide probes chemically synthesized based on the amino acid sequence of the protein (Wallace et al.
etc.: NuCIeiCAc1ds Res, Volume 9, 87
9 pages (1981) and BentOn and Dav ise
: 5science vol. 196 p. 180 (1977)
) etc. may be used.

このようにしてクローン化されたヒトG−C3F活性を
有するポリペプチドをコードする遺伝子を含む断片は適
当なベクターDNAに再び組み込むことにより、他の原
核生物または真核生物の宿主細胞を形質転換させること
ができる。更にこれらのベクターに適当なプロモーター
及び形質発現に係る配列を導入することにより、それぞ
れの宿主細胞に於いて遺伝子を発現させることが可能で
ある。
The thus cloned fragment containing the gene encoding the polypeptide having human G-C3F activity is reincorporated into an appropriate vector DNA to transform other prokaryotic or eukaryotic host cells. be able to. Furthermore, by introducing an appropriate promoter and expression-related sequences into these vectors, it is possible to express the gene in each host cell.

哺乳動物由来の宿主細胞としては、CO8細胞、チャイ
ニーズハムスター卵巣(CHO)細胞、C−127細胞
、He1−a細胞などがあげられ、これ等の細胞を形質
転換させるベクターとしては、pSV2−gpt (M
ulliganとBerg;Pr0C,Natl、Ac
ad、sci、UsA;78巻2072頁((1981
)を参照)等がある。これ等のベクターは複製起源、選
択マーカー、発現させようとする遺伝子の前に位置する
プロモーター、RNAスプライス部位、ポリアデニル化
シグナルなどを含んでいる。
Examples of host cells derived from mammals include CO8 cells, Chinese hamster ovary (CHO) cells, C-127 cells, and He1-a cells, and vectors for transforming these cells include pSV2-gpt ( M
uligan and Berg; Pr0C, Natl, Ac
ad, sci, UsA; vol. 78, p. 2072 ((1981
) etc. These vectors contain an origin of replication, a selection marker, a promoter located in front of the gene to be expressed, an RNA splice site, a polyadenylation signal, and the like.

吐乳動物細胞における遺伝子発現のプロモーターとして
はレトロウィルス、ポリオーマウィルス、アデノウィル
ス、シミアンウィルス40 (SV40)などのプロモ
ーターを用いればよい。例えばSV40のプロモーター
を使用する場合は、)fulliganなどの方法(N
ature 2771108頁(1979) )に従え
ば容易に実施することができる。
As a promoter for gene expression in mammalian cells, promoters such as retrovirus, polyomavirus, adenovirus, and simian virus 40 (SV40) may be used. For example, when using the SV40 promoter, the method such as ) fulligan (N
ture 2771108 (1979)).

複製起源としては、SV40、ポリオーマウィルス、ア
デノウィルス、牛パピローマウィルス(BPV)等の由
来のものを用いることができ、選択マーカーとしては、
ホスホトランスフェラーゼAPH(3’ )IIあるい
は工(neo)i伝子、チミジンキナーゼ(TK)m伝
子、大腸菌キリンチン−グアニンホスホリボシルトラン
スフ1ラーゼ(ECOClt)遺伝子、ジヒドロ葉酸還
元酵素(DHFR)i伝子等を用いることができる。
As a replication origin, those derived from SV40, polyomavirus, adenovirus, bovine papillomavirus (BPV), etc. can be used, and as a selection marker,
Phosphotransferase APH (3') II or neo i gene, thymidine kinase (TK) m gene, Escherichia coli chirintin-guanine phosphoribosyltransferase (ECOClt) gene, dihydrofolate reductase (DHFR) i gene etc. can be used.

以上の如き宿主−ベクター系を用いてヒトG−C3F活
性を有するポリペプチドを得るには、上記ベクターの適
当な部位に該遺伝子を組み込んだ組換えDNA体により
宿主細胞を形質転換させた後、得られた形質転換体を培
養すればよい。さらに細胞内または培養液から該ポリペ
プチドを分離・精製するには、公知の手段を用いて行う
ことができる。
In order to obtain a polypeptide having human G-C3F activity using the above-mentioned host-vector system, after transforming a host cell with a recombinant DNA in which the gene has been inserted into an appropriate site of the vector, The obtained transformant may be cultured. Furthermore, the polypeptide can be separated and purified from cells or culture fluid using known means.

一般に真核生物の遺伝子はヒトインターフェロン遺伝子
等で知られているように、多形現象(polymorp
hysm )を示すと考えられ(例えば N15hi等
: J 、Biochem 、97巻153頁(198
5)を参照)、この多形現象によって1個またはそれ以
上のアミノ酸が置換される場合もあれば、塩基配列の変
化はあってもアミノ酸は全く変わらない場合もある。
In general, eukaryotic genes exhibit polymorphism (polymorphism), as is known for the human interferon gene.
hysm) (for example, N15hi et al.: J, Biochem, Vol. 97, p. 153 (198
5)), this polymorphism may result in the substitution of one or more amino acids, or may result in a change in the base sequence but no change in the amino acid.

また例えば図3(8)あるいは図4(8)のアミノ酸配
列の中の1個またはそれ以上のアミノ酸を欠くか又は付
加されたポリペプチド、あるいは1個またはそれ以上の
アミノ酸が1個またはそれ以上のアミノ酸で置換された
ポリペプチドでもG−C3F活性を有することがある。
Also, for example, a polypeptide lacking or adding one or more amino acids in the amino acid sequence of FIG. 3 (8) or FIG. 4 (8), or one or more amino acids having one or more amino acids A polypeptide substituted with an amino acid may also have G-C3F activity.

例えば、ヒトインターロイキン2 (工L−2)W仏子
のシスティンに相当する塩基配列をセリンに相当する塩
基配列に変換して得られたポリペプチドがインターロイ
キン2活性を保持することもすでに公知となっている(
Wan(1等: 5cience 、  224巻14
31頁(1984) )。
For example, it is already known that a polypeptide obtained by converting the base sequence corresponding to cysteine in human interleukin 2 (L-2) W Buddha to a base sequence corresponding to serine retains interleukin 2 activity. It has become (
Wan (1st prize: 5science, vol. 224, 14
31 (1984)).

それゆえ、それ等天然に存在するかあるいは人工合成さ
れたポリペプチドがヒトG−C3F活性を有する限りそ
れ等のポリペプチドをコードする遺伝子を含む組換ベク
ターによって形質転換された動物細胞(形質転換体)を
培養して得られた糖蛋白質は全て本発明に含まれる。
Therefore, as long as these naturally occurring or artificially synthesized polypeptides have human G-C3F activity, animal cells transformed with recombinant vectors containing genes encoding those polypeptides (transformed All glycoproteins obtained by culturing the human body) are included in the present invention.

本発明のヒトG−C3F活性を有する糖蛋白質を得るた
めに必要な遺伝子、該遺伝子を有する組換えベクター及
びこれを含有する形質転換体、並びにこの形質転換体を
培養し、取得した目的の糖蛋白質、夫々についてその製
法の概要を説明づると以下の通りである。
A gene necessary for obtaining the glycoprotein having human G-C3F activity of the present invention, a recombinant vector containing the gene, a transformant containing the same, and the desired saccharide obtained by culturing this transformant. The outline of the manufacturing method for each protein is as follows.

(1)プローブの調製 腫瘍細胞株CHU−2の培養上清からitI!I製して
得られた均一ヒトC3FタンパクについてN末端よりア
ミノ酸配列を決定し、ざらにブロムシアン分解、トリプ
シン処理などにより断片化した後その断片についてもア
ミノ酸配列を決定した[実施例3 (i)、 (ii)
、 (iii) ]。
(1) Preparation of probe ItI! from the culture supernatant of tumor cell line CHU-2! The amino acid sequence of the homogeneous human C3F protein obtained by I.I was determined from the N-terminus, and the amino acid sequence of the fragment was also determined after rough fragmentation by bromcyanide digestion, trypsin treatment, etc. [Example 3 (i) , (ii)
, (iii) ].

そのアミノ酸配列中から図1に示される配列に対応する
3種類のヌクレオチドプローブ(八)、プローブ(LC
)およびプローブ(IWQ>を合成した(実施例4)。
Among the amino acid sequences, three types of nucleotide probes (8) and probes (LC
) and probe (IWQ>) were synthesized (Example 4).

プローブ(A)は連続した14個のヌクレオチドからな
る混合型プローブである。 プローブ(IWQ )は、
ヒトコレシストキニン遺伝子のクローン化で用いられた
如き(Takahash i等;Proc、 Natl
、 Acad、 Sci 、 、 USA 、 82巻
1931頁(1985))デオキシイノシンを使用した
30個の連続したヌクレオチドである。
Probe (A) is a mixed type probe consisting of 14 consecutive nucleotides. The probe (IWQ) is
As used in the cloning of the human cholecystokinin gene (Takahashi et al.; Proc, Natl.
, Acad, Sci., USA, Vol. 82, p. 1931 (1985)) 30 consecutive nucleotides using deoxyinosine.

プローブ(LC)は実施例3(i)に示したアミノ酸配
列のN末端から32〜39番に相当する部分を、図3に
示した塩基配列を基にして合成した24個のヌクレオチ
ドからなるプローブである。
The probe (LC) is a probe consisting of 24 nucleotides synthesized based on the base sequence shown in FIG. It is.

ヌクレオチドの化学合成は改良型ホスホトリエステル法
を固相法に適用して行うことができ、Narangの総
説に記述されている(Tetrahedron 39巻
3−22頁(1983))。
Chemical synthesis of nucleotides can be carried out by applying a modified phosphotriester method to a solid phase method, as described in the review by Narang (Tetrahedron, Vol. 39, pp. 3-22 (1983)).

使用するプローブは、本発明で用いたプローブ以外の位
置のアミノ酸配列に基づくものであってもよい。
The probe used may be based on an amino acid sequence at a position other than the probe used in the present invention.

(2)cDNAライブイリーの構築 C)−I U −2細胞にグアニジンチオシアナート溶
液を加えてホモジナイズし、CsCl密度勾配遠心法に
より全RNAを得る。
(2) Construction of cDNA library C)-I Add guanidine thiocyanate solution to homogenize U-2 cells, and obtain total RNA by CsCl density gradient centrifugation.

この全RNAからオリゴ(dT)セルロースカラムによ
りポリ(A  )RNAを選別した後、逆転写Vf素に
より1本鎖CDNAを合成し、RNase  Hおよび
E、Co I 1DNAポリメラーゼエを用いて、2重
鎖cDNA@lた。得られた2本鎖のcDNAにdC鎖
を付加し、pst工切断部位にdG鎖を付加した。 B
 R322ベクターとつなぎ合せて、大腸菌X1776
株を形質転換ざぜ、ρBR322系cDNAライブラリ
ーを構築した(実施例5,6)。
After selecting poly(A) RNA from this total RNA using an oligo(dT) cellulose column, single-stranded CDNA was synthesized using reverse transcription Vf and double-stranded using RNase H and E, Co I 1 DNA polymerase. Strand cDNA@l. A dC chain was added to the obtained double-stranded cDNA, and a dG chain was added to the pst cleavage site. B
Combined with R322 vector, E. coli X1776
The strain was transformed and a ρBR322-based cDNA library was constructed (Examples 5 and 6).

同様にEC0RIリンカ−を用いて、2本鎖CDNAを
λgtioベクターと連結し、λファージ系cDNAラ
イブラリーを構築した(実施例7)。
Similarly, the double-stranded CDNA was ligated to the λgtio vector using the EC0RI linker to construct a λ phage-based cDNA library (Example 7).

(3)スクリーニング pB R322系CDNAライブラリー由来の組換え体
をワットマン541濾紙に固定し、32Pで放射標識し
たプローブ(IWQ)を用いて、コロニーハイブリダイ
ゼーションを行った結果、1個のクローンが選別できた
。このクローンを、サナンブaツテイング法(Sout
hern: J、 )fol 、 Biol、98巻5
03頁(1975))を用いて更に詳細に検討したとこ
ろ、プローブ(A)ともハイブリダイズした。
(3) Screening The recombinant derived from the pB R322-based CDNA library was immobilized on Whatman 541 filter paper, and colony hybridization was performed using a probe (IWQ) radiolabeled with 32P. As a result, one clone was selected. did it. This clone was cloned using the Sanambu atuting method (Sout
hern: J, ) fol, Biol, vol. 98 5
03 (1975)), it was found that it also hybridized with probe (A).

このクローンの塩基配列をジデオキシ法(sanger
 : 5cience  214巻1205頁(198
1))によって決定した。
The nucleotide sequence of this clone was determined using the dideoxy method (sanger
: 5science vol. 214 p. 1205 (198
1)).

得られたCDNAインサートの塩基配列を図2に示す。The base sequence of the obtained CDNA insert is shown in FIG.

図2に示される如く、このcDNAインサートはプロー
ブ(IWQ)およびプローブ(A)を含む308塩基対
からなり、実施例3(iii)に示したアミノ酸配列を
含む83個のアミノ酸をコードするオープンリーディン
グフレームを有していることがわかった。
As shown in Figure 2, this cDNA insert consists of 308 base pairs including probe (IWQ) and probe (A), and is an open reading sequence encoding 83 amino acids including the amino acid sequence shown in Example 3(iii). It turns out that it has a frame.

この30B塩基対を含むpB R322由来のプラスミ
ドを以下pHC3−1と略記する(実施例8)。
The pBR322-derived plasmid containing this 30B base pair is hereinafter abbreviated as pHC3-1 (Example 8).

pHcs−1から得られる308塩基対を含むDNA断
片をニックトランスレーション法(前出、MOleCL
IIar Cl0nin(Jを参照)にて放射標識し、
これをプローブとしてλgtio由来のGDNAライブ
ラリーをプラークハイブリダイゼーション(BentO
nとDaViS  :5CienCe  19B巻18
0頁(1977)によりスクリーニングして5個のクロ
ーンを17、CDNAを含むと思われるクローンについ
てその塩基配列を前述と同様の方法で決定した(図3(
A))。
A DNA fragment containing 308 base pairs obtained from pHcs-1 was subjected to nick translation method (mentioned above, MOleCL
radiolabeled with IIarCl0nin (see J),
Using this as a probe, a GDNA library derived from λgtio was subjected to plaque hybridization (BentO
n and DaViS: 5CienCe Volume 19B 18
0 (1977), and 5 clones were selected.The nucleotide sequences of the clones thought to contain cDNA were determined in the same manner as described above (Fig. 3 (
A)).

図3(A)に示される如く、このCDNAインサートは
一つの大きなオープンリーディングフレームを有する。
As shown in Figure 3(A), this CDNA insert has one large open reading frame.

このCDNAによってコードされるアミノ酸配列は図3
(A)に示された如く演えきできる。
The amino acid sequence encoded by this CDNA is shown in Figure 3.
It can be performed as shown in (A).

実施例3(i)に示されているG−C3Fタンパ゛りの
N末端アミノ酸配列との比較により、本CDNAは5′
−末端から32〜34ヌクレオチド位のATG配列から
始まり、119〜121位のCCC配列で終わる90塩
基対によってコードされるシグナルペプチドおよび12
2〜124位のACC配列から始まり650〜652位
のCCC配列で終わる531塩基対によってコードされ
る成熟G−C8Fポリペプチドに相当する塩基配列を含
んでいることがわかった。従って図3(B)に示された
アミノ酸配列工のポリペプチドは207個のアミノ酸か
らなり、その分子量は22292.87ダルトンと計算
された。同様にアミノ酸配列■のポリペプチドは177
個のアミノ酸からなり、その分子量は18986.74
ダルトンであった(実施例9)。
Comparison with the N-terminal amino acid sequence of the G-C3F protein shown in Example 3(i) reveals that this CDNA is 5'
- a signal peptide encoded by 90 base pairs starting from the ATG sequence 32-34 nucleotides from the end and ending with the CCC sequence 119-121 and 12
It was found that it contains a base sequence corresponding to the mature G-C8F polypeptide encoded by 531 base pairs starting from the ACC sequence at positions 2 to 124 and ending at the CCC sequence at positions 650 to 652. Therefore, the polypeptide with the amino acid sequence shown in FIG. 3(B) consisted of 207 amino acids, and its molecular weight was calculated to be 22,292.87 daltons. Similarly, the polypeptide with the amino acid sequence ■ is 177
Consisting of amino acids, its molecular weight is 18986.74
Dalton (Example 9).

但しタンパク質の開始部位に関しては、32〜34位あ
るいは68〜70位のATGも同様に考え得る。
However, regarding the start site of the protein, ATG at positions 32-34 or 68-70 can be considered as well.

EC0R1切断部位にこ(7)cDNA (:+−VS
E)を挿入したpB R322を保持するエシェリヒア
・コリ(E、 coli) X1776株は、工業技術
院微生物工業技術研究所に寄託されている(FERM 
 BP−954)。
EC0R1 cleavage site Nico (7) cDNA (:+-VS
The Escherichia coli (E. coli) X1776 strain carrying pB R322 inserted with E) has been deposited with the National Institute of Microbiology, Agency of Industrial Science and Technology (FERM
BP-954).

図6には、得られた遺伝子の制限酵素切断部位を示した
FIG. 6 shows the restriction enzyme cleavage sites of the obtained gene.

マタ、コノcDNA@pBR327[5oberon等
;Gene9巻287頁(1980)]とEcoRI部
位で結合したプラスミドをpBRG4と称する。
The plasmid ligated with Mata, Kono cDNA@pBR327 [5oberon et al.; Gene 9, p. 287 (1980)] at the EcoRI site is referred to as pBRG4.

このようにして得られたpBRG4を、制限酵素EC0
RIで処理して得られる約1500塩基対のcDNAを
含むDNA断片をニックトランスレーション法(前出の
Mo1ecular’ cloningを参照)にて放
射標識し、これをプローブとして、再びλgt10由来
のcDNAライブラリーをプラークハイブリダイピージ
ョン(前出BentonとDav i sの文献参照)
によりスクリーニングした。この際、同時にλフアージ
DNAを固定したニトロレルロース濾紙を2枚作成して
おき、先に’>’tf−べたプローブ(LG)にて同様
のプラークハイブリダイゼーションを行い、両プローブ
でポジティブとなるファージを選別した。完全長と思わ
れるクローンを選別し、ジデオキシ法を用いてcDNA
インサートの塩基配列を決定したところ図4(A)に示
される如くであった。
The thus obtained pBRG4 was treated with the restriction enzyme EC0
A DNA fragment containing cDNA of approximately 1500 base pairs obtained by treatment with RI was radiolabeled using the nick translation method (see Molecular' cloning above), and using this as a probe, the cDNA library derived from λgt10 was again used. Plaque hybridization (see Benton and Davis, supra)
Screened by. At this time, two sheets of nitrorelulose filter paper with immobilized λ phage DNA were prepared at the same time, and similar plaque hybridization was performed using the '>'tf-solid probe (LG) first, resulting in positive results with both probes. Phages were selected. Select clones that appear to be full-length, and extract cDNA using the dideoxy method.
The nucleotide sequence of the insert was determined and was as shown in FIG. 4(A).

このcDNAは一つの大きなオープンリーディングフレ
ームを有し、コードされるアミノ酸配列は図4(^)に
示された如く演えきできる。
This cDNA has one large open reading frame, and the encoded amino acid sequence can be mapped as shown in Figure 4(^).

実施例3(i)に示されているG−C3FタンパクのN
末端アミノ酸配列との比較により、本C[)NAは5′
−末端から31〜33ヌクレAチド位のATG配列から
始まり、118〜120位のCCC配列で終わる90塩
基対によってコードされるシグナルペプチドおよび12
1〜123位のACC配列から始まり640〜642位
のCCC配列で終る522塩基対によってコードされる
成熟G−C3Fポリペプチドに相当する塩基配列を含ん
でいることがわかった。従って図4(B)に示されたア
ミノ酸配列■のポリペプチドは204個のアミノ酸から
なり、その分子量は21977、35ダルトンと計算さ
れた。同様にアミノ酸配列■のポリペプチドは174個
のアミノ酸からなり、その分子間は18671.42ダ
ルトンであった(実施例io)。
N of the G-C3F protein shown in Example 3(i)
By comparison with the terminal amino acid sequence, this C[)NA is 5′
- a signal peptide encoded by 90 base pairs starting from the ATG sequence at nucleotide positions 31-33 from the end and ending with the CCC sequence at positions 118-120;
It was found that it contains a base sequence corresponding to the mature G-C3F polypeptide encoded by 522 base pairs starting from the ACC sequence at positions 1 to 123 and ending at the CCC sequence at positions 640 to 642. Accordingly, the polypeptide having the amino acid sequence (■) shown in FIG. 4(B) consisted of 204 amino acids, and its molecular weight was calculated to be 21,977, 35 Daltons. Similarly, the polypeptide with the amino acid sequence (2) consisted of 174 amino acids, and the distance between the molecules was 18671.42 daltons (Example io).

但しタンパク質の開始部位に関しては、31〜33位以
外に58〜60位あるいは67〜69位のATGも同様
に考え得る。
However, regarding the start site of the protein, in addition to positions 31-33, ATG at positions 58-60 or 67-69 may also be considered.

EC0RI切断部位に本cDNA (−VSE)を挿入
したpBR327を保持するエシェリヒア・コリ(E、
 co I i ) X1776株は工業技術院微生物
工業技術研究所に寄託されている(FERMBP−95
5>。
Escherichia coli (E,
coIi) strain X1776 has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology (FERMBP-95
5>.

図6には、(qられた遺伝子の制限酵素切断部位を示し
た。
Figure 6 shows the restriction enzyme cleavage sites of the (q) gene.

また、このCDNAをpBR327とEC:ORI部位
で結合したプラスミドをpBRV2と称する。
Furthermore, a plasmid in which this CDNA was ligated to pBR327 at the EC:ORI site is referred to as pBRV2.

(4)ヒト染色体遺伝子ライブラリーのスクリーニング Haniatis等の記載した方法(前出 )1o1e
cularcloningを参照)に従って調製された
ヒト染色体遺伝子ライブラリーを前述のpHcs−1を
用いてスクリーニングした。
(4) Screening of human chromosomal gene libraries The method described by Haniatis et al. (cited above) 1o1e
A human chromosomal gene library prepared according to the method (see cularcloning) was screened using pHcs-1 as described above.

スクリーニングに用いるプローブとしては、pHcs−
1由来の308塩基対のDNA断片の他、pBRG4由
来の約1500塩基対のDNA断片ヤpBRV2由来の
約1500塩基対のDNA断片、あるいはこれ等のDN
A断片の一部を含む適当な長さのDNA断片、さらには
前述のオリゴヌクレオチドプローブ[(IWQ)、(A
)、(LC)]をもらいでも実施することかできる。
As a probe used for screening, pHcs-
In addition to the 308 base pair DNA fragment derived from 1, the approximately 1500 base pair DNA fragment derived from pBRG4, the approximately 1500 base pair DNA fragment derived from pBRV2, or these DNAs.
A DNA fragment of an appropriate length containing a part of the A fragment, and the aforementioned oligonucleotide probes [(IWQ), (A
), (LC)].

pHC3−1由来のDNA断片をニックトランスレーシ
ョン法[Roop等;Ce1l 15巻431頁(19
78)を参照]に従って[3”P]で放射標識し、これ
をプローブとしてヒト染色体由来遺伝子ライブラリーを
プラークハイブリダイゼーション(前出のBentOn
とDavisの文献参照)によりスクリーニングし、士
数個のクローンを17だ。
The DNA fragment derived from pHC3-1 was subjected to the nick translation method [Roop et al.; Ce1l vol. 15, p. 431 (19
78)], and using this as a probe, a human chromosome-derived gene library was subjected to plaque hybridization (BentOn described above).
Davis et al.) and screened 17 clones.

得られたクローンからDNAを回収した後、公知の方法
[Fr1tsch等;Ce1l19巻959頁(198
0) ]に従って制限酵素地図を作成した。
After recovering DNA from the obtained clone, a known method [Frltsch et al.;
A restriction enzyme map was created according to [0) ].

次いで上記のDNAプローブを用いて)J−tJ’ンブ
ロツティング(前出5OUther口の文献参照)を行
い、EC0RIおよびXhoIで切り出される約4キロ
塩基対DNA断片に、ヒトG−C3Fポリペプチドをコ
ードする領域が存在している可能性があることがわかっ
た。そこで約4キロ塩基対のDNA断片をpBR327
のECoRI部位にEC0RIリンカ−を用いて挿入し
、pBRcE3βを得た。このプラスミドを塩基配列を
決定するためのDNAとし、ジデオキシ法を用いて約3
キロ塩基対の塩基配列を決定したところヒトG−C3F
ポリペプチドをコードする遺伝子であることが判明した
く図5)。
Next, using the above DNA probe) J-tJ' blotting (see the above-mentioned 5OUTHER reference) was performed, and human G-C3F polypeptide was added to the approximately 4 kilobase pair DNA fragment excised with EC0RI and XhoI. It was found that there may be a region encoding Therefore, we created a DNA fragment of approximately 4 kilobase pairs as pBR327.
pBRcE3β was obtained by inserting the pBRcE3β into the ECoRI site using the ECoRI linker. This plasmid was used as DNA for determining the base sequence, and approximately 3
The kilobase pair base sequence was determined to be human G-C3F.
It was determined that this gene encodes a polypeptide (Figure 5).

この約4キロ塩基対のDNA断片をECoRl部位に挿
入したプラスミドpBR327(pBRCE3β)を保
持するE、cot 1X1776株は、工業技術院微生
物工業技術研究所に寄託されている。(FERM  B
P−956)。
The E. cot 1X1776 strain carrying plasmid pBR327 (pBRCE3β) in which this approximately 4 kilobase pair DNA fragment was inserted into the ECoRl site has been deposited at the National Institute of Microbial Technology, Agency of Industrial Science and Technology. (FERM B
P-956).

図32図4に示されるpBRG4cDNAイン1J−ト
およびpBRV2cDNAインリートとの比較によりこ
のDNA断片は、5個のエクソン部分を含むものでもの
であり、pBRG4およびpBRV2から演えきされる
アミノ酸配列をコードするものであることがわかった。
Figure 32 A comparison with the pBRG4 cDNA insert and pBRV2 cDNA insert shown in Figure 4 revealed that this DNA fragment contains 5 exons and encodes the amino acid sequence derived from pBRG4 and pBRV2. It turned out to be.

また、このDNA断片は、ヒトG−C3FmRNAに転
写されるべき前領域すなわち、ヒトG−C3Fの染色体
内遺伝子を含むものであり、さらには転写調節に関与す
る塩基配列を有している[BenoistとChamb
on;Nature 290巻304頁(1981)お
よび8reathnaCkとChambon ;八nn
、 Rev、 B iochem。
In addition, this DNA fragment contains the front region to be transcribed into human G-C3F mRNA, that is, the intrachromosomal gene of human G-C3F, and furthermore, it has a base sequence involved in transcriptional regulation [Benoist and Chamb
on; Nature vol. 290, p. 304 (1981) and 8reathnaCk and Chambon;
, Rev. Biochem.

捕巻349頁(1981)]。349 pages (1981)].

(5)動物細胞用組換えベクターの構築宿主細胞として
C127細胞、NIH3T3細胞を使用する場合の組換
えベクター(BPV由来)およびC[]G0胞を使用す
る場合の組換えベクター (DHFRを含ム)ノ構築を
+VSE系、−VSE系CDNAおよび染色体由来遺伝
子について各々行った。又、CoS細胞についても同様
の組換えベクターの構築を行った。ここでは代表的な例
について述べるが詳しくは実施例を参照されたい。
(5) Construction of recombinant vectors for animal cells Recombinant vectors (derived from BPV) when using C127 cells and NIH3T3 cells as host cells, and recombinant vectors when using C[]G0 cells (containing DHFR) ) construction was carried out for +VSE system, -VSE system CDNA, and chromosome-derived genes, respectively. A similar recombinant vector was also constructed for CoS cells. Typical examples will be described here, but please refer to Examples for details.

(A)+VSE系組換えベクターの構築前記(3)で得
られたcDNA (+VSE)断片をベクターpdKC
Rに組み込みpHGA410プラスミドとしだ後(実施
例12)(図8)これをEC0RIで部分消化し、末端
をプラントエンド(blunt end )にする。こ
のDNAにHindI[Iリンカ−を付加し、次いでH
indI[lff1理をしT4DNAリガーゼ処理した
後これで塩化ルビジウム法(前出Mo1ecular 
Cloning参照)を用い、E、Co11[))−I
J株を形質転換した。得られたプラスミドをpl−(G
A410 ()(>と命名する(図9)。
(A) Construction of +VSE-based recombinant vector The cDNA (+VSE) fragment obtained in (3) above was used as vector pdKC.
After integration into R to create a pHGA410 plasmid (Example 12) (FIG. 8), this was partially digested with EC0RI to make the ends blunt. A HindI[I linker was added to this DNA, and then H
After indI [lff1 procedure and T4 DNA ligase treatment, this was used for the rubidium chloride method (Mo1ecular described above).
Cloning) using E, Co11[))-I
The J strain was transformed. The obtained plasmid was transformed into pl-(G
Name it A410()(> (Figure 9).

pHGA410 (H)を5alIで処理し、次いで末
端をプラントエンド化した後再びHind■処理しト1
 i ndI[l−3a l I断片を回収する。
pHGA410 (H) was treated with 5alI, then the terminal was converted to plant-end, and then treated with Hind■ again.
Recover the indI[l-3a lI fragment.

一方、ウシ乳頭腫ウィルスの形質転換断片を有するpd
BPV−1プラスミドをl−1ind[[、PVU[で
処理し大きいほうのDNA断片を分離し、これと先のト
1i ndl[[−8a l I断片を結合する。
On the other hand, pd containing a transforming fragment of bovine papillomavirus
The BPV-1 plasmid is treated with 1-1ind[[, PVU] to separate the larger DNA fragment, which is ligated to the previous 1indl[[-8a1I fragment.

これを用いてE、coli DHI株を形質転換しpH
GG4由来のC3F−cDNAを有するプラスミド、p
TN−G4をjする(図9)(実施例13)。
This was used to transform E. coli DHI strain and the pH
Plasmid containing C3F-cDNA derived from GG4, p
TN-G4 (FIG. 9) (Example 13).

一方、1IGA410プラスミドかpHGA410(H
)プラスミドとpAdD26SvpAプラスミドを用い
てCHO細胞用組換えベクター(+VSE)であるpH
GG4−dhfrを構築した(図10a及びb)(実施
例15)a更にpAdD26SVpAからDHFR1仏
子ヲ含む約2KbのDNA断片をEC0RIおよびBa
m1−1 ■処理により回収し、pHGA410 ()
・l)のト1indI[1部位に挿入してpG4DR1
とpG4DR2を構築した(図10c)(実施例15)
On the other hand, 1IGA410 plasmid or pHGA410(H
) pH which is a recombinant vector (+VSE) for CHO cells using the plasmid and pAdD26SvpA plasmid.
GG4-dhfr was constructed.
m1-1 ■Recovered by treatment, pHGA410 ()
・Insert into the 1indI [1 site of pG4DR1]
and pG4DR2 was constructed (Figure 10c) (Example 15)
.

CB)−VSE系組換えベクターの構築前記(3) で
(fられたcDNA (−VSE)断片をベクターpd
KCRに組み込みpHGV2プラスミドとしだ後(実施
例18)これをEC0RIで部分消化し、末端をプラン
トエンド(blunt end )にする。このDNA
にト1indIIIリンカ−を付加し、次いでl−1i
ndl処理をしT 4 D N A リガーゼ処理した
後、これで塩化ルビジウム法(前出Mo1ecular
 Cloning参照)を用い、E、coli [)H
I株を形質転換した。得られたプラスミドをpHGV2
 (H>、!:命名スル(図12)。
CB) Construction of -VSE-based recombinant vector The cDNA (-VSE) fragment generated in (3) above was used as vector
After integrating into KCR to obtain a pHGV2 plasmid (Example 18), this was partially digested with ECORI to make the ends blunt. this DNA
Add a l-1indIII linker to the l-1i
After ndl treatment and T 4 DNA ligase treatment, the rubidium chloride method (Mo1ecular
Cloning) using E, coli [)H
The I strain was transformed. The obtained plasmid was transformed into pHGV2
(H>, !: Naming Suru (Figure 12).

pHGV2(H>を5alIで処理し、次いで末端をプ
ラントエンド化した後再びHindIII処理し)−1
i ndlll−3a l I断片を回収する一方、ウ
シ乳頭腫ウィルスの形質転換断片を有するpdBPV−
1プラスミドをHi nd[[、pvu[で処理し大き
い方のDNA断片を分離し、これと先のHi ndlI
I−3a I I断片を結合する。これを用いてE、C
01iDHI株を形質転換しpHGV2由来のC3F−
cDNAを有するプラスミド、DTN−V2ヲi%ル(
図12) (実施例19)。
pHGV2 (H> was treated with 5alI, then the end was converted to plant-end and then treated with HindIII again)-1
pdBPV- carrying the transforming fragment of bovine papillomavirus while recovering the indlll-3a l I fragment.
1 plasmid was treated with Hind[[, pvu[, the larger DNA fragment was separated, and this and the previous HindlI
Join the I-3a II fragment. Using this, E, C
01iDHI strain was transformed with pHGV2-derived C3F-
A plasmid containing cDNA, DTN-V2 (
Figure 12) (Example 19).

+VSEと同様にpHGV2プラスミドかp t−IG
V2()−1>プラスミドとpAdD26SVpAプラ
スミドを用いてCHO細胞用組換えベクター(−VSE
)であるDHGV2−dhfr¥!−構Wした(図13
a及びb)(実施例21)。
+VSE as well as pHGV2 plasmid or p t-IG
Recombinant vector for CHO cells (-VSE
) is DHGV2-dhfr¥! - Constructed (Fig. 13
a and b) (Example 21).

更にpAdD26SVDAからDHFR5伝子を含む約
2KbのDNA断片をEC0RIおよびBamHI91
L理により回収し、pHGV2 (t−1)のHi n
dI[1部位に挿入してpV2DR1とpv2DR2を
溝築した(図13C)(実施例21)。
Furthermore, a DNA fragment of approximately 2 Kb containing the DHFR5 gene was extracted from pAdD26SVDA with EC0RI and BamHI91.
The Hin of pHGV2 (t-1) was collected by
pV2DR1 and pv2DR2 were inserted into the dI [1 site] (Fig. 13C) (Example 21).

(C)染色体由来遺伝子を含む組換えベクターの構築 前記(4)で得られた図5で示される染色体遺伝子を含
むプラスミドpBRCE3βをEC0RIで処理した。
(C) Construction of a recombinant vector containing a chromosome-derived gene The plasmid pBRCE3β containing the chromosomal gene shown in FIG. 5 obtained in (4) above was treated with ECORI.

一方Baner’j i等の文献(Cell 27巻2
99頁(1981))に記載されれているpsVHK 
 プラスミドをKpnlで処理してグロビリン遺伝子を
除き、ざらにt−1indI[lで部分消化してSV4
0の後期遺伝子の一部を除いた後、再結合させて発現用
ベクターpML−E  を調製した。
On the other hand, the literature by Baner'j et al. (Cell vol. 27, 2
psVHK described on page 99 (1981))
The plasmid was treated with Kpnl to remove the globilin gene, and then partially digested with t-1indI[l to generate SV4.
After removing a part of the late gene of 0, it was recombined to prepare an expression vector pML-E.

このベクターを、制限酵素EC0RIで処理した後、ア
ルカリホスファターピ(宝酒造社製)で脱リン酸して得
られたベクターDNAをT4DNAリガーゼ(蜜酒造社
製)を加えて上記染色体DNA断片と結合させ、CO8
細胞用組換えベクターpMLCE3αをj9た(実施例
24)。図14に示される如くこのプラスミドは、SV
40遺伝子のエンハンサ−1SV40の複製開始領域、
pBR322の複製開始vA域およびpBR322由来
のβ−ラクタマーゼ遺伝子(Amp’ )を含むプラス
ミドで、SV40M仏子のエンハンサ−下流にヒトG−
C3F染色体遺伝子か接続されている。
This vector was treated with the restriction enzyme EC0RI, and then dephosphorylated with alkaline phosphaterpi (manufactured by Takara Shuzo Co., Ltd.), and the resulting vector DNA was added with T4 DNA ligase (manufactured by Mitsu Shuzo Co., Ltd.) to form the above-mentioned chromosomal DNA fragment. Combined with CO8
The cell recombinant vector pMLCE3α was used as j9 (Example 24). As shown in Figure 14, this plasmid
40 gene enhancer-1 SV40 replication initiation region,
A plasmid containing the replication initiation vA region of pBR322 and the β-lactamase gene (Amp') derived from pBR322, with human G-lactamase downstream of the enhancer of SV40M Buddha.
The C3F chromosome gene is connected.

C127細胞用の発現ベクターの構築は以下の如くして
行った。
Construction of an expression vector for C127 cells was performed as follows.

即ち、CO8細胞での発現ベクターpMLCE3αより
染色体由来のC3Fi伝子を含むDNA断片を制限酵素
で切り出し、ウシ乳頭腫ウィルス(BPV)の複製起源
を含むDNA断片およびSV40初期プロモーターを有
するDNA断片にT4DNAリガーゼを用いて連結した
。得られたpTNCE3αはSV40初期プロモーター
の下流に染色体由来C3F遺伝子が連結され、BPVの
65%部分を含む発現ベクターである。
That is, a DNA fragment containing the chromosome-derived C3Fi gene was cut out from the expression vector pMLCE3α in CO8 cells using restriction enzymes, and T4 DNA was added to the DNA fragment containing the replication origin of bovine papilloma virus (BPV) and the DNA fragment containing the SV40 early promoter. Ligation was performed using ligase. The obtained pTNCE3α is an expression vector in which the chromosome-derived C3F gene is linked downstream of the SV40 early promoter and contains 65% of BPV.

一方、CHO細胞用発現ベクターは、上記と同様の染色
体由来C8F3tm伝子とSV40初期プロモータ一部
分を含むDNA断片及びρAdD26SVpA由来のD
 I−I F R遺伝子を含むDNA断片を14DNA
リガーゼにより連結したものである。
On the other hand, the expression vector for CHO cells is a DNA fragment containing the same chromosome-derived C8F3tm gene and a part of the SV40 early promoter as above, and a DNA fragment derived from ρAdD26SVpA.
14 DNA fragments containing the I-I FR gene
These are linked using ligase.

4%られたpT26SVCE3ffは5V407C1−
E−ター下流に染色体由来C8F遺伝子、アデノウィル
ス主後期プロモーター下流にDf−IFR還伝子を有す
る発現ベクターである。
4% pT26SVCE3ff is 5V407C1-
This is an expression vector that has a chromosome-derived C8F gene downstream of the E-tar and a Df-IFR return gene downstream of the adenovirus main late promoter.

(6)動物細胞による形質発現 ここでは代表的な例について述べるが、その他の場合に
ついては各実施例を見られたい。
(6) Expression of traits using animal cells Representative examples will be described here, but for other cases, please see each Example.

(A)マウスC127細胞による形質発現pTN−G4
”!ラスミドまたはDTN−V27’ラスミドをBam
HTで処理しておき、これを用いて培養増殖させておい
たC127細胞をリン酸−カルシウム法で形質転換する
。得られた形質転換細胞を培養しC3F生産能の高いク
ローンを選別する。
(A) Expression of pTN-G4 by mouse C127 cells
”! Bam Lasmid or DTN-V27' Lasmid
C127 cells, which have been treated with HT and grown in culture, are transformed using the HT-calcium method. The obtained transformed cells are cultured and clones with high C3F production ability are selected.

形質発現したG−C3Fはこれらの形質転換細胞の培養
液から回収精製され、ヒトー〇−C3F活性を示すこと
が確認された。又試料のアミノ酸分析及び糖含有量分析
により目的糖蛋白質の確認もなされた。
The expressed G-C3F was recovered and purified from the culture medium of these transformed cells, and it was confirmed that it exhibits human 〇-C3F activity. The target glycoprotein was also confirmed by amino acid analysis and sugar content analysis of the sample.

尚、糖含有分析に関しては、アミノ酸分析に用いたC3
F試料をエルラン−モルガン法によるアミン軸定量、オ
ルシノールfiiRf2法による中性糖の定量またチオ
パルごツール法によるシアル酸の定量にてそれぞれ実施
した。
Regarding sugar content analysis, C3 used for amino acid analysis
Sample F was subjected to amine axis quantification using the Erlan-Morgan method, neutral sugar quantification using the Orcinol fiiRf2 method, and sialic acid quantification using the Thiopal-Gotzu method.

定量方法は生化学実験講座第4巻「糖質の化学(下巻)
」(東京化学同人)の13章に記載されている。各定量
値から重量%を換算した結果、発現ベクター及び培養条
件等の違いにより、得られたG−C3Fの糖含量は1〜
20(重量%)の範囲に分布していた。
The quantitative method is described in Biochemistry Experiment Course Volume 4 “Chemistry of Carbohydrates (Volume 2)”
” (Tokyo Kagaku Doujin), Chapter 13. As a result of converting each quantitative value into weight%, the sugar content of the obtained G-C3F was 1 to 1, depending on the expression vector, culture conditions, etc.
It was distributed in a range of 20 (wt%).

(B)  CO3細胞による形質発現 前記(5)−(C)で得たヒト染色体由来のG−C3F
i仏子を含むベクターpMLcE3αは、サルのCV−
1細胞由来でSV40の複製起源(origin)欠損
変異株で形質転換され5v40の大型T抗原を表現して
いるCO8細胞(Gluzman等;Ce1132巻1
75頁(1981)を参照)を宿主細胞として、形質発
現をさせてみたところ、ヒトG−C8F活性を示すこと
がわかった(実施例25)。
(B) Character expression by CO3 cells G-C3F derived from human chromosomes obtained in (5)-(C) above
The vector pMLcE3α containing iButsuko is a monkey CV-
CO8 cells derived from 1 cell and transformed with a replication origin-deficient mutant of SV40 and expressing the large T antigen of 5v40 (Gluzman et al.; Ce1132 Vol. 1
75 (1981)) as a host cell, it was found to exhibit human G-C8F activity (Example 25).

ざらにCoS細胞を回収し、mRNAを分析したところ
図3(A)および図4(A)に示されるアミノ酸配列そ
れぞれに対応するmRNAが存在していた。
When CoS cells were roughly collected and the mRNA was analyzed, mRNAs corresponding to each of the amino acid sequences shown in FIGS. 3(A) and 4(A) were present.

〔実施例〕〔Example〕

以下実施例をあげて本発明の詳細な説明するが、その前
にC3F活性の測定法について参考例で説明しておく。
The present invention will be described in detail below with reference to Examples, but before that, a method for measuring C3F activity will be explained using Reference Examples.

く参考例>C8F活性の測定方法 本発明において用いられたC3F活性(以下C3Aと略
す)の測定方法は次のとおりである。
Reference Example> Method for Measuring C8F Activity The method for measuring C3F activity (hereinafter abbreviated as C3A) used in the present invention is as follows.

rcsAの測定方法」 (a)ヒト骨髄細胞を用いる場合: Bradley T、R,、Hctcalf D、等の
方法(^ust、 J、 Exp 、 Biol、He
d 、 Sci 、44巻287〜300頁、 196
6年)に準じて単層軟寒天培養法により行った。すなわ
ちウシ胎児血清0.2mi、被検検体0.1d、ヒト骨
髄非付着性細胞浮遊液o、1rn1(1〜2X105有
核細胞)、改変McCoy’ s 5A培養液0.21
d、寒天を0.75%含む改変HcCoy’ s5A@
養液0.4dを混合して直径35a++の組織培養プラ
スティックディツシュに入れて固まらせたのち、37℃
、5%炭酸ガス/95%空気、100%湿度の条件で培
養を行い、10日後に形成されたコロニー数(50個以
上の細胞からなる集落を1コロニーとする)を数え、1
個のコロニーを形成する活性を1単位(Unit)とし
てC8Aを求めた。
rcsA measurement method" (a) When using human bone marrow cells: method of Bradley T, R, Hctcalf D, et al. (^ust, J, Exp, Biol, He
d, Sci, Vol. 44, pp. 287-300, 196
The culture was carried out using the monolayer soft agar culture method according to the method described in 1996). Namely, fetal bovine serum 0.2mi, test specimen 0.1d, human bone marrow non-adherent cell suspension o, 1rn1 (1-2X105 nucleated cells), modified McCoy's 5A culture solution 0.21
d, modified HcCoy' s5A containing 0.75% agar
After mixing 0.4 d of nutrient solution and solidifying it in a tissue culture plastic dish with a diameter of 35 mm, the mixture was heated to 37°C.
, 5% carbon dioxide / 95% air, 100% humidity conditions, count the number of colonies formed after 10 days (one colony is a colony consisting of 50 or more cells),
C8A was determined by setting the activity of forming 1 colony as 1 unit.

(b)マウス骨髄細胞を用いる場合: ウマ血清0.4d、被検検体0.1nj!、 C31−
1/He(メス)マウスの骨髄細胞浮遊液0.1d(0
,5〜1X105有核細胞)、寒天を0.15%含む改
変)fccoy’ S 5A培養液0./7を混合し直
径35履の組織培養用プラスティックディツシュに入れ
て固まらUたのち、37℃、5%炭酸ガス/95%空気
、100%湿度の条件下にて5日間培養し、形成された
コロニー数(50個以上の細胞からなる集落を1コロニ
ーとする)を数え、1個のコロニーを形成する活性を1
単位(Unit)としてC3Aを求めた。
(b) When using mouse bone marrow cells: Horse serum 0.4d, test sample 0.1nj! , C31-
1/He (female) mouse bone marrow cell suspension 0.1 d (0
, 5-1 x 105 nucleated cells), modified with 0.15% agar) fccoy' S 5A culture medium 0. /7 was mixed and placed in a plastic dish for tissue culture with a diameter of 35 mm, and after solidifying, it was cultured for 5 days at 37°C, 5% carbon dioxide/95% air, and 100% humidity to form a tissue culture dish. The number of colonies (a colony consisting of 50 or more cells is considered as one colony) was counted, and the activity of forming one colony was calculated as 1.
C3A was determined as a unit.

尚、上記(a) 、 (b)の方法において用いた[改
変HcCoy’ s 5A培養液および(a)で用いた
ヒト骨髄非付着性細胞浮遊液は次の如くして作成した。
The modified HcCoy's 5A culture solution used in methods (a) and (b) above and the human bone marrow non-adherent cell suspension used in (a) were prepared as follows.

「改変HcCoy’ s 5A培養液(2倍yA度)」
HcCoy’ S 5A!養液(GIBCO社製)12
g。
"Modified HcCoy's 5A culture solution (2x yA degree)"
HcCoy'S 5A! Nutrient solution (manufactured by GIBCO) 12
g.

MEMアミノ酸ビタミン培地(白水製薬社製)2.55
 g、重炭酸ナトリウム2.18 g、ペニシリンGカ
リウム5oooo単位を2同然溜水500rIIlに溶
解後、0.22μmのミリポアフィルタ−にて濾過滅菌
を行った。
MEM amino acid vitamin medium (manufactured by Hakusui Pharmaceutical Co., Ltd.) 2.55
After dissolving 2.18 g of sodium bicarbonate and 500 units of penicillin G potassium in 500 rIIl of distilled water, filtration sterilization was performed using a 0.22 μm Millipore filter.

「ヒト骨髄非付着性細胞浮遊液」 健常人胸骨ぽん刺により得た骨髄液をRPM1164G
培養液にて5倍に希釈し、Ficol −Paque液
(ファルマシア社製)に重層し、400X g、30分
"Human bone marrow non-adherent cell suspension" RPM1164G bone marrow fluid obtained from healthy human sternum puncture
Diluted 5 times with culture solution, layered on Ficol-Paque solution (manufactured by Pharmacia), and incubated at 400×g for 30 minutes.

25℃にて遠心を行い、界面の細胞層(比重く1.07
7)を回収する。この細胞を洗浄後、20%ウシ胎児血
清を含むRPM I 1640培養液にて5×106C
el l/rI11のm度に調整し、25cutの組織
培養用プラスチックフラスコに入れ、炭酸ガス培養器に
て30分間インキュベートしたのら、上清の非付着性細
胞を回収し、再度25CIiプラスチツクフラスコに入
れ、2時間30分インキュベートしたのち、上清の非付
着性細胞を集めて用いた。
Centrifuge at 25°C, and the cell layer at the interface (specific gravity 1.07)
7) Collect. After washing the cells, they were incubated at 5×106C in RPM I 1640 culture medium containing 20% fetal bovine serum.
After adjusting the m degree of el l/rI to 11 m, put it in a 25 cut plastic tissue culture flask and incubate for 30 minutes in a carbon dioxide gas incubator, collect the non-adherent cells in the supernatant, and put it again in a 25 CIi plastic flask. After incubating for 2 hours and 30 minutes, the supernatant of non-adherent cells was collected and used.

実施例1  rcHU−2Jの樹立 著明な好中球の増多が認められた口腔底癌患者の腫瘍を
nLJ/nuマウスに移植した。この腫瘍は移植約10
日後に箸明な腫瘍の増大と好中球の増多が認められた。
Example 1 Establishment of rcHU-2J A tumor from a patient with oral floor cancer in which a marked increase in neutrophils was observed was transplanted into nLJ/nu mice. This tumor is transplanted approximately 10 times
A day later, clear tumor growth and an increase in neutrophils were observed.

この腫瘍を移植12日後に無菌的に摘出し、1〜2#3
角に細切し、これを以下の如く培養した。
This tumor was removed aseptically 12 days after transplantation, and
It was cut into cubes and cultured as follows.

上記細切した腫瘍塊10〜15片を50/i!lのプラ
スチック遠心管に入れ、5r111のトリプシン溶液(
トリプシン0.25%、EDTA O,02%含む)を
加え、37°Cの温浴中で10分間撮とうしたのち上清
を捨て、再度、同トリプシン溶液5Iniを加え、37
℃で15分間攪拌しながらトリプシン消化を行った。
50/i! Place the 5r111 trypsin solution (
After adding 0.25% trypsin and 02% EDTA O, and photographing for 10 minutes in a 37°C hot bath, the supernatant was discarded, and 5 Ini of the same trypsin solution was added again.
Trypsin digestion was performed with stirring for 15 minutes at °C.

上清の細胞浮遊液を回収し、ウシ胎児血清を1r111
加えてトリプシンの作用を止めたのち水中に保存した。
Collect the supernatant cell suspension and add 1r111 fetal bovine serum.
In addition, after stopping the action of trypsin, they were stored in water.

以上の操作を再度行い細胞浮遊液を回収し、前回の分と
合わUて1.50Or、p、m、10分間の遠心により
細胞ペレットを得た。
The above operation was repeated to collect the cell suspension, which was combined with the previous suspension and centrifuged at 1.50 Or, p, m for 10 minutes to obtain a cell pellet.

この細胞ペレットをウシ胎児血清を10%含む[−10
にて2回洗浄したのら、25cIftのプラスチック培
養フラスコに細胞II度5×106個/フラスコになる
ようにして植え込んだ。ウシ胎児血清を10%含有する
F−10培養液を用い、炭酸ガスインキュベーター(炭
酸ガス濃度5%、湿度100%)中にて一部インキユベ
ートしたのら、上清を非付着細胞と共に除去し、新しい
培養液を加えて培養を継続した。培養開始後6日目に細
胞がいっばいに増殖したので、この時点で培養液を新し
いものに替えた。翌日、この培養液を捨て、RPM I
 l640で5倍希釈した抗マウス赤血球抗体(Cap
pe I社製)2mと同じ< RPM I 1640で
2.5倍希釈したモルモット補体(極東製薬社製>2d
を加え37°C220分間インキュベートした。インキ
ュベーション終了後ウシ胎児血清を10%含むF−10
にて2回洗浄しn IJ/n uマウス由来のフィブロ
ブラストを除去し引き続きウシ胎児血清を10%含むF
7−10培養液を加えて、さらに2日間培養を行った後
細胞の一部を取り出し限界希釈法によりクローニングを
行った。(7られた11個のクローンについてC8F活
性を調べたところ、他のものよりも約10倍高い活性を
示すクローン(CHU−2>が17られた。
This cell pellet was mixed with 10% fetal bovine serum [-10
After washing twice with water, the cells were implanted into a 25 clft plastic culture flask at a density of 5 x 10 6 cells/flask. Using F-10 culture solution containing 10% fetal bovine serum, a portion of the culture solution was incubated in a carbon dioxide incubator (5% carbon dioxide concentration, 100% humidity), and the supernatant was removed together with non-adherent cells. Culture was continued by adding new culture medium. The cells proliferated rapidly on the 6th day after the start of culture, so at this point the culture medium was replaced with a new one. The next day, discard this culture solution and use RPM I
Anti-mouse red blood cell antibody (Cap
Guinea pig complement (manufactured by Kyokuto Pharmaceutical Co., Ltd.) 2d diluted 2.5 times with RPM I 1640
was added and incubated at 37°C for 220 minutes. F-10 containing 10% fetal bovine serum after incubation
The fibroblasts derived from n IJ/nu mice were removed by washing twice with F containing 10% fetal bovine serum.
After adding 7-10 culture solution and culturing for another 2 days, a portion of the cells were taken out and cloned by the limiting dilution method. (When the C8F activity was examined for the 11 clones identified, 17 clones (CHU-2>) were identified that exhibited approximately 10 times higher activity than the others.

実施例2  CSFの単離 上述の如くして樹立された細胞が完全に密に増殖した1
50cIiの培養フラスコ2本より細胞を回収し、これ
をウシ胎児血清を10%含有するF−10培養液500
dに浮遊させたのち、1580ciのガラス製ローラー
ボトル(Be t co社製)に移し、0.5r、 p
、 m、の速度で回転培養を行った。細胞がローラーボ
トルの内壁に完全に密に増殖した時点で培養液を血清を
含まないRPM I 1640に交換し、4日間培養し
たのち培養上清を回収し、ウシ胎児血清を10%含有す
るF−10を加えて培養を続行する。
Example 2 Isolation of CSF The cells established as described above grew completely and densely.
Cells were collected from two 50 cIi culture flasks and mixed with 500ml of F-10 culture medium containing 10% fetal bovine serum.
After floating in 1580 ci glass roller bottle (manufactured by Betco),
Rotary culture was performed at a speed of , m. When the cells grew completely and densely on the inner wall of the roller bottle, the culture medium was changed to serum-free RPM I 1640, cultured for 4 days, the culture supernatant was collected, and F containing 10% fetal bovine serum was used. -10 and continue culturing.

3日間培養したのら再び血清を含まないRPM1164
0に波音を行い、4日後に培養上清を回収した。
After culturing for 3 days, use RPM1164 without serum again.
Wave sound was performed at 0, and the culture supernatant was collected 4 days later.

以下同様の操作をくり返すことにより、毎週1ボトルよ
り50(7!ずつの血清を含まない培養上清が得られ、
しかもこの方法によりかなり長期間にわたって細胞を維
持し、培養上清を回収することが可能であった。 得ら
れた培養上清5gを1バツチとし、これに0.01%ツ
イーン20を添加後11o11ow Fiber DC
−4および八m1con PM−10(アミコン社!り
を用いた限外濾過法により約1000倍に濃縮したのち
、これを以下の順序で精製した。
By repeating the same procedure, 50 (7!) serum-free culture supernatants can be obtained from one bottle every week.
Moreover, this method made it possible to maintain cells for a fairly long period of time and collect the culture supernatant. 5 g of the obtained culture supernatant was made into one batch, and after adding 0.01% Tween 20, 11o11ow Fiber DC
-4 and 8m1con PM-10 (Amicon Co., Ltd.) were concentrated approximately 1000 times by ultrafiltration, and then purified in the following order.

(i)  直径4.6c、、長ざ90c、の旧trog
el ACA54カラム(LKB社製)を用い、0.1
5M  NaC1及び0.01%ツイーン20(半片化
学社製)を含む0.01Mトリス塩酸緩衝液(D)−1
7,4)を用いて前記濃縮した培養上清5dを流速約5
0mf!/時間でゲル濾過した。尚カラムはあらかじめ
ウシ血清アルブミン(分子i67.000) 、オボア
ルブミン(分子量45,000) 、チトクロームC(
分子量12.400>にてキレリプレージョンを行った
。ゲル濾過終了後各フラクションよりO,17!ずつを
採取し、10倍に希釈した後、前述したrcsAの測定
方法(b)」により活性を示す画分を調べた。この結果
、先ずVe=400〜7007の両分がマクロファージ
優位のC3Aを示し、V e = 800〜1200m
の両分が顆粒球優位のC3Aを示すことがわかったので
、後者の両分を集めPM−10(アミコン社製)を用い
る限外濾過器によって約5dに濃縮した。
(i) Old trog with a diameter of 4.6c and a length of 90c.
el ACA54 column (manufactured by LKB), 0.1
0.01M Tris-HCl buffer (D)-1 containing 5M NaCl and 0.01% Tween 20 (Hanka Kagaku Co., Ltd.)
7, 4) at a flow rate of about 5 d to the concentrated culture supernatant 5d.
0mf! /hour. The column was pre-prepared with bovine serum albumin (molecular weight 67,000), ovalbumin (molecular weight 45,000), and cytochrome C (molecular weight 45,000).
Sharp represion was performed at a molecular weight of 12.400>. O,17 from each fraction after gel filtration! After collecting each sample and diluting it 10 times, the fraction showing activity was examined using the rcsA measurement method (b) described above. As a result, both Ve = 400-7007 showed macrophage-dominated C3A, and Ve = 800-1200 m
It was found that both fractions showed granulocyte-dominated C3A, so the latter two fractions were collected and concentrated to about 5 d using an ultrafilter using PM-10 (manufactured by Amicon).

(ii)  上記濃縮画分にn−プロパツール(東京化
成社製、アミノ酸配列決定用)を30%含む0.1%ト
リフルオロ酢酸水溶液を添加し、水中に15分程度放置
したのち、15.000r、 p、 m、 10分の遠
心により沈澱を除去した。次いで先のn−プロパツール
およびトリフルオロ酢酸を含む水溶液で平衡化したu 
Bondapak C18カラム(Waters社製、
セミ分収用、8履x30cm>に吸着後、30〜60%
の直線濃度勾配のn−プロパツールを含む0.1%トリ
フルオロ酢酸水溶液で順次溶出した。高速液体クロマト
装置は日立685−50型を、検出は日立638−41
型検出器くいずれも日立製作断裂)を用い、220nm
と280nl11の吸収を同時に測定した。溶出後、各
両分より10μgを分取100倍希釈したのら、前述の
「C3Aの測定法(b)」により活性を示す両分を調べ
た。この結果、「1−プロパツール40%にて溶出され
るピークに活性が認められたので、このピークを集め再
度同じ条件で再クロマトを行い上記と同様にしてC3A
を調べたところ、やはりn−プロパツール40%の位置
のピークに活性が認められたので、このピークを集め(
4フラクシヨン=4rIJl)凍結乾燥した。
(ii) A 0.1% trifluoroacetic acid aqueous solution containing 30% n-propertool (manufactured by Tokyo Kasei Co., Ltd., for amino acid sequencing) was added to the concentrated fraction, and after standing in water for about 15 minutes, 15. The precipitate was removed by centrifugation at 000 r, p, m for 10 minutes. Then, u equilibrated with an aqueous solution containing the above n-propanol and trifluoroacetic acid.
Bondapak C18 column (manufactured by Waters,
For semi-separation, 30-60% after adsorption to 8 shoes x 30cm>
The mixture was sequentially eluted with a 0.1% aqueous trifluoroacetic acid solution containing n-propatool with a linear concentration gradient of . The high performance liquid chromatography device is Hitachi 685-50, and the detection is Hitachi 638-41.
Using a type detector (both manufactured by Hitachi), 220 nm
and 280nl11 absorption were measured simultaneously. After elution, 10 μg was taken from each fraction and diluted 100 times, and both fractions showing activity were examined by the above-mentioned "Measurement method for C3A (b)". As a result, activity was observed in the peak eluted at 40% of 1-propatool, so this peak was collected and re-chromatographed under the same conditions.
When we investigated this, we found activity at the peak at 40% n-propatool, so we collected this peak (
4 fractions = 4rIJl) lyophilized.

(iii)上記凍結乾燥粉末をn−プロパツールを40
%含む0.1%トリフルオロ酢酸水溶液200μgに溶
解し、T S K −G300O3Wカラム(東洋曹達
社製、7.5#1IIi×60Cgt)を用いた高速液
体クロマトグラフィ(HPLC)にかけた。溶出は同水
溶液により0.4ml/分の流速で行い、フラクション
コレクターFRAC−100(ファルマシア社製)によ
り0.4dずつ分取した。分取した各両分についてC3
Aを前記と同様にして調べた結果、保持時間が37〜3
8分の画分く分子量約2万に相当)に活性が認められた
ので、この両分を回収し、更に分析用μBOndapa
k C18カラム(4,6#!IIIX 30cm )
による精製を施したのち、メインピークを回収し凍結乾
燥した。得られた標品について前述の「C8Aの測定方
法(a)」によって検定したところヒトG−C3F活性
を有することを認めた。
(iii) Add 40% of n-propertool to the above freeze-dried powder.
The solution was dissolved in 200 μg of a 0.1% trifluoroacetic acid aqueous solution containing 0.1% trifluoroacetic acid and subjected to high performance liquid chromatography (HPLC) using a TSK-G300O3W column (manufactured by Toyo Soda Co., Ltd., 7.5 #1IIi x 60Cgt). Elution was performed with the same aqueous solution at a flow rate of 0.4 ml/min, and fractions of 0.4 d were collected using a fraction collector FRAC-100 (manufactured by Pharmacia). C3 for each separated fraction
As a result of examining A in the same manner as above, the retention time was 37-3
Activity was observed in the 8 minute fraction (corresponding to a molecular weight of approximately 20,000), so both fractions were collected and further analyzed using μBOndapa.
k C18 column (4,6#!IIIX 30cm)
After purification, the main peak was collected and lyophilized. The obtained specimen was assayed by the above-mentioned "C8A measurement method (a)" and was found to have human G-C3F activity.

実施例3 アミノ酸配列の決定 (i)  N末端アミノ酸配列の決定 試料を気相式シークエンサー(アプライドバイオシステ
ム社製)を用いてエドマン(Edman)分解し、jS
られたPTI−1アミノ酸を高速液体クロマトグラフィ
ー装置(ベックマン・インストルメンツ社製)およヒU
Itrasphcre −0DSカラム(ベックマン・
インストルメンツ社製)を用いて常法により分析した。
Example 3 Determination of amino acid sequence (i) Determination of N-terminal amino acid sequence A sample was subjected to Edman digestion using a gas phase sequencer (manufactured by Applied Biosystems), and jS
The PTI-1 amino acid obtained was collected using a high performance liquid chromatography device (manufactured by Beckman Instruments) and
Itraphcre-0DS column (Beckman
(manufactured by Instruments Inc.) using a conventional method.

カラム(5μm、直径4.6調、長さ250m>を開始
緩衝液(15mM酢Mフトリウム緩衝液pt−14,5
,40%アセトニトリルを含む水溶液)にて平衡化した
のち、検体(20μgの開始緩衝液にて溶解)を注入し
て開始緩衝液によるイソクラティック溶出により分離を
行った。流速は1.4nf/分、カラム温度は40℃に
保持した。
Column (5 μm, diameter 4.6 mm, length 250 m) was prepared with starting buffer (15 mM vinegar M phthorium buffer pt-14,5
After equilibration with an aqueous solution containing 40% acetonitrile), the sample (dissolved in 20 μg of starting buffer) was injected and separated by isocratic elution with the starting buffer. The flow rate was 1.4 nf/min and the column temperature was maintained at 40°C.

PTHアミノ酸の検出は269nmと320nmの紫外
部吸収を利用した。あらかじめ標準PTHアミノ酸(シ
グマ社製)各2nmo+を同一の系で分離して保持時間
を決定し、被検検体の保持時間から同定を行った。
PTH amino acid was detected using ultraviolet absorption at 269 nm and 320 nm. Each 2 nmo+ of standard PTH amino acids (manufactured by Sigma) was separated in advance in the same system, the retention time was determined, and identification was performed from the retention time of the test specimen.

この結果、N末端から40残基目までのアミノ酸配列は
次の如く決定された。
As a result, the amino acid sequence from the N-terminus to the 40th residue was determined as follows.

H2N Thr Pro L eLJ GIV−Pro
 −A I a−3e r−3e r−L eu −P
ro−Gl n−3er−Phe−Leu−Leu−L
’l/5−CVS−Leu −G I LJ −G I
 n−Va l−Arg−Lys −I I e −G
l n−GI V−AS p−GI V−AI a−A
 l a−Leu −G l n−G I u−L y
s −Leu−Cys−AI a−Thr−Tyr−1
j/5− (ii)  ブロムシアン分解 試料を70%ギ酸に溶かし、昇華精製したブロムシアン
200当量を加えて、37℃で一夜反応させた。
H2N Thr Pro L eLJ GIV-Pro
-A I a-3e r-3e r-L eu -P
ro-Gl n-3er-Phe-Leu-Leu-L
'l/5-CVS-Leu -G I LJ -G I
n-Va l-Arg-Lys -I I e -G
l n-GI V-AS p-GI V-AI a-A
l a-Leu -G l n-G I u-L y
s-Leu-Cys-AI a-Thr-Tyr-1
j/5- (ii) A decomposed sample of bromic cyanide was dissolved in 70% formic acid, 200 equivalents of bromic cyanide purified by sublimation were added, and the mixture was reacted overnight at 37°C.

次に反応物を凍結乾燥後、TSK  G300O3Wカ
ラム(東洋曹達社製)を用いたHPLCで分画し4つの
ピークを得た。ピークを分子量の大きい順にCN−1,
CN−2,CN−3,CN−4と命名し、収率のよいC
N−1,CN−2についてアミノ酸配列を自動気相式シ
ークエンナー(アプライドバイオシステム社製)を用い
て(i)と同様の条件で分析した。
Next, the reaction product was freeze-dried and then fractionated by HPLC using a TSK G300O3W column (manufactured by Toyo Soda Co., Ltd.) to obtain four peaks. The peaks are arranged in descending order of molecular weight: CN-1,
Named CN-2, CN-3, and CN-4, C
The amino acid sequences of N-1 and CN-2 were analyzed using an automatic gas phase sequencer (manufactured by Applied Biosystems) under the same conditions as in (i).

その結果、CN−1はG−C8FタンパクのN末端から
のペプチドであることがわかった。さらにCN−2は以
下のアミノ酸配列を有していた。
As a result, it was found that CN-1 is a peptide from the N-terminus of G-C8F protein. Furthermore, CN-2 had the following amino acid sequence.

Pro−A l a−Phe −A l a−8e r
 −A l a−Ph e−G I n−A r g−
A r g−A I a−G l y−G I y−V
a I −Leu −Va l −A l a−3e 
r−Hi s−1eu −1n− (iii)  i−リプシン分解 試料を8M尿素を含む0.1Mトリス塩酸緩衝液(ll
 7.4)に)容かし、0.1%2−メルカプトエタノ
ールを含む0.1Mトリス塩酸緩衝液(pH7,4)を
7JOえて最終的に2Mの尿素となるように調整した。
Pro-Alia-Phe-Alia-8e r
-Al a-Ph e-G In-A r g-
A r g-A I a-G ly-G I y-V
a I -Leu -Va l -A l a-3e
r-His-1eu-1n- (iii) The i-lipsin degradation sample was dissolved in 0.1M Tris-HCl buffer containing 8M urea (11
7.4)) and added 7 JO of 0.1M Tris-HCl buffer (pH 7,4) containing 0.1% 2-mercaptoethanol to adjust the final concentration to 2M urea.

次いで試料と酵素が50=1となるように丁PCK処理
トリプシン(シグマ社製商品名)を加え、25°Cで4
時間反応させた後、さらに同量のTPCK処理トリプシ
ンを加えて、再度25℃で16時間反応させた。反応後
、反応物をC8カラム(山村化学社製)を用いた高速逆
相カラムクロマトグラフィーに付した。溶出は0.1%
TFAを含むr)−プロパツールを用い、n−プロパツ
ール濃度を5%〜60%に直線的に上げて行った。28
0n…の紫外部吸収を測定して1qられたピークのうち
、メインピークについて(i)と同条件下に自動気相式
シークエンサー(アプライドバイオシステム社製)を用
いてアミノ酸配列を分析した。その結果、メインピーク
は(ii)のCN−2断片の一部を含む以下の配列を有
するペプチドであることがわかった。
Next, add PCK-treated trypsin (trade name, manufactured by Sigma) so that the ratio of sample and enzyme is 50=1, and incubate at 25°C for 4 hours.
After reacting for an hour, the same amount of TPCK-treated trypsin was added, and the reaction was carried out again at 25° C. for 16 hours. After the reaction, the reaction product was subjected to high-speed reverse phase column chromatography using a C8 column (manufactured by Yamamura Chemical Co., Ltd.). Elution is 0.1%
R)-propatool containing TFA was used and the n-propatool concentration was increased linearly from 5% to 60%. 28
Among the peaks obtained by measuring the ultraviolet absorption of 0n... and 1q, the amino acid sequence of the main peak was analyzed using an automatic gas phase sequencer (manufactured by Applied Biosystems) under the same conditions as in (i). As a result, it was found that the main peak was a peptide having the following sequence containing a part of the CN-2 fragment (ii).

G l n−1eu−ASp−Va l −A I a
 −ASp−Phe −A I a−Th r−Th 
r −1l e−Tr p−G l n−G I n−
Me t −G l u−G l u−L eu−G 
I V−Met −A l a−Pro −A I a
−L eu−G l n −Pro−Th r−G l
 n−G l y−A I a −Met−pro−A
I a−Phe−Al a−er− 実施例4  DNAプローブの作成 (i)プローブ(IWQ)の合成 実施例3.(iii)で得られたアミノ酸配列の中から
I l e−’rrp−G l n−G I n−Me
t −G l u −G l u−Leu−G I y
−Me tで示される10個のアミノ酸の配列に基づい
て、30個の連続するヌクレオチドを得た(図1)。図
1の配列に於いて、例えば5′−末端から9位のヌクレ
オチドはdAおよびdGを等口金む混合物であることを
示す。原料のヌクレオチドは主にダイマーを使用し、必
要に応じて随時モノヌクレオチドも使用した。グラスフ
ィルター付きカラムに出発原料のヌクレオチド樹脂Ap
−d (G)(ヤマナ四油社製>2omgを入れ塩化メ
チレンにて洗浄を繰り返した後、3%トリクロロ酢酸を
含む塩化メチレン溶液にて、4.4′−ラメ1〜キシト
リチル基を脱離uしめ、次いで1dの塩化メチレンでカ
ラムを数回洗浄した。無水ピリジンで洗浄して溶媒を置
換したのちヌクレオチドダイマー(DMTr)ApTp
 (NHR3)(日本Lオン社製;N[・IF5はトリ
エチルアンモニウム、DMTrはジメ]〜キシトリチル
を示す)20mgと0.27のピリジンをh口えて真空
ポンプにてカラム内を真空乾燥した。次いで、2,4.
6−トリメチルベンゼンスルホニルー3−ニトロトリア
ゾリド(MSNT、和光純薬社Iu>20rngと無水
ピリジン0.2dを加えた後、カラム内を窒素ガスで置
換して、室温下に45分間時々振とうさせることによっ
てヌクレオチド樹脂とダイマーを縮合させた。反応終了
後、ピリジンにてカラムを洗浄し、次いで未反応のOH
基を過剰の無水酢酸と4−ジメチルアミノピリジンを含
むピリジン溶液にてアセチル化した後、再びカラムをピ
リジンで洗浄した。 以下同様に、(DHTr)It)
(NHR3)  、   (DHTr)Gl)Gl)(
NtlR3)  、   (DHTr)It)(NHR
3)  、  (DHTr)Cp丁p   (NHR3
)  と (D)lTr)丁DTI)(NtlR3)の
等N混合物、 ([)ITr)ApAD(NtlR3)
と(DHTr)ApGI)(NHR3)の等種混合物、
 (D)lTr)ApGp(NHR3)と([)HTr
’)Gt)Gp(NtlR3)の等種混合物。
G l n-1eu-ASp-Va l -A I a
-ASp-Phe -A I a-Th r-Th
r -1l e-Tr p-G l n-G I n-
Met-Glu-Glu-Leu-G
IV-Met-A1a-Pro-A1a
-L eu-G l n -Pro-Th r-G l
n-Gly-A Ia-Met-pro-A
I a-Phe-Ala-er- Example 4 Preparation of DNA probe (i) Synthesis of probe (IWQ) Example 3. Ile-'rrp-Gln-Gln-Me from the amino acid sequence obtained in (iii)
t-Glu-Glu-Leu-GIy
Based on the sequence of 10 amino acids indicated by -Met, 30 consecutive nucleotides were obtained (Figure 1). In the sequence of FIG. 1, for example, the nucleotide at position 9 from the 5'-end indicates a mixture containing equal amounts of dA and dG. Dimers were mainly used as raw nucleotides, and mononucleotides were also used as needed. Nucleotide resin Ap as a starting material is placed in a column with a glass filter.
-d (G) (manufactured by Yamana Shiyu Co., Ltd. > 2 omg) was added, and after repeated washing with methylene chloride, the 4,4'-lame 1-xytrityl group was removed with a methylene chloride solution containing 3% trichloroacetic acid. The column was washed several times with 1d methylene chloride. After washing with anhydrous pyridine and replacing the solvent, the nucleotide dimer (DMTr) ApTp
(NHR3) (manufactured by Japan L-ON Co., Ltd.; N [•IF5 indicates triethylammonium, DMTr indicates dime] to oxytrityl) 20 mg and 0.27 hours of pyridine were added, and the inside of the column was vacuum-dried using a vacuum pump. Next, 2, 4.
After adding 6-trimethylbenzenesulfonyl-3-nitrotriazolide (MSNT, Iu > 20 rng from Wako Pure Chemical Industries, Ltd.) and 0.2 d of anhydrous pyridine, the inside of the column was purged with nitrogen gas and the column was shaken occasionally for 45 minutes at room temperature. The nucleotide resin and dimer were condensed by boiling. After the reaction, the column was washed with pyridine, and unreacted OH
After the group was acetylated with a pyridine solution containing excess acetic anhydride and 4-dimethylaminopyridine, the column was washed again with pyridine. Similarly, (DHTr)It)
(NHR3) , (DHTr)Gl)Gl)(
NtlR3) , (DHTr)It) (NHR
3) , (DHTr)Cpdingp (NHR3
) and (D)lTr)DTI)(NtlR3), ([)ITr)ApAD(NtlR3)
and (DHTr)ApGI) (NHR3),
(D)lTr)ApGp(NHR3) and ([)HTr
') Gt) Homogenous mixture of Gp(NtlR3).

(DHTr)Gt)AI)(NtlR3)  、  (
DHTr)丁pGp(NHR3)  、  (D)tT
r)ADAi)(NHR3)と(DHTr)Gl)AI
)   (NtlR3)の等N混合物、  (DHTr
)C1)Ap(NHR3)、  (DI−ITr)At
)AI)(NHR3)と(DMTr)ApGI)(Nl
lR3)との等N混合物。
(DHTr)Gt)AI)(NtlR3), (
DHTr) DingpGp(NHR3), (D)tT
r)ADAi)(NHR3) and (DHTr)Gl)AI
) (NtlR3), (DHTr
)C1)Ap(NHR3), (DI-ITr)At
) AI) (NHR3) and (DMTr) ApGI) (Nl
lR3) in an equi-N mixture.

(DHTr)Gl)CI)(NHR3)  、   (
DHTr)TpGD(NHR3)  。
(DHTr)Gl)CI)(NHR3), (
DHTr)TpGD(NHR3).

(DHTr)Ip(NtlR3)、(DHTr)八pr
D(NHR3)[(DH[r)II)(NIIR3)は
ヤマサ起油社製、その他は全て日本ゼオン社製]の順で
、前述の操作を繰り返すことによって縮合させた。最終
段階の反応終了後、アセチル化することなしに、ピリジ
ン、塩化メチレン、エーテルの順で樹脂を洗浄した後、
乾燥させた。乾燥させた樹脂を1Mテトラメチルグアニ
ジンおよび1Mα−ピコリンアルドキシムを含むジオキ
サン1rItl、ピリジン0.5d、水0.2−の混合
液1.7mlに懸濁した後、−夜室温にて放置した後、
100〜200  μgまで減圧濃縮した。
(DHTr)Ip(NtlR3), (DHTr)8pr
D(NHR3) [(DH[r)II) (NIIR3) is manufactured by Yamasa Oil Co., Ltd., and all others are manufactured by Nippon Zeon Co., Ltd.], and condensation was carried out by repeating the above-mentioned operation in this order. After the final step of the reaction, the resin was washed with pyridine, methylene chloride, and ether in this order without acetylation.
Dry. The dried resin was suspended in 1.7 ml of a mixture of 1 ml of dioxane containing 1 M tetramethylguanidine and 1 M α-picoline aldoxime, 0.5 d of pyridine, and 0.2 ml of water, and then left at room temperature overnight. ,
It was concentrated under reduced pressure to 100-200 μg.

この濃縮液に少量(2〜3滴)のピリジンを加えた後、
濃アンモニア水2〜3rdを加え55℃で6時間加温し
た。次いで酢酸エチルを加えて抽出分離し、得られた水
層を減圧濃縮した後、50mMt’リエチルアンモニウ
ム酢酸溶液(DH7,0>に溶解せしめてC−18カラ
ム(1,OX 15cm、 Wa t e rS社製)
を用いたカラムクロマトグラフィーに付した。溶出は、
50mM トリエチルアンモニウム酢酸溶液(pH7,
0>中10%〜30%の直線濃度勾配のアセトニトリル
で行い、アセトニトリル濃度が25%付近の位置で溶出
されるピーク画分を減圧濃縮した。
After adding a small amount (2-3 drops) of pyridine to this concentrate,
2nd to 3rd portions of concentrated ammonia water were added and heated at 55° C. for 6 hours. Next, ethyl acetate was added for extraction and separation, and the resulting aqueous layer was concentrated under reduced pressure, and then dissolved in a 50 mM t'ethylammonium acetic acid solution (DH7.0) and loaded onto a C-18 column (1, OX 15 cm, Water (manufactured by rS)
It was subjected to column chromatography using . The elution is
50mM triethylammonium acetate solution (pH 7,
A linear concentration gradient of acetonitrile from 10% to 30% in 0.0% was used, and the peak fraction eluted at a position where the acetonitrile concentration was around 25% was concentrated under reduced pressure.

この濃縮液に80%酢酸を加えて室温下に30分間放置
した後、酢酸エチルを加えて抽出・分離し得られた水層
を減圧下に濃縮した。得られた濃縮液は、C18カラム
(センタ1−科学社製、5SC−〇DS−272,5φ
x 200m>を用いた高速液体クロマトグラフィーに
付して、ざらに精製した。
After adding 80% acetic acid to this concentrated solution and allowing it to stand at room temperature for 30 minutes, ethyl acetate was added to extract and separate the resulting aqueous layer, which was concentrated under reduced pressure. The obtained concentrate was coated with a C18 column (manufactured by Center 1-Kagaku Co., Ltd., 5SC-〇DS-272, 5φ
Roughly purified by high performance liquid chromatography using 200m x 200m>.

溶出は50mMトリエチルアンモニウム酢酸溶液(pH
7,0>中10%〜20%の直線濃度勾配のアセトニト
リルを用いて行い、10A 2601Jn![3以上の
収量で合成りNAが得られた。
Elution was performed using 50mM triethylammonium acetate solution (pH
10A 2601Jn! [Synthesized NA was obtained in a yield of 3 or higher.

(ii)プローブ(A)の合成 実施例3. (iii)で得られたアミノ酸配列の中か
らMet−Pro −A l a−Phe−A l a
で示される5個のアミノ酸の配列に基づいて14個の連
続するヌクレオチドを得た(図1)。
(ii) Synthesis Example 3 of probe (A). Among the amino acid sequences obtained in (iii), Met-Pro-Ala-Phe-Ala
We obtained 14 consecutive nucleotides based on the sequence of 5 amino acids shown in (Figure 1).

合成は、プローブ(IWQ>と同様な方法で行いヌクレ
オチド樹脂AP−d (T)(ヤマサ茜油社製) km
(DHTr)CpAり(NHR3)  : (DHTr
)GDGI)(NHR3):  (DHTr)CpAp
(NHR3)  、  (DHTr)Cp丁p(Ntl
R3)  。
Synthesis was performed in the same manner as the probe (IWQ) using nucleotide resin AP-d (T) (manufactured by Yamasa Akane Oil Co., Ltd.) km
(DHTr) CpAri (NHR3): (DHTr
)GDGI)(NHR3): (DHTr)CpAp
(NHR3), (DHTr)Cpdingp(Ntl
R3).

(DHrr)DpGp(NHR3)および(DHTr)
CpCI)(NtlR3)の等種混合物; (DHTr
)ApGI)(NHR3) 、 (DMTr)Tl)G
l)(NtlR3) 、 (DHTr)hh(NHR3
)および(DHTr)CpGp(NHR3)の等種混合
物; ([))lTr)^DAp(NIIR3)  :
(DHTr)CpAp(NHR3)と(DHTr)Cp
Gl)(NHR3)の等種混合物: (DHTr)Go
(NHR3)  (いずれも日本ピオン社製)の順に縮
合させて約10A 260 un!Isの合成りNAを
得た。
(DHrr)DpGp(NHR3) and (DHTr)
homogeneous mixture of (CpCI) (NtlR3); (DHTr
)ApGI)(NHR3), (DMTr)Tl)G
l)(NtlR3), (DHTr)hh(NHR3
) and (DHTr)CpGp(NHR3); ([))lTr)^DAp(NIIR3):
(DHTr)CpAp(NHR3) and (DHTr)Cp
Homogenous mixture of (Gl) (NHR3): (DHTr)Go
(NHR3) (both manufactured by Nippon Pion Co., Ltd.) in order of condensation and approximately 10A 260 un! A synthetic NA of Is was obtained.

jqられたオリゴヌクレオチドの塩基配列をHaXam
−Gilbert法により調べたところ図1に示された
塩基配列を有していることが確認された。
HaXam the base sequence of the oligonucleotide
- When examined by Gilbert's method, it was confirmed that it had the base sequence shown in FIG.

(iii)プローブ(LC)の合成 アプライドバイオシステム社のDNA合成は380Aに
より、自動合成を行った。この方法はCaruther
s等の記載した原理(J、 Am、 Chem。
(iii) Synthesis of probe (LC) Automated DNA synthesis was performed using Applied Biosystems' 380A. This method is described by Caruther
The principle described by S et al. (J, Am, Chem.

Soc、 103巻3185頁(1981))に基づい
ており、ホスホアミダイト法と称されている。
Soc, Vol. 103, p. 3185 (1981)), and is called the phosphoramidite method.

5′のジメトキシトリチルW(DMTr>を脱保護した
dG−3(Sは支持体)にテトラゾールで予め活性化し
た(DMTr)−dTのホスホアミダイト体を縮合させ
た後、未反応の水酸基をアセチル化し、次いで水存在下
でヨウ素酸化を行ってリン酸体に導いた。DHTr基を
脱保護し、以後同様に縮合を繰り返して図1に示される
如き配列の24個のヌクレオチドを合成した。得られた
ヌクレオチドを支持体から開裂せしめ脱保護した後、C
18カラム(センシュー科学社製5SC−ODS−27
2)を用いた逆相系高速液体クロマトグラフィーにて精
製した。
After condensing the phosphoramidite form of (DMTr)-dT previously activated with tetrazole to dG-3 (S is the support) from which 5' dimethoxytrityl W (DMTr> has been deprotected), the unreacted hydroxyl group is converted to acetyl. and then iodine oxidation in the presence of water to give a phosphate form.The DHTr group was deprotected and condensation was repeated in the same manner to synthesize 24 nucleotides with the sequence shown in Figure 1. After the nucleotides are cleaved from the support and deprotected, C.
18 columns (manufactured by Senshu Kagaku Co., Ltd. 5SC-ODS-27
It was purified by reverse phase high performance liquid chromatography using 2).

実施例5  CHU−2細胞の培養とmRNAの精製 1)  C)−ILJ−2細胞の培養と細胞の回収樹立
されたCHU−2細胞を150cmの培養フラスコ2本
に完全に密に増殖させた後、これをウシ胎児血清を10
%含有するR PM I 1640培養液500威に浮
遊させたのち、1580CIAのガラス製ローラーボト
ル(3e l co社製)に移し、0.5r、 p、 
m、の速度で4日間回転培養を行った。細胞がローラー
ボトルの内壁に完全に密に増殖した時点で、ローターボ
トルから培養液を除き、あらかじめ37℃に加温したE
DTAを0.02%含む生理食塩水100dを加え、3
7℃で2分間加温後、ピペット操作にて細胞をはく離し
しめた。(写られた細胞懸濁液を150or、 p、 
m、 10分間の遠心にて細胞ペレットを(7る。
Example 5 CHU-2 cell culture and mRNA purification 1) C)-ILJ-2 cell culture and cell recovery Established CHU-2 cells were grown to complete density in two 150 cm culture flasks. After that, add 10% of this to fetal bovine serum.
After suspending it in 500 volumes of RPM I 1640 culture solution containing 0.5% RPM I, it was transferred to a 1580CIA glass roller bottle (manufactured by 3elco), and 0.5r, p,
Rotary culture was performed for 4 days at a speed of m. When cells have grown completely and densely on the inner wall of the roller bottle, remove the culture medium from the rotor bottle and pre-warm at 37°C.
Add 100 d of physiological saline containing 0.02% DTA,
After heating at 7°C for 2 minutes, cells were detached by pipetting. (Photographed cell suspension at 150 or p.
m, cell pellet by centrifugation for 10 min (7 min).

細胞をEDTAを含まない生理食塩水5mlに再び懸濁
し、1500r、 p、 m、 10分間遠心にて細胞
ペレットを(qた(湿重量約o、a9)、このようにし
て17られた細胞はRNA仙出操出操作うまで一80°
Cにて凍結保存する。
The cells were resuspended in 5 ml of saline without EDTA and centrifuged at 1500 r, p, m for 10 min to pellet the cells (wet weight approx. RNA output operation up to 180°
Store frozen at C.

2)mRNAの精製 上記の如くして得られたCHU−2細胞からのmRNA
の単離は本質的に’)folecular cloni
ng ”[)ianiatis等、 Co1d Spr
ing tlarbor、  196頁(1982)]
に記載されているようにして実施した。
2) Purification of mRNA mRNA from CHU-2 cells obtained as above
The isolation of is essentially ') molecular cloni
ng ”[)ianiatis et al., Co1d Spr.
ing labor, p. 196 (1982)]
It was carried out as described.

凍結保存されていたCHU−2細胞(湿重量3.89)
に20dの6Mグアニジン溶液(6Mグアニジンチオシ
アナート、5mMクエン酸ナトリウム(pH7,0)、
0.IM  β−メルカプトエタノール、0.5%ザル
コシル硫酸ナトリウム)に懸濁し、VO(’teXミキ
サーにて2〜3分よく混合した後、18Gの注射針を装
てんした20d容の注射器を用いて10回吸入排出を繰
り返した。ベックマン社製5W40Tiローターに合う
ポリアロマ−製の遠心チューブに6rIJlの5.7M
  CsCl −0,IM  EDTA、  (pH7
,5)を先に加えておき、チューブが満たされるように
上述の細胞が壊れて粘稠になったグアニジン溶液的6m
を重層した。このようにして調製された遠心チューブ4
本を3()、 ooor、 l)9m、、20℃で15
時間遠心した後、得られたペレットを少量の70%エタ
ノールを用いて3回洗浄した。
Cryopreserved CHU-2 cells (wet weight 3.89)
20d of 6M guanidine solution (6M guanidine thiocyanate, 5mM sodium citrate (pH 7,0),
0. Suspended in IM β-mercaptoethanol, 0.5% sodium sarcosyl sulfate) and mixed well with VO ('teX mixer for 2 to 3 minutes, then injected 10 times using a 20d syringe equipped with an 18G needle) Inhalation and expulsion were repeated. 5.7M of 6rIJl was placed in a polyaromatic centrifuge tube that fits a Beckman 5W40Ti rotor.
CsCl-0, IM EDTA, (pH 7
, 5) first, and then add 6 m of guanidine solution, which has broken down the cells and become viscous, to fill the tube.
layered. Centrifuge tube 4 prepared in this way
3 (), ooor, l) 9m, 15 at 20℃
After centrifugation for an hour, the resulting pellet was washed three times with a small amount of 70% ethanol.

各々のチューブから得られたペレットを合して550μ
mの水に溶解せしめNaCl濃度が0.2Mとなるよう
に調整したのち、フェノール−クロロホルム(1:1)
処理、クロロホルム処理後、2.5倍容量のエタノール
を加えてエタノール沈澱を行い全RNAを得た(湿細胞
3.8gより仝RNA約10.lff1gを得た)。
Combine the pellets from each tube to 550μ
After adjusting the NaCl concentration to 0.2M in water, phenol-chloroform (1:1) was added.
After treatment and chloroform treatment, 2.5 times the volume of ethanol was added to perform ethanol precipitation to obtain total RNA (approximately 10.1 g of RNA was obtained from 3.8 g of wet cells).

全RNAからポリ(A  )−RNAの精製は以下の如
く行った。この方法はmRNAが3′末端にポリA鎖を
付加していることを利用したアフィニティークロマトグ
ラフィーである。オリゴ(dT)−セ)Ltロース(P
−L  Biochemicals社arype7>を
用い、吸着は全RNAを吸着緩衝液(10mMトリス−
塩酸(pH7,5)、0.5M  NaCl、1mM 
 EDTA、0.1%SDS溶液を含む)に溶解し、6
5℃で5分間加熱した後、同溶液にて充てんされたオリ
ゴ(dT)−セルロースカラムに通過させて行い、溶出
はTE浴溶液10mMトリス−塩酸(p)−17,5>
 、1mM  EDTAを含む)で行った。未吸着通過
液は再び同カラムに通して同様に溶出操作を行い、1回
目の溶出液と混合した。
Purification of poly(A)-RNA from total RNA was performed as follows. This method is affinity chromatography that utilizes the fact that mRNA has a polyA chain added to its 3' end. Oligo(dT)-Se)Lt loose (P
For adsorption, total RNA was mixed with adsorption buffer (10mM Tris-L Biochemicals arype7).
Hydrochloric acid (pH 7.5), 0.5M NaCl, 1mM
EDTA, containing 0.1% SDS solution),
After heating at 5°C for 5 minutes, the same solution was passed through an oligo(dT)-cellulose column packed, and elution was carried out using a TE bath solution of 10mM Tris-HCl (p)-17,5>
, containing 1mM EDTA). The unadsorbed effluent was passed through the same column again, subjected to the same elution operation, and mixed with the first eluate.

このような操作を用いて、ポリ(A  >−RNA40
0μqを得た。
Using such operations, poly(A>-RNA40
0 μq was obtained.

このようにして調製したmRNAを5chlcifとW
ens i nkの実験技術@ (Practical
 )tcthods inMolecular Bio
logy、 Springer−Verlag、 Ne
wYork、 Heiderberg、 Berlin
、 (1981))中に記載されている方法と同様の操
作で、ショ糖密度勾配遠心法によりjJ−イズ分画した
The mRNA thus prepared was mixed with 5chlcif and W
ens ink's experimental technology @ (Practical
)tcthods inMolecular Bio
logy, Springer-Verlag, Ne
wYork, Heiderberg, Berlin
JJ-Is fractionation was performed by sucrose density gradient centrifugation in a manner similar to that described in , (1981)).

すなわち、5W40Ti o−ター(Beckman社
製)用チューブに5%〜25%のショ糖密度勾配を作る
That is, a 5% to 25% sucrose density gradient is created in a tube for a 5W40Ti o-tar (manufactured by Beckman).

ショ糖溶液は0.IM  NaCl、10mMトリス−
塩酸(pH7,5)、1mM  EDTA、0.5%S
DSの溶液にそれぞれ5%、25%の割合いでRNas
eフリーのショ糖(Schwarz /)iann社製
)を含んでいる。
The sucrose solution is 0. IM NaCl, 10mM Tris-
Hydrochloric acid (pH 7.5), 1mM EDTA, 0.5%S
RNas at a rate of 5% and 25%, respectively, in a solution of DS.
Contains e-free sucrose (Schwarz/)iann).

上記で述べた如き方法で調製したmRNA (ポリ(A
  )−RNA> 800μ9を200μ9〜500μ
gのTE浴溶液溶解じしめ、65℃で5分間加熱後急冷
した後、ショ糖密度勾配液の上にのせる。
mRNA (poly(A
)-RNA > 800μ9 to 200μ9 to 500μ
Dissolve g in TE bath solution, heat at 65°C for 5 minutes, rapidly cool, and place on top of the sucrose density gradient solution.

30000r、 p、 m、にて20時間遠心後0.5
mlずつの分画を集め260nmの吸光度を測り、同様
に行った標準RNA (28S、18S、53のリボソ
ームRNA>の位置に基づいて、分画されたRNAのサ
イズを決めると同時に各分画のG−C3F活性をアフリ
カッメガエル(xenopus Iaevis)の卵母
細胞系を用いて調べた。すなわち各分画のmRNAを1
μg/μgの濃度の水溶液に調製し、ツメガエル(生後
約1年)から取り出した卵母細胞1個に50ロqのmR
NAの割合いで注入した復、96穴のマイクロタイター
プレートの1穴に卵母細胞を10個ずつ入れ、それぞれ
100μmのパース培地(88mHNaCI 、 1m
HKCI 、  2.4mM  NaHCO3。
0.5 after centrifugation for 20 hours at 30000 r, p, m.
The absorbance at 260 nm was measured by collecting ml fractions, and the size of the fractionated RNA was determined based on the position of the standard RNA (28S, 18S, 53 ribosomal RNA), which was carried out in the same way. G-C3F activity was investigated using the African frog (Xenopus Iaevis) oocyte system.
Prepare an aqueous solution with a concentration of μg/μg and apply 50 lq mR to one oocyte taken from a Xenopus laevis (approximately 1 year old).
After injecting NA at the same ratio, 10 oocytes were placed in each well of a 96-well microtiter plate, and 100 μm of Pers's medium (88 mH NaCI, 1 m
HKCI, 2.4mM NaHCO3.

0.82 mM MClSO4、0,33mHCa  
(NO3) 2  。
0.82mM MClSO4, 0.33mHCa
(NO3) 2.

0.41 ml CaCI2. 7.5m)fトリス−
塩Wi (pH7,6)、ペニシリン10m1/fl 
、ストレプトマイシン硫酸10mg/、lり中で48時
間室温で培養した後上清を回収し、濃縮・精製してG−
C3F活性を測定する。
0.41 ml CaCI2. 7.5m) f Tris-
Salt Wi (pH 7,6), penicillin 10ml/fl
After culturing at room temperature for 48 hours in 10 mg/liter of streptomycin sulfate, the supernatant was collected, concentrated and purified, and G-
Measure C3F activity.

この結果、15〜17S画分にG−C3F活性が認めら
れた。
As a result, G-C3F activity was observed in the 15-17S fraction.

実施例6  CDNAの合成(pBR系CDNAライブ
ラリーの構築) 前述の方法で得られたポリ(A  )−RNAから1−
and等の方法[Nucleic Ac1ds Res
、、 9巻2251頁(1981)]に基づき、Gub
lerとHOffmanの方法[Ge n e、 25
巻263頁(1983)]を加味してcDNAを合成し
た。
Example 6 CDNA synthesis (construction of pBR-based CDNA library) 1-
[Nucleic Ac1ds Res
,, Vol. 9, p. 2251 (1981)], Gub.
ler and Hoffman's method [Gene, 25
vol. 263 (1983)], cDNA was synthesized.

1)1本鎖CDNAの合成 エツペンドルフ社製1.5rIIN、容チューブに以下
の如くの順序で試薬を入れる。80μgの反応M’tX
i液(500mM  KCfl、 50mM  MQ(
j!2 、250mMトリス−塩W、pH8,3)、2
0μ、fJの200 mMジチオスレイトール、32μ
gの12.5m)l  d N T P(dATP、d
GTP、dCTP、dTTPを各々12.5mM含む)
、10μ、1!のα−3”P−dCTP(アマジャム製
、 PB 10205) 、 32μgのオリゴ(dT
)     (P−L  Biochemicals社
製。
1) Synthesis of single-stranded CDNA Place the reagents in the following order into a 1.5rIIN (manufactured by Eppendorf) tube. 80 μg reaction M'tX
i solution (500mM KCfl, 50mM MQ (
j! 2, 250mM Tris-Salt W, pH 8,3), 2
0μ, 200mM dithiothreitol, 32μ fJ
12.5 m of g) l d N T P (dATP, d
Contains 12.5mM each of GTP, dCTP, and dTTP)
, 10μ, 1! of α-3”P-dCTP (manufactured by Amajam, PB 10205), 32 μg of oligo (dT
) (manufactured by PL Biochemicals.

500μg/IIJ1) 、 20μgのポリ(A  
>−RNA(2,1μg/μg)、蒸溜水206μgの
計 400μgの反応液を65℃で5分間加熱後、42
℃で5分間加温する。この反応液に逆転写酵素(宝酒造
製)120単位を加え、さらに42℃、2時間反応させ
た後、RNaSeインヒビター(Bethesda R
e5earchLaboratories社製>2μu
 、20μJのTE浴溶液16μgの100 mMピロ
リン酸ナトリウム、48単位(4μg)の逆転写酵素を
追加して、今度は46℃2時間反応せしめた。0.5M
  EDTA  8μβ。
500μg/IIJ1), 20μg poly(A
>-RNA (2.1 μg/μg) and 206 μg of distilled water, a total of 400 μg of the reaction solution, was heated at 65°C for 5 minutes, then
Warm at ℃ for 5 minutes. To this reaction solution, 120 units of reverse transcriptase (manufactured by Takara Shuzo) were added, and after further reaction at 42°C for 2 hours, RNaSe inhibitor (Bethesda R
Manufactured by e5earch Laboratories>2μu
, 20 μJ of TE bath solution, 16 μg of 100 mM sodium pyrophosphate, and 48 units (4 μg) of reverse transcriptase were added, and the mixture was reacted at 46° C. for 2 hours. 0.5M
EDTA 8μβ.

10%SDS  8μgを加えて反応を停止させた後、
フェノール−クロロホルム処理、エタノール沈澱(2回
)を行い一本鎖CDNAを得た。
After stopping the reaction by adding 8 μg of 10% SDS,
Single-stranded CDNA was obtained by phenol-chloroform treatment and ethanol precipitation (twice).

2)1本鎖CDNAへのdC−鎖付加 上記で得られた一本鎖CDNAを60μpの蒸溜水に溶
解後、60μgのdC−鎖付加緩衝液(400mMカコ
ジル酸カリウム;50mMトリス−塩酸(pH6,9)
: 4mMジチオスレイトール:1mHCoCI2:1
mM  dCTP>に加え、37℃で5分間加温した。
2) Addition of dC-strand to single-stranded CDNA After dissolving the single-stranded CDNA obtained above in 60 μp of distilled water, 60 μg of dC-strand addition buffer (400 mM potassium cacodylate; 50 mM Tris-HCl (pH 6) ,9)
: 4mM dithiothreitol: 1mHCoCI2:1
mM dCTP> and heated at 37°C for 5 minutes.

この反応液にターミナルトランスフェラーゼ(27un
it/μ、Q 、 P−L Biochemicals
社製)3μgを加えて37℃で2.5分間反応した後、
フェノール−クロロホルム処理(1回)、およびエタノ
ール沈澱(2回)を行い、100mM  NaCl2を
含むTE溶液40μgに溶解ぜしめた。
Add terminal transferase (27un) to this reaction solution.
it/μ, Q, P-L Biochemicals
After adding 3 μg of the product (manufactured by Seiko Co., Ltd.) and reacting at 37°C for 2.5 minutes,
Phenol-chloroform treatment (once) and ethanol precipitation (twice) were performed, and the product was dissolved in 40 μg of TE solution containing 100 mM NaCl2.

3)2本鎖CDNAの合成 上記40μjのDNA溶液に4μgのオリゴ(dG)1
2−13 (200μ(J /ml、 P−L Bio
chemicals社製)をh口え65℃5分間、続い
て42°Cで30分間加温した後、反応液を0℃に保っ
た。 この反応液に緩衝液80μρ (100mMトリ
ス−塩酸、pt−17,5,20mMMqC12,50
mM (NH4)2304 、 500mM  KCI
)、4μJ)の4mM  dNTP(dATP、dCT
P、dGTP、dTTPを各々4mM含む) 、60μ
、Qの1mM  β−NAD及び210μmの蒸溜水、
20μgのE、coli  DNAポリメラーゼ■(宝
酒造社製)、15μpのE、G。
3) Synthesis of double-stranded CDNA Add 4 μg of oligo(dG) 1 to the above 40 μj DNA solution.
2-13 (200μ(J/ml, P-L Bio
Chemicals) was heated at 65°C for 5 minutes, then at 42°C for 30 minutes, and then the reaction solution was kept at 0°C. To this reaction solution was added a buffer solution of 80μρ (100mM Tris-HCl, pt-17,5,20mM MqC12,50
mM (NH4)2304, 500mM KCI
), 4 μJ) of 4 mM dNTPs (dATP, dCT
(containing 4mM each of P, dGTP, and dTTP), 60μ
, 1mM β-NAD in Q and 210μm distilled water,
20 μg of E, coli DNA polymerase ■ (manufactured by Takara Shuzo Co., Ltd.), and 15 μp of E and G.

1iDNAリガーゼ(宝酒造社製)、15μgのE、c
oli  RNase  H(宝酒造社製)を加え12
℃にて1時間反応させた後、さらに4μρの4mMdN
TPを追加し、25℃で1時間反応して、フェノール−
クロロホルム処理、エタノール沈111ffi(1回)
を行って、約8μgの2本鎖CDNAを得た。この2本
鎖CDNAをTE浴溶液溶解せしめ、1.2%アガロー
スゲル電気泳動を行い、約560塩基対(bp)〜2キ
ロ塩基対(Kbp)の大ぎざに相当する部分をワットマ
ンDE81(ワットマン社製)に吸着させ溶出回収した
ところ、約0.2μgが回収された。
1i DNA ligase (manufactured by Takara Shuzo Co., Ltd.), 15 μg of E, c
Add oli RNase H (manufactured by Takara Shuzo Co., Ltd.) to 12
After reacting for 1 hour at °C, an additional 4μρ of 4mM dN
Add TP and react at 25°C for 1 hour to convert phenol-
Chloroform treatment, ethanol precipitation 111ffi (1 time)
Approximately 8 μg of double-stranded CDNA was obtained. This double-stranded CDNA was dissolved in a TE bath solution, subjected to 1.2% agarose gel electrophoresis, and a portion corresponding to the large serrations of approximately 560 base pairs (bp) to 2 kilobase pairs (Kbp) was isolated using Whatman DE81 (Whatman Approximately 0.2 µg was recovered by adsorption and elution using a gel (manufactured by Co., Ltd.).

4)2本鎖CDNAへのdC−鎖付加 上記の如(3られた2本鎖CDNAを40Iiρの丁E
溶液に溶解し、2)の項で述べたdC−鎖付加緩衝液8
μgを加え37°Cで2分間加温した後、1μ、Qのタ
ーミナルトランスフェラーゼ(27unit/μfJ>
を加えて37℃で3分間反応せしめた。反応液を直ちに
O′Cに冷却し0.5M  EDTA1μgを加えて反
応を停止した後、フェノール−クロロホルム処理、エタ
ノール沈澱を行い、1qられた沈澱をTE温溶液0μg
に懸濁した。
4) Addition of dC-strand to double-stranded CDNA.
dC-chain addition buffer 8 described in section 2).
After adding μg and heating at 37°C for 2 minutes, 1 μ, Q terminal transferase (27 units/μfJ>
was added and reacted at 37°C for 3 minutes. The reaction solution was immediately cooled to O'C and 1 μg of 0.5M EDTA was added to stop the reaction, followed by phenol-chloroform treatment and ethanol precipitation.
suspended in.

5)  pBR系cDNAライブラリーの構築市販のオ
リゴ(dG)鎖付加pBR322ベクター(ベセスダリ
リーーチラボラトリーズ社製、10μg/μg)4μg
と上記dC−鎖付加2本鎖CDNA2μNを75μgの
0.IM  NaC1を含むTE浴溶液中でアニールさ
せた。アニールは65℃、5分加温した後40℃にて2
時間加温、その後、室温になるまで放置して行った。
5) Construction of pBR-based cDNA library 4 μg of commercially available oligo (dG) chain-added pBR322 vector (manufactured by Bethesda Reach Laboratories, 10 μg/μg)
and 75 μg of 2 μN of the above dC-stranded double-stranded CDNA. Annealed in TE bath solution containing IM NaCl. Annealing was performed at 65°C for 5 minutes, then at 40°C for 2
The mixture was heated for an hour and then left to stand until it reached room temperature.

一方、Maniatisらの実験l[)tolecul
ar cloning。
On the other hand, Maniatis et al.'s experiment l[)tolecul
ar cloning.

Co1d Spring Harbor、  249頁
(1982) ]に記載されている方法等を用いて大腸
菌X1776株からコンピテント細胞を調製し、上記ア
ニールされたプラスミドにより形質転換を行い、トラン
スフが一マント(形質転換体)が得られた。
Cold Spring Harbor, p. 249 (1982)], competent cells were prepared from E. coli strain X1776, and transformed with the above annealed plasmid. )was gotten.

実施例7  cDNA合成(λフアージ系ライブラリー
の構築) 1)1本鎖CDNAの合成 実施例5で述べた方法に従って3.8gの凍結保存CH
U−2細胞から2回オリゴ(dT)セルロースカラムに
よる精製を経て400μqのポリ(A+)−RNAを得
た。
Example 7 cDNA synthesis (construction of λ phage-based library) 1) Synthesis of single-stranded CDNA 3.8 g of cryopreserved CH according to the method described in Example 5
400 μq of poly(A+)-RNA was obtained from U-2 cells by purification using an oligo(dT) cellulose column twice.

このポリ(A+)−RNA12μqを溶解したTE温溶
液0μgを10μgのアクチノマイシンD(シグマ社製
)を含む反応チューブに入れた後、以下の順序で試薬類
を加えた:20μρの逆転写緩衝液(250mM トリ
ス−塩M (pH8,3>、40mMMCJC12,2
50mv  t<cl>、20μ、Qの5mM  dN
TP (dATP、dGTP、dCTP。
After placing 0 μg of the warm TE solution in which 12 μq of poly(A+)-RNA had been dissolved into a reaction tube containing 10 μg of actinomycin D (manufactured by Sigma), reagents were added in the following order: 20 μρ of reverse transcription buffer; (250mM Tris-Salt M (pH 8,3>, 40mM MCJC12,2
50mv t<cl>, 20μ, 5mM dN of Q
TP (dATP, dGTP, dCTP.

dTTPを各々5mM含む)、20μmのオリj(dT
)     (0,2μ(J /rail  P−L 
Biochemica13社製)、1μgの1Mジチオ
スレイトール、2μNの30 unit/μjJのRN
as i n (プロメガバイオチク社)、10μgの
逆転写酵素(10unit/μ、Q生化学工業社!u>
、1uflの(X−[32pldA丁P(10μCiア
マジヤム社製) 、 16μpの水で計100μgの液
量の反応液になる。反応液を42°Cで2時間保った後
、5μgの0.5M  EDTA及び1μgの20%S
O3を加えて反応を停止した。フェノール−クロロホル
ム(100μg)処理、エタノール沈i!’!i(2回
)を行って約4μQの1本鎖CDNAを得た。
(containing 5mM each of dTTP), 20 μm ori (dTTP)
) (0,2μ(J/rail P-L
Biochemica 13), 1 μg of 1M dithiothreitol, 2 μN of RN at 30 units/μjJ
as in (Promega Biotic Co., Ltd.), 10 μg of reverse transcriptase (10 units/μ, Q Seikagaku Corporation!u>
, 1ufl of (X-[32pldA-P (10μCi manufactured by Amaziyam), 16μp of water makes a total reaction solution of 100μg. After keeping the reaction solution at 42°C for 2 hours, 5μg of 0.5M EDTA and 1 μg 20% S
The reaction was stopped by adding O3. Phenol-chloroform (100μg) treatment, ethanol precipitation i! '! i (twice) to obtain approximately 4 μQ of single-stranded CDNA.

2)2本鎖CDNAの合成 上記の如く得られたCDNAを29μgのTE浴溶液溶
解し以下の順序で試薬類を加えて反応液とした;25μ
ρのポリメラーゼ緩衝液(400mMト1epes  
(pH7,6)  :16mM   MciCl  2
  :63mMのβ−メルカプトエタノール:  27
0mM KCI);10dの5mM  dNTP; 1
.0μ、Qの15mM  β−NAD: 1.OuNの
a−[32pl dATP(10μCi/μfl ) 
 :  0.2μ!JE、caliDNAリガーt: 
(60unit/QQ宝酒造社製);5.0μgのl:
、coli  DNAポリメラーゼ工(New  En
gland  Biolabs  社、  10  u
nit  /μM  )   ;0.1μ、QのRNa
se  H(60unit/μ、Q宝酒造社製):28
.7  μgの蒸溜水。
2) Synthesis of double-stranded CDNA 29 μg of the CDNA obtained above was dissolved in a TE bath solution, and the reagents were added in the following order to prepare a reaction solution;
ρ polymerase buffer (400mM
(pH 7,6): 16mM MciCl2
:63mM β-mercaptoethanol: 27
0mM KCI); 10d of 5mM dNTP; 1
.. 15mM β-NAD at 0μ, Q: 1. OuN a-[32pl dATP (10μCi/μfl)
: 0.2μ! JE, caliDNA rigger:
(60 units/manufactured by QQ Takara Shuzo Co., Ltd.); 5.0 μg of l:
, coli DNA polymerase engineering (New En
grand Biolabs, 10u
nit/μM); 0.1 μ, Q of RNA
se H (60 units/μ, manufactured by Q Takara Shuzo): 28
.. 7 μg distilled water.

反応液を14℃で1時間インキュベートした後、室温に
もどして、ざらに1時間インキニーベートした。次いで
5μgの0.5M  EDTAと1μgの20%SDS
を加えて反応を停止させ、フェノール−クロロホルム処
理、エタノール沈澱を行った。
After incubating the reaction solution at 14° C. for 1 hour, it was returned to room temperature and incubated in a colander for 1 hour. Then 5 μg of 0.5M EDTA and 1 μg of 20% SDS
was added to stop the reaction, followed by phenol-chloroform treatment and ethanol precipitation.

得られたDNAを0.5mM  EDTA20.cz、
l!に溶解せしめ、3μ2のに+enow緩衝液(50
0mMトリス−塩酸(DH8,0) 、 50mM  
MCJCI 2 > 。
The obtained DNA was diluted with 0.5mM EDTA20. cz,
l! Dissolve in 3μ2+enow buffer (50
0mM Tris-HCl (DH8,0), 50mM
MCJCI 2>.

3μgの5mM  dNTP、及び水4μρを加えて反
応液を調製した後、1μ9のDNAポリメラーゼ(Kl
enow断片)(宝酒造社製)を加えて30’C15分
インキュベートした。
After preparing a reaction solution by adding 3μg of 5mM dNTP and 4μρ of water, 1μg of DNA polymerase (Kl
enow fragment) (manufactured by Takara Shuzo Co., Ltd.) and incubated at 30'C for 15 minutes.

この反応液に70μgのTE浴溶液加えて希釈し、ざら
に5μgの0.5M  EDTA、1μgの20%SD
Sを加えて反応を停止した。反応液をフェノール−クロ
ロホルム処理し、エタノール沈澱を行って約8μ9の2
重鎖cDNAを1qだ。
Add 70 μg of TE bath solution to this reaction solution, dilute it, add 5 μg of 0.5M EDTA, 1 μg of 20% SD
The reaction was stopped by adding S. The reaction solution was treated with phenol-chloroform and precipitated with ethanol to yield approximately 8 μ9 of 2
The heavy chain cDNA is 1q.

3)2本鎖CDNAのメチル化 2)の項で合成した2本鎖CDNAの水溶液30μg、
メチル化緩衝液(500mMl’−リスー塩酸(pt・
18.0)、50mM  EDTA)40μ、l! 、
SAM溶液(800μMS−アデノシルーし一メチルメ
チオニン(SAM)、50mM  β−メルカプトエタ
ノール>20μm、水100μ磨を加えた混合液にEC
0RIメチラーゼ(New England 8iol
abs社、 20unit/μ、IJ ) 15μj!
を加えて全反応液を200  μpとし、31℃2時間
インキュベートした。
3) Methylation of double-stranded CDNA 30 μg of the aqueous solution of double-stranded CDNA synthesized in section 2),
Methylation buffer (500mM l'-liss-hydrochloric acid (pt.
18.0), 50mM EDTA) 40μ, l! ,
EC was added to a mixture of SAM solution (800 μM MS-adenosyl-monomethylmethionine (SAM), 50 mM β-mercaptoethanol >20 μM, and 100 μM water).
0RI methylase (New England 8iol
abs, 20unit/μ, IJ) 15μj!
was added to bring the total reaction solution to 200 μp, and incubated at 31° C. for 2 hours.

フェノール処理、エーテル処理を行った後、エタノール
沈澱を行ってDNAを回収した。
After phenol treatment and ether treatment, ethanol precipitation was performed to recover DNA.

4)EcoRIリンカ−の付加 上記メチル化された2本鎖DNA約1.2μgにリガー
ゼ緩衝液(250mMトリス−塩酸 (lI7.5)、
  100mM  MgC12)L5μl 、あらかじ
めリン酸化されたEC0RIリンカ−0,5μN  (
10mar、宝酒造社製)、  1.5μ、l!の10
mMAT P 、  100mMジチAスレイトール1
.5/、(41、2μgのH2Oを加え、反応液を15
μgとしてT4DNAリガーゼ(3,4u/ufl 、
宝酒造社製)0.7μgを加えて4°Cで一晩反応させ
た後、65°Cにて10分間加熱しりガーゼを失活させ
た。この反応液をざらに100mMトリス−塩酸(pH
7,5) 。
4) Addition of EcoRI linker Approximately 1.2 μg of the above methylated double-stranded DNA was added with ligase buffer (250 mM Tris-HCl (lI 7.5),
100mM MgC12)L 5μl, pre-phosphorylated EC0RI linker-0.5μN (
10mar, Takara Shuzo), 1.5μ, l! 10
mMATP, 100mM dithi A threitol 1
.. 5/, (41, 2 μg of H2O was added and the reaction solution was diluted to 15
T4 DNA ligase (3,4u/ufl,
After adding 0.7 μg (manufactured by Takara Shuzo Co., Ltd.) and reacting at 4°C overnight, the gauze was heated at 65°C for 10 minutes to inactivate it. This reaction solution was roughly mixed with 100mM Tris-HCl (pH
7,5).

5mM  MgCl2.50mM  NaCl、100
μa/1rdlのゼラチンの濃度で全液量が50μmに
なるように調製した後、EcoRI (10unit/
μ、1! >3.5μg加え、37℃、2時間反応させ
た。次いで0.5MのEDTA 2.5μj)、20%
SDS O,5μgを加えた後フェノール−クロロホル
ム処理を行いエタノール沈澱によりDNAを回収した。
5mM MgCl2.50mM NaCl, 100
After preparing the total liquid volume to 50 μm with a gelatin concentration of μa/1rdl, EcoRI (10 units/
μ, 1! >3.5 μg was added and reacted at 37° C. for 2 hours. then 0.5 M EDTA 2.5 μj), 20%
After adding 5 μg of SDS O, phenol-chloroform treatment was performed, and DNA was recovered by ethanol precipitation.

この後Ultrogel^cA34(LKB社製)のゲ
ル濾過法あるいはアガロースゲル電気泳動法にて未反応
のEcoRIリンカ−を除去し、リンカ−付加2末鎖C
DNA約0.5〜0.7μQを回収した。
After that, the unreacted EcoRI linker was removed by gel filtration using Ultrogel^cA34 (manufactured by LKB) or agarose gel electrophoresis, and the linker-added 2-terminal C
Approximately 0.5-0.7 μQ of DNA was recovered.

5)2本鎖CDNAとλgtioベクターの結合上記の
リンカ−付加2本鎖cDNAを、2.4μqの予じめE
C0R1処理したλgtloベクター(ベクタークロー
ニングシステム社)、リガーゼ緩衝液(250mM ト
リス塩酸、100mMMgCI2>1.4μg、蒸溜水
6.5μpを加えて、42℃、15分子121処理した
後、10mM  ATPl μm 。
5) Binding of double-stranded cDNA and λgtio vector The above linker-added double-stranded cDNA was added to
C0R1-treated λgtlo vector (Vector Cloning Systems), ligase buffer (250mM Tris-HCl, 100mM MgCI2>1.4μg, 6.5μp of distilled water) were added, and 15 molecules were treated at 42°C, followed by 10mM ATPlμm.

0.1Mジチオスレイトール1μI 、T4DNAリガ
ーゼ0.5μgを加え全量を15μgとした後、12℃
で一晩反応させた。
Add 1 μl of 0.1 M dithiothreitol and 0.5 μg of T4 DNA ligase to bring the total amount to 15 μg, and then incubate at 12°C.
The mixture was allowed to react overnight.

6)インビトロパッケージング 上記5)で得られた組換え体DNAの約173をインビ
トロパッケージングキット(プロメガ バイオチク社)
を用いてパッケージジグし、ファージプラークを得た。
6) In vitro packaging Approximately 173 of the recombinant DNA obtained in 5) above was added using an in vitro packaging kit (Promega Biotique).
A phage plaque was obtained by package jig using

実施例8 プローブ(IWQ)によりpBR系ライブラ
リーのスクリーニング コロニーの成育した寒天培地上にワットマン541濾紙
をのせ37℃で2時間放置した。以下、TaubとTh
ompsonの方法[Anal、Biochem 、1
261222頁(1982)]に準じて濾紙を処理した
Example 8 Screening of pBR library using probe (IWQ) Whatman 541 filter paper was placed on the agar medium on which colonies had grown and left at 37°C for 2 hours. Below, Taub and Th
ompson's method [Anal, Biochem, 1
261,222 (1982)].

すなわち、541′a紙にコロニーを移した後、クロラ
ムフェニコール(250μg/μp)を含んだ寒天培地
に移し、ざらに37℃で一晩放置した。
That is, after the colonies were transferred to 541'a paper, they were transferred to an agar medium containing chloramphenicol (250 μg/μp) and allowed to stand overnight at 37°C.

541ira紙を取り出した後、室温下で0.5N  
NaOH溶液を浸した濾紙上に3分間放置し、これを2
回くり返した。以下同様な操作を0.5Mトリス−塩酸
(pH8>溶液を用いて3分間、2回行ない、更に4℃
下に0.05MI’−リスー塩酸(pH8>溶液で3分
、L5my/mlのリゾチーム液(0,05Mトリス−
塩酸(pH8>、25%ショ糖を含む)で10分間、次
いで37℃下に1 X5SC(0,15MNaCI及び
0.015Mクエン酸ナトリウム)溶液で2分間、20
0μg/m1プロテアーゼKを含む1xssc溶液で3
0分、再び室温下にlX5SC溶液で2分間、95%エ
タノール溶液で2分間、2回行った後、541′a紙を
乾燥させた。得られた乾燥541濾紙を室温下にフェノ
ール:クロロホルム:イソアミルアルコール(25: 
24 : 1 、 100mMトリス−塩M(pH8,
5)、100mM  NaCl。
After taking out the 541ira paper, apply 0.5N at room temperature.
Leave it on the filter paper soaked with NaOH solution for 3 minutes, and then soak it for 2 minutes.
Repeatedly. The same operation was then carried out twice for 3 minutes using 0.5M Tris-HCl (pH 8> solution), and the temperature was further increased at 4°C.
At the bottom, add 0.05M Tris-hydrochloric acid (pH 8> solution for 3 minutes, L5my/ml lysozyme solution (0.05M Tris-
Hydrochloric acid (pH 8>, containing 25% sucrose) for 10 min, then 2 min at 37°C with 1X5SC (0,15M NaCI and 0.015M sodium citrate) solution for 20 min.
3 with 1x SSC solution containing 0 μg/ml protease K.
After 0 minutes, the 541'a paper was dried at room temperature again for 2 minutes with the 1X5SC solution and 2 minutes with the 95% ethanol solution. The obtained dry 541 filter paper was mixed with phenol:chloroform:isoamyl alcohol (25:
24:1, 100mM Tris-Salt M (pH 8,
5), 100mM NaCl.

IGmM  EDTAで平衡化シタもの)溶液ニ30分
間浸した。以下同様の操作を5XSSC溶液で3分間、
3回、次いで95%エタノール溶液で3分間、2回行っ
た後、濾紙を乾燥させた。
The cells were soaked in a solution equilibrated with IGmM EDTA for 30 minutes. Repeat the same operation for 3 minutes with 5XSSC solution.
After three passes and then two passes of 3 minutes with 95% ethanol solution, the filter paper was dried.

プローブ(IWQ)を常法(Molecular cl
oninaを参照)に従って32pを用いて放射標識し
た後、Wallace等の方法(Nucleic Ac
1ds Res、 9W879頁(1981)”)に従
ってコロニーハイブリダイゼーションを行った。6xN
ET[0,9M  NaC!。
The probe (IWQ) was prepared using a conventional method (Molecular cl
After radiolabeling with 32p according to the method of Wallace et al.
Colony hybridization was performed according to 1ds Res, p. 9W879 (1981).
ET[0,9M NaC! .

0.09Mトリス−塩M (pH1,5> 、  6m
M  EDTA] 、 5xDenhardt溶液、0
.1%SDS、0.1mg/rnll変性DNA (仔
牛胸腺DNA)を含むハイブリダイゼーション緩衝液中
で65℃、4時間、プレハイブリダイゼーションを行っ
た後、放射標識化したプローブ(IWQ)IXIO6C
Dm/mlを含む前記ハイブリ・ダイゼーション緩衝液
を用いて56℃で一夜ハイブリダイゼーションを行った
。反応終了後541′a紙を室温下に0.1%SDSを
含む6xssc溶液で30分、2回および56℃、1.
5分間洗滌した後、オートラジオグラフィーを行った。
0.09M Tris-salt M (pH 1,5>, 6m
MEDTA], 5x Denhardt solution, 0
.. After prehybridization at 65°C for 4 hours in a hybridization buffer containing 1% SDS and 0.1 mg/rnll denatured DNA (calf thymus DNA), radiolabeled probe (IWQ) IXIO6C
Hybridization was performed overnight at 56° C. using the above hybridization buffer containing Dm/ml. After the reaction was completed, the 541'a paper was treated with a 6xssc solution containing 0.1% SDS at room temperature twice for 30 minutes and once at 56°C.
After washing for 5 minutes, autoradiography was performed.

シグナルの出たクローンよりプラスミドを分離した後、
プローブ(IWQ)を用いてサヂンプロツティングを行
った。ハイブリダイビージョンおよびオートラジオグラ
フィーは前述と同一の条件で行なった。
After isolating the plasmid from the clone that gave the signal,
Saturday plotting was performed using probe (IWQ). Hybridization and autoradiography were performed under the same conditions as described above.

同様にプローブ(A>を用いてサザンブロツティングを
行った。ハイブリダイゼーションは前述のハイブリダイ
ゼーション緩衝液を用い、49℃で1時間行い、39℃
まで徐冷後ざらに39℃で1時間行なった。反応終了後
、ニトロセルロースフィルターをo、i%SDSを含む
6XSSCで室温下に30分で2回洗滌し、次いで39
℃で3分間洗滌した後、オートラジオグラフィーを行な
った。
Southern blotting was similarly performed using the probe (A>. Hybridization was performed at 49°C for 1 hour using the above-mentioned hybridization buffer, and then at 39°C.
After cooling slowly until temperature reached 39° C., the test was carried out for 1 hour. After the reaction was completed, the nitrocellulose filter was washed twice with 6X SSC containing o, i% SDS at room temperature for 30 minutes, and then
After washing for 3 minutes at °C, autoradiography was performed.

この結果、1個のクローンがポジティブなものとして得
られ、ジデオキシ法により塩基配列を決定したところ図
2に示した如く、プローブ(IWQ)及びプローブ(A
>部分を含む308塩基対よりなるDNAであることが
判明し、このインサートを含むp B R322由来プ
ラスミドをpHC3−1と命名した。
As a result, one clone was obtained as a positive clone, and the base sequence was determined by the dideoxy method, as shown in Figure 2, probe (IWQ) and probe (A
The pBR322-derived plasmid containing this insert was named pHC3-1.

実施例9  pI−IC3−’l由来DNAプローブに
よるλ)7−ジ系ライブラリーのス クリーニング BenignとDaV i sの方法[5cience
  196i、  180頁、 (1977)]に準じ
てプラークハイブリダイゼーションを行った。実施例8
で得られたpl−IC3−1を5au3AおよびEC0
RIで処理して約600塩基対のDNA断片を得、この
DNA断片を常法に従いニックトランスレーションによ
り放射標識した。ファージプラークの生じた寒天培地上
にニトロヒルロース濾紙(S&S社)をのせてファーシ
ラ移し、0.5M  Na0I−1にてDNAを変性さ
せ、以下の順序で濾紙を処理した。0.1MNaOH,
1,5M  NaC1で20秒続いて0.5Mトリス−
塩1(DH7,5>、  1.5M  NaC1で20
秒2回、最後に120mM  N a Cl 、 15
mMクエン酸ソーダ、13 mM  KH2PO4,1
mM  EDTA、 pH7,2で20秒処理シタ。
Example 9 Screening of λ)7-di-based library using pI-IC3-'l-derived DNA probe Benign and DaVis method [5science
196i, p. 180, (1977)]. Example 8
pl-IC3-1 obtained in 5au3A and EC0
A DNA fragment of about 600 base pairs was obtained by treatment with RI, and this DNA fragment was radiolabeled by nick translation according to a conventional method. A nitrohirulose filter paper (S&S Co.) was placed on the agar medium on which the phage plaques had formed, and the fercilla was transferred, the DNA was denatured with 0.5M Na0I-1, and the filter paper was treated in the following order. 0.1M NaOH,
1,5M NaCl for 20 seconds followed by 0.5M Tris-
Salt 1 (DH7,5>, 20 in 1.5M NaCl
2 times per second, and finally 120mM NaCl, 15
mM Sodium Citrate, 13 mM KH2PO4,1
Treat for 20 seconds with mM EDTA, pH 7.2.

次いで濾紙を乾燥し、80℃で2時間加熱してDNAを
固定した。5xSSC,5x[)cnhardt溶液、
50mMリン酸緩衝液、50%ホルムアミド。
The filter paper was then dried and heated at 80° C. for 2 hours to fix the DNA. 5xSSC, 5x[)cnhardt solution,
50mM phosphate buffer, 50% formamide.

0.25111!J/1allの変性DNA (鮭精巣
DNA)、及び0.1%SDSを含むハイブリダイビー
ジョン緩衝液中で42°Cにて一晩プレハイブリダイゼ
ーションを行い、ニックトランスレーションにより放射
標識化したpHC8−110−ブ4X105CplII
/dを含むハイブリダイゼーション緩衝液(5XS S
 C、5x Denhardt溶液、20mMIJン酸
緩衝液(pH8,0> 、 50%ホルムアミド、0.
1%SDS。
0.25111! J/1all denatured DNA (salmon testis DNA) and pHC8, which was prehybridized overnight at 42°C in a hybridization buffer containing 0.1% SDS and radiolabeled by nick translation. -110-bu4X105CplII
/d hybridization buffer (5XS S
C, 5x Denhardt solution, 20mM J acid buffer (pH 8,0>, 50% formamide, 0.
1% SDS.

10%デキストラン硫酸、  o、img、/iの変性
DNA(鮭精巣DNA)の混合液)で42℃にて20時
間ハイブリダイゼーションを行った。
Hybridization was performed at 42° C. for 20 hours with a mixture of 10% dextran sulfate and o, img, /i denatured DNA (salmon testis DNA).

ニトロセルロース濾紙を室温下に0.1%SDSを含む
2XSSCで20分間洗滌し、次いで44℃で、0.1
%SDSを含む0.lX5SCで30分間、ざらに室温
下でo、1xsscで10分間洗滌した後、オートラジ
オグライーで検出した。
The nitrocellulose filter paper was washed with 2X SSC containing 0.1% SDS at room temperature for 20 minutes, and then at 44°C with 0.1% SDS.
0.0% containing SDS. After washing with 1×5SC for 30 minutes, wash at room temperature for 10 minutes with 1×SSC, and detect by autoradiography.

その結果、5個のポジティブなりローン(G’1〜5)
が得られた。そこで、得られたクローンのうち完全長c
DNAを含むと思われるクローンのDNA塩基配列をジ
デオキシ法にて調べたところ図3(A)に示される如き
塩基配列が得られた。そこでこのcDNAをλCJtl
Oベクターより切りだし、pB R327[5ober
on等: Gene9 巻287頁(1980)]とE
C0RI部位で結合させ、プラスミドとして大量調製し
た。このプラスミドをpBRG4と称する。
As a result, 5 positive loans (G'1 to 5)
was gotten. Therefore, among the clones obtained, full-length c
When the DNA base sequence of the clone thought to contain DNA was examined by the dideoxy method, the base sequence shown in FIG. 3(A) was obtained. Therefore, this cDNA was converted into λCJtl
It was excised from the O vector and pB R327[5ober
on et al.: Gene 9, p. 287 (1980)] and E.
It was ligated at the C0RI site and prepared in large quantities as a plasmid. This plasmid is called pBRG4.

実施例10.DBRG4由来DNAプローブおよびプロ
ーブ(LC)によるλフアー ジ系ライブラリーのスクリーニング 実施例9で用いたBentOnとDav i sの方法
(前出の文献を参照)に準じてプラークハイブリダイゼ
ーションを行った。ファージプラークの生じた寒天培地
上にニトロセルロース濾紙(S&S社製)をのせてファ
ージを移し、0.5M  NaOHにてDNAを変性さ
せ、以下の順序で濾紙を処理した。
Example 10. Screening of a λ Phage Library Using DBRG4-Derived DNA Probes and Probes (LC) Plaque hybridization was performed according to the method of BentOn and Davis (see the above-mentioned literature) used in Example 9. Nitrocellulose filter paper (manufactured by S&S) was placed on the agar medium on which phage plaques had formed, and the phages were transferred, the DNA was denatured with 0.5 M NaOH, and the filter paper was treated in the following order.

0、IM  NaOH,1,5M  NaC1で20秒
、続いて0.5Mトリス−塩酸(pH7,5>、1.5
MNaClで20秒2回、最後に120mM  NaC
l、15mMクエン酸ソーダ、13mM  KH2PO
4,1mM  EDTA、(pH7,2>で2o秒処理
シタ。
0.0, IM NaOH, 1.5 M NaCl for 20 s, followed by 0.5 M Tris-HCl (pH 7.5>, 1.5
MNaCl twice for 20 seconds and finally 120mM NaC
l, 15mM sodium citrate, 13mM KH2PO
4.1mM EDTA, (pH 7.2> treated for 20 seconds).

次いで濾紙を乾燥し、80℃で2時間加熱してDNAを
固定した。このようにして同一の濾紙を2枚作製し、p
BRG4由来DNAプローブとプローブ(LC)による
スクリーニングにそれぞれ供した。 pBRG4由来D
NAプローブによる場合は、pBRG4をEC0RIで
処理して約1500塩基対のDNA断片を得、このDN
A断片を常法に従ってニックトランスレーションにより
放射標識した。上記濾紙を5XSSC15x Denh
ardt溶液、501118リン酸緩衝液、50%ホル
ムアミド、0.25my/dの変性DNA (鮭精巣D
NA) 、及びo、i%SO8を含むハイブリダイゼー
ション緩衝液中で42℃にて一晩、プレハイブリダイゼ
ーションを行い、上記の放射標識した約1500塩基対
のDNAプローブ(約1×106CpIII/rI11
)を含むプレハイブリダイゼーション緩衝液[5XSS
C15xDenhardt溶液、20mMリン酸緩衝液
(p)−16゜O)、50%ホルムアミド、0.1%S
DS、10%デキストラン硫酸、0.1ffilf/r
nlの変性DNA (鮭精巣DNA)の混合液]で42
℃にて20時間ハイブリダイゼーションを行った。ニト
ロセルロース濾紙を室温下に、0.1%SDSを含む2
XSSCで20分間洗滌し、次いで44℃で、0.1%
SDSを含む0.lX5SCで30分間、ざらに室温下
で0.1%SSCで10分間洗滌した後、オートラジオ
グライーで検出した。
The filter paper was then dried and heated at 80° C. for 2 hours to fix the DNA. In this way, two identical filter papers were made, and p
Each sample was subjected to screening using a BRG4-derived DNA probe and a probe (LC). pBRG4-derived D
When using an NA probe, pBRG4 is treated with EC0RI to obtain a DNA fragment of about 1500 base pairs, and this DNA
The A fragment was radiolabeled by nick translation according to a conventional method. The above filter paper is 5XSSC15x Denh
ardt solution, 501118 phosphate buffer, 50% formamide, 0.25 my/d denatured DNA (salmon testis D
Prehybridization was performed overnight at 42°C in a hybridization buffer containing NA) and o, i% SO8, and the radiolabeled approximately 1500 base pair DNA probe described above (approximately 1
) containing prehybridization buffer [5XSS
C15x Denhardt solution, 20mM phosphate buffer (p) -16°O), 50% formamide, 0.1% S
DS, 10% dextran sulfate, 0.1 ffilf/r
denatured DNA (salmon testis DNA)]
Hybridization was performed at ℃ for 20 hours. Nitrocellulose filter paper was placed at room temperature with 2 containing 0.1% SDS.
Washed with XSSC for 20 minutes, then at 44°C with 0.1%
0.0 containing SDS. After washing with 1X5SC for 30 minutes and 0.1% SSC at room temperature for 10 minutes, the cells were detected by autoradiography.

プローブ(LC)の場合は、濾紙を0.1%SO8を含
む3XSSCで、65°Cにて2時間前処理した後、6
XNET、I XDenhardt溶液、100μ(I
t/dの変性DNA (鮭精巣DNA)を含む溶液中、
65℃で2時間、プレハイブリダイゼーションを行った
For probe (LC), filter paper was pretreated with 3XSSC containing 0.1% SO8 at 65°C for 2 hours, and then
XNET, I XDenhardt solution, 100μ (I
In a solution containing t/d denatured DNA (salmon testis DNA),
Prehybridization was performed at 65°C for 2 hours.

放射標識したプローブ(LG>  (2xlO6cpm
/d)を含むハイブリダイゼーション緩衝液[6X N
 E T 、 ’l X 0enhardt溶液、10
0μ0 /d変性DNA (鮭精巣DNA)]で63℃
にて一晩ハイプリダイピーションを行った後、ニトロセ
ルロース濾紙を室温下に、0.1%SO8を含む6XS
SCで20分間洗滌し、この洗滌を3回行った後、0.
1%SDSを含む6XSSCにて、63℃で2分間洗滌
した。
Radiolabeled probe (LG> (2xlO6cpm
/d) in hybridization buffer [6X N
E T , 'l X 0enhardt solution, 10
0 μ0 /d denatured DNA (salmon testis DNA)] at 63°C
After hyperdivision overnight at room temperature, the nitrocellulose filter paper was soaked in 6
After washing with SC for 20 minutes and performing this washing three times, 0.
Washing was performed at 63°C for 2 minutes in 6XSSC containing 1% SDS.

濾紙を乾燥した後オートラジオグラフィーで検出した。After drying the filter paper, it was detected by autoradiography.

このようにして行ったスクリーニングに於いて、2つの
プローブの両方にポジティブなりローンを選別し、その
うち完全長のCDNAを含むと思われるクローンの塩基
配列をジデオキシ法にて調べたところ、図4(A)に示
される如き塩基配列が得られれた。そこでこのcDNA
をλgtioベクターより切りだし、pBR327とE
CoRI部位で結合させ、プラスミドpBRV2を得た
In the screening conducted in this way, we selected clones that were positive for both of the two probes, and examined the nucleotide sequences of clones that were thought to contain the full-length CDNA using the dideoxy method, as shown in Figure 4 ( A base sequence as shown in A) was obtained. So this cDNA
was cut out from the λgtio vector, and pBR327 and E
It was ligated at the CoRI site to obtain plasmid pBRV2.

実施例11  ヒト染色体遺伝子ライブラリーのスクリ
ーニング 1) ヒト染色体遺伝子ライブラリーの構築ヒト染色体
遺伝子ライブラリーはHaniatis(Harvar
d University)から供与を受けたが、これ
は次ぎのようにして作られたものである。
Example 11 Screening of human chromosomal gene library 1) Construction of human chromosomal gene library Human chromosomal gene library was manufactured by Haniatis (Harvar
d University), and was created as follows.

ヒト胎児肝臓から染色体全DNAをフェノールなどで抽
出し、制限酵素1−1ae[IとAIuIで部分消化す
る。こうして得られたDNA断片の中から鎖長が18〜
25Kb程度のフラグメントをショ糖密度勾配遠心法に
より濃縮し、次に制限酵素EC0RHの切断箇所を持つ
短鎖合成ヌクレオチドを介して大腸菌ファージλCha
ron4AのアームDNAに接続し、感染性のある)7
−ジDNA組換え体を作成する。次に、ざらに感染性を
高める目的でパッケージング法により完全なファー92
粒子にしである。このようにして作られたヒト遺伝子ラ
イブラリーは原理的にはほとんど全てのヒト遺伝子を含
む鎖長が18〜25KbのヒトDNAを含んだ組換え体
の集合であると考えられる。
Total chromosomal DNA is extracted from human fetal liver using phenol, etc., and partially digested with restriction enzymes 1-1ae[I and AIuI. Among the DNA fragments obtained in this way, the chain length is 18~
The approximately 25 Kb fragment was concentrated by sucrose density gradient centrifugation, and then isolated from Escherichia coli phage λCha via a short synthetic nucleotide with a restriction enzyme EC0RH cleavage site.
connects to the arm DNA of ron4A and is infectious) 7
-Creating a di-DNA recombinant. Next, in order to increase the infectivity, complete fur 92 was removed using a packaging method.
It's grainy. The human gene library created in this way is, in principle, considered to be a collection of recombinants containing human DNA with a chain length of 18 to 25 Kb, including almost all human genes.

2)  pHC3−1由来DNAプローブによるヒト染
色体遺伝子ライブラリーのスクリーニング BentOnとDav i sの方法[5CienCe
 196巻180頁(1977) ]に準じてプラーク
ハイプリダイゼイションを行った。実施例8で得られた
pHcs−1を3au3A#よびEcoRIで処理して
約600塩基対のDNA断片を得、このDNA断片を常
法に従いニックトランスレーションにより放IJ m 
W&した。ファージプラークの生じた寒天培地−Lにニ
トロセルロースろ紙(S&S社)をのせてファージを移
し、0.5M  NaOHにてDNAを変性ざぜ、以下
の順序でろ紙89!1即した。0.IM  NaOH。
2) Screening of human chromosomal gene library using pHC3-1-derived DNA probe BentOn and Davis method [5CienCe
Plaque hybridization was performed according to Vol. 196, p. 180 (1977)]. pHcs-1 obtained in Example 8 was treated with 3au3A# and EcoRI to obtain a DNA fragment of about 600 base pairs, and this DNA fragment was released by nick translation according to a conventional method.
I did W&. Nitrocellulose filter paper (S&S Co., Ltd.) was placed on the agar medium-L on which phage plaques had formed, and the phages were transferred, the DNA was denatured with 0.5M NaOH, and filter paper 89!1 was placed in the following order. 0. IM NaOH.

1.5M  NaC,Qで20秒、続いて0.5M  
トリス塩M(17,5>、1.5M  NaC,l!で
20秒2回。
1.5M NaC,Q for 20 seconds, followed by 0.5M
Tris salt M (17,5>, 1.5M NaC, l! twice for 20 seconds.

最後に120mM  N a Cρ、15mMクエン酸
ソーダ、13mM  KH2PO4,1mM  EDT
A。
Finally 120mM NaCρ, 15mM Sodium Citrate, 13mM KH2PO4, 1mM EDT
A.

(pH7,2>で20秒処理した。(Processed at pH 7.2> for 20 seconds.

次いでろ紙を乾燥し、80°Cで2時間加熱してDNA
を固定した。5XSSC,5xDenhardt溶液、
50mMリン酸緩衝液、50%ホルムアミド、0.25
mFJ/r111の変性DNA (鮭精巣DNA)。
The filter paper was then dried and heated at 80°C for 2 hours to remove the DNA.
was fixed. 5X SSC, 5x Denhardt solution,
50mM phosphate buffer, 50% formamide, 0.25
Denatured DNA of mFJ/r111 (salmon testis DNA).

及び0.1%SO3を含むハイブリダイゼーション緩衝
液中で42℃にて一晩ハイブリダイゼーションを行いニ
ックトランスレーションにより放射標識したpHC3−
1プローブ4X10” cpm/dを含むハイブリダイ
ゼーション緩衝液[5XSSC,5xDenhardt
溶液、20mMリン酸緩衝液(DH6,0) 、50%
ホルムアミド、0.1%SDS、10%デキストラン硫
酸、o、img、/miの変性DNA (鮭精巣DNA
)の混合液]で42℃にて20時間ハイブリダイビージ
ョンを行った。
and pHC3-, which was radiolabeled by nick translation and hybridized overnight at 42°C in a hybridization buffer containing 0.1% SO3.
Hybridization buffer [5X SSC, 5x Denhardt
Solution, 20mM phosphate buffer (DH6,0), 50%
Denatured DNA (salmon testis DNA) in formamide, 0.1% SDS, 10% dextran sulfate, o, img, /mi
) Hybridization was performed at 42° C. for 20 hours.

ニトロセルロースろ紙を室温下に0.1%SDSを含む
2XSSCで20分間洗浄し、次いで44℃で0.1%
SDSを含む0.I X5SCで30分間、ざらに室温
下で0.I X5SCで10分間洗浄した後、オートラ
ジオグラフィーで検出した。
The nitrocellulose filter paper was washed with 2X SSC containing 0.1% SDS at room temperature for 20 minutes, then at 44°C with 0.1% SDS.
0.0 containing SDS. IX5SC for 30 minutes, then rinse at room temperature for 0. After washing with IX5SC for 10 minutes, detection was performed by autoradiography.

その結果、士数個のポジティブなりローンが得られた。As a result, several positive loans were obtained.

これらのクローンから組換え体DNAをHaniati
sの方法で(Cell 15巻687頁(1978))
により調製した。
Recombinant DNA from these clones was extracted by Haniati.
By the method of s (Cell Vol. 15, p. 687 (1978))
Prepared by

jqられたDNAはEcoRI、BamHI。The jqed DNA is EcoRI and BamHI.

Bgl It等の各制限酵素にて処理した後、アガロー
スゲル電気泳動で分析し、Fr1tsch等の方法(前
出文献を参照)に従って制限酵素地図を作成した。
After treatment with restriction enzymes such as Bgl It, the samples were analyzed by agarose gel electrophoresis, and a restriction enzyme map was created according to the method of Frltsch et al. (see the above-mentioned document).

上記スクリーニングに用いた放射標識されたpHC3−
1由来のDNA断片のプローブを用いてサヂンハイブリ
ダイゼーションを行い、その結果、プローブとハイブリ
ダイズした中からECoRIにより切断された約8キロ
塩基対のDNA断片を選び、pBR327のECoRI
部位にナブクローニングした。
Radiolabeled pHC3- used in the above screening
Saturday hybridization was performed using a probe of the DNA fragment derived from pBR327, and as a result, a DNA fragment of about 8 kilobase pairs that had been cleaved with ECoRI was selected from among those that hybridized with the probe, and the ECoRI fragment of pBR327 was selected.
The site was nubcloned.

ざらに、このサブクローニングされたDNAについて上
記の如き制限酵素による処理を行い、サザンハイプリダ
イゼーションを繰り返し行うことにより、EC0RI及
びXhoIで切り出される約4キロ塩基対のDNA断片
にヒトG−C3Fポリペプチドをコードする遺伝子が存
在することが判明した。
Roughly, this subcloned DNA was treated with restriction enzymes as described above, and Southern hybridization was repeatedly performed to generate a DNA fragment of approximately 4 kilobase pairs excised with EC0RI and XhoI, which contained the human G-C3F polypeptide. It was discovered that there is a gene that codes for

そこでデオキシ法を用いてこのDNA断片の約3キロ塩
基対の配列を調べたところ図5に示される塩基配列が得
られた。
When the sequence of about 3 kilobase pairs of this DNA fragment was investigated using the deoxy method, the base sequence shown in FIG. 5 was obtained.

また、このDNA断片の制限酵素切断部位は図7に示さ
れる如くであった。
Further, the restriction enzyme cleavage site of this DNA fragment was as shown in FIG.

ヒト染色体遺伝子のスクリーニングに用いるプローブと
して上述の他、pBRG4由来のDNA及び1RV2由
来のDNAで行った。
In addition to the probes mentioned above, DNA derived from pBRG4 and DNA derived from 1RV2 were used as probes for screening human chromosomal genes.

両DNAとも、EC0RIで処理した1500塩基対の
DNA断片を直接上記の如くニックトランスレーション
法にて放射標識するか、EC0RIで処理した後[)r
a工処理して(7られる約700塩基対のDNA断片を
同様に放射標識したものを、前述と同条件にてプラーク
ハイブリダイゼーションすることによりクローンを選別
した後、す1アンハイブリダイゼーシヨンによる分析を
行って図5に示される塩基配列を有するDNA断片を得
ることができた。得られたプラスミドをpBRCE3β
と命名した。
For both DNAs, the 1500 base pair DNA fragment treated with EC0RI was directly radiolabeled using the nick translation method as described above, or the 1500 base pair DNA fragment was treated with EC0RI and then radiolabeled [)r.
A DNA fragment of about 700 base pairs obtained by the A step (7) was radiolabeled in the same manner, and clones were selected by plaque hybridization under the same conditions as described above, and then subjected to unhybridization. Through analysis, we were able to obtain a DNA fragment having the base sequence shown in Figure 5.The resulting plasmid was transformed into pBRCE3β.
It was named.

実施例12. pHGA 410ベクターの調製(動物
細胞用、+VSE系) 実施例9で得られた図3(A)で示されるCDNAのE
coRI断片を制限酵素[)ra工にて37℃で2時間
で処理した後、DNAポリメラーゼエのKl enOW
断片(宝酒造社製)で処理し、末端を平滑末端とした。
Example 12. Preparation of pHGA 410 vector (for animal cells, +VSE system) E of the cDNA shown in Figure 3(A) obtained in Example 9
The coRI fragment was treated with restriction enzyme [)ra for 2 hours at 37°C, and then treated with DNA polymerase KleinOW.
Fragment (manufactured by Takara Shuzo Co., Ltd.) was treated to make the ends blunt.

1μqのBQII[リンカ−(8mer:宝酒造社製)
をATPを用いてリン酸化した後、上記で得られた約1
μqのDNA断片混合物と結合させた。次いで制限酵素
BgI IIで処理してアガロースゲル電気泳動を行い
、最も大きいDNA断片だけを回収した。
1μq of BQII [linker (8mer: manufactured by Takara Shuzo Co., Ltd.)
After phosphorylating with ATP, approximately 1 obtained above
It was combined with a DNA fragment mixture of μq. Next, the DNA fragments were treated with restriction enzymes BgI II and subjected to agarose gel electrophoresis, and only the largest DNA fragment was recovered.

このDNA断片は図6に示すようにヒトG−C5Fポリ
ペプチドをコードする部分を含む約710塩基対に相当
していた。ベクターpdKCR(Fukunaoa等;
 Proc、 Nat 1.Acad、 Sc i、 
USA;81巻5086頁(1984))を制限酵素B
amHIで処理した後、アルカリフォスファターゼ(宝
酒造社製)で脱リン酸して得られたベクターDNAをT
4DNAリガービ(宝酒造社製)を加えてCDNA断片
と結合させ1lGA410を得た(図8)。図8に示さ
れるごとくこのプラスミドは、SV40初期遺伝子のプ
ロモーター、SV40の複製開始領域、ウサギβ−グロ
ビン遺伝子の一部、pBR322の複製開始領域および
pBR322由来のβ−ラクタマーゼ遺伝子(Amp 
>をふくみ、SV40初期遺伝子のプロモーター下流に
ヒトG−C5F遺伝子が接続されている。
As shown in FIG. 6, this DNA fragment corresponded to approximately 710 base pairs including a portion encoding human G-C5F polypeptide. Vector pdKCR (Fukunaoa et al.;
Proc, Nat 1. Acad, Sci,
USA; Vol. 81, p. 5086 (1984)) with restriction enzyme B.
After treatment with amHI, the resulting vector DNA was dephosphorylated with alkaline phosphatase (manufactured by Takara Shuzo Co., Ltd.).
4DNA Rigavi (manufactured by Takara Shuzo Co., Ltd.) was added and bound to the CDNA fragment to obtain 11GA410 (FIG. 8). As shown in Figure 8, this plasmid contains the promoter of the SV40 early gene, the replication initiation region of SV40, part of the rabbit β-globin gene, the replication initiation region of pBR322, and the β-lactamase gene derived from pBR322 (Amp
>, and the human G-C5F gene is connected downstream of the promoter of the SV40 early gene.

実施例13.Cl27細胞用組替えベクターの構築(+
VSE) 1)、pHGA 410 (1−1>の構築実施例12
で得られたpHGA410プラスミド(図8 > 20
μGを50 mHTr i 5−HCI (pH7,5
> 、7 m)f IVLQC12,100mHNaC
l、7mN2−メルカプトエタノール、o、 oi%ウ
シ血清アルブミン(BSA)の反応液に溶解し、制限酵
素EcoRI (宝酒造社製、10〜15単位)を加え
て約30分37℃にて反応させ、EC0RIによる部分
消化を行った。次いでフエーノールークロロホルム(1
:1)処理を2回行いエーテル処理、エタノール沈澱を
行ってDNA断片を処理した。
Example 13. Construction of recombinant vector for Cl27 cells (+
VSE) 1), Construction Example 12 of pHGA 410 (1-1>)
The pHGA410 plasmid obtained in (Figure 8 > 20
μG to 50 mHTTri 5-HCI (pH 7,5
> ,7 m) f IVLQC12,100mHNaC
Dissolved in a reaction solution of 1, 7 mN 2-mercaptoethanol and 0, oi% bovine serum albumin (BSA), added restriction enzyme EcoRI (manufactured by Takara Shuzo Co., Ltd., 10-15 units), and allowed to react at 37°C for about 30 minutes. Partial digestion with EC0RI was performed. Then phenol-chloroform (1
:1) The DNA fragments were processed by performing two treatments: ether treatment and ethanol precipitation.

このDNA断片を501118 Tr i 5−HCl
、5mHMgC12,10mM DTT、 1m)iの
dATP。
This DNA fragment was treated with 501118 Tri 5-HCl.
, 5mHMgC12, 10mM DTT, 1m)i dATP.

dCTP、(jGTP、dTTPからなる50μmの液
に溶解しE、Go l 1DNAポリメラーゼ−Kle
now断片(宝酒造社製)5μgを加えて14’C2時
間インキュベートしプラントエンド(blunt en
d)にした。
Dissolved in a 50 μm solution consisting of dCTP, (jGTP, dTTP, E, Gol 1 DNA polymerase-Kle
Add 5 μg of now fragment (manufactured by Takara Shuzo Co., Ltd.) and incubate for 2 hours at 14'C.
d).

これから0.8%アガロースゲル電気泳動により約5.
8)(bの断片6μqを回収した。
From this, approximately 5.
8) 6 μq of fragment (b) was collected.

回収したDNA断片5μaを再び50mHTris−ト
1cI  (pH7,6>  、 10mHMOCI2
  、10mHDTT、IIIIHATPからなる反応
液50μN中に溶解し、Hi ndI[Iリンカ−(宝
酒造社製)2μq1及びT4DNAリガーゼ(宝酒造社
製)100単位を加えて、4℃にて一晩反応した。
5μa of the recovered DNA fragment was again diluted with 50mHTris-1cI (pH 7,6>, 10mHMOCI2).
, 10 mHDTT, and IIIHATP, 2 μql of HindI[I linker (manufactured by Takara Shuzo Co., Ltd.) and 100 units of T4 DNA ligase (manufactured by Takara Shuzo Co., Ltd.] were added, and the mixture was reacted overnight at 4°C.

次いで、フエーノル処理、エーテル処理、エタノール沈
澱後、10 mHT r i 5−HCI (pH7,
5)、7 mHMgC12,60mHNaClの溶液3
0u、Qに溶解し、制限酵素Hindl[110単位存
在下3時間37℃でインキュベートした。再びT4DN
Aリガーゼにより処理した後、このDNAを塩化ルごジ
ウム法(前記のl’−Molecular Cloni
ng J参照)によりE、coli  DHI株に形質
転換し、アンピシリン耐性(Amp’)のコロニーを得
てpHGA410プラスミドのECoRI部位がl−1
indI[[に置きかわったプラスミドを保持する菌を
選択した。このようにして得られたプラスミドを1iG
A410 (t−1)と命名する(図9)。
Next, after phenol treatment, ether treatment, and ethanol precipitation, 10 mHT r i 5-HCI (pH 7,
5), 7 mHMgC12, 60 mH NaCl solution 3
It was dissolved in 0u, Q and incubated at 37°C for 3 hours in the presence of 110 units of restriction enzyme Hindl. T4DN again
After treatment with A ligase, this DNA was processed using the l'-Molecular Cloni chloride method (described above).
ng J) into the E. coli DHI strain to obtain ampicillin-resistant (Amp') colonies, and the ECoRI site of the pHGA410 plasmid was transformed to l-1.
Bacteria carrying a plasmid that replaced indI[[ were selected. The plasmid thus obtained was
It is named A410 (t-1) (Figure 9).

2)0発現用組換えベクターpTN−G4の構築上記1
)で得られたpHGA410 (ト1)(20μg)を
10 mHTr i 5−HCl (pf−i7.5>
、7mHMgC12,175+nHNaCI 、0.2
 mHEDTA17 mN 2−メルカプトエタノール
、0.01%ウシ血清アルブミンからなる反応液50μ
gに溶解し、制限酵素5alI(宝酒造社製>20単位
を加え、37℃にて5時間インキュベートした。
2) Construction of recombinant vector pTN-G4 for expressing 0
) obtained in 10 mHTri 5-HCl (pf-i7.5>
, 7mHMgC12,175+nHNaCI, 0.2
mHEDTA17 mN 2-mercaptoethanol, 50μ reaction solution consisting of 0.01% bovine serum albumin
20 units of restriction enzyme 5alI (manufactured by Takara Shuzo Co., Ltd.) was added, and the mixture was incubated at 37°C for 5 hours.

次いでフェール処理、エタノール沈澱後、DNAポリメ
ラーゼに+enow断片(宝酒造社製)にて前出の反応
と同様に14℃約2時間インキユベートシ、プラントエ
ンドにした。これを、アガロース電気泳動で回収するこ
となくエタノール沈澱したDNA断片を制限酵素Hin
dl[Iにて処理して、約2.7kbのl−i i n
dlI[−3a I I断片を1%アガロースゲル電気
泳動にて5μq回収した。
Then, after performing a fail treatment and ethanol precipitation, the DNA polymerase was incubated with +enow fragment (manufactured by Takara Shuzo Co., Ltd.) at 14° C. for about 2 hours in the same manner as in the previous reaction, and then used as a plant end. The DNA fragments were precipitated with ethanol without being collected by agarose electrophoresis and then treated with the restriction enzyme Hin.
Processed with dl[I, approximately 2.7 kb of l-i in
5 μq of the dlI[-3a II fragment was recovered by 1% agarose gel electrophoresis.

一方、ウシ乳頭腫ウィルス[bovine papi 
l Iomavirus (BPV)]を有するプラス
ミドpdBPV−1(Sarver、N、、5byrn
e、J、C&Howley、P、M、(1982) P
roc、Natl、Acacl、Sci、USA79巻
7147−7151 ;Dr。
On the other hand, bovine papillomavirus [bovine papillomavirus]
Plasmid pdBPV-1 (Sarver, N., 5byrn
e, J., C. & Howley, P. M. (1982) P.
roc, Natl, Acacl, Sci, USA 79 Vol. 7147-7151; Dr.

t+ow+eyより入手)をNagataらの方法の如
((rukunaga、Sokawa、& Nagat
a、 (1984)Proc、Natl、Acacl、
Sci、UsA81巻50136−5090) Hi 
n d m及びpvu[で処理して8.4kbのDNA
断片を得ておく。
(obtained from t+ow+ey) using the method of Nagata et al. ((rukunaga, Sokawa, & Nagat
a, (1984) Proc, Natl, Acacl,
Sci, UsA Vol. 81, 50136-5090) Hi
nd m and pvu [8.4 kb DNA
Get the pieces.

この8.4kbのDNA断片と上記の約2.7kbの@
 i ndIu−sa l よりNA断片を常法に従っ
てT4DNAリガーゼにより処理し、前出の「Mo1e
cular Cloning Jに記載された塩化ルビ
ジウム法によりE、coli DHI株に形質転換し、
pトIGA410山来G−C3FのCDNAを有するプ
ラスミドを保持するE、Go I iコロニーを選別し
た。このプラスミドをpTN−G4と命名する(図9)
This 8.4kb DNA fragment and the approximately 2.7kb @
The NA fragment from the indIu-sa l was treated with T4 DNA ligase according to a conventional method, and then
E. coli strain DHI was transformed by the rubidium chloride method described in Cular Cloning J.
E, Go II colonies harboring a plasmid containing the cDNA of ptoIGA410 Yamaki G-C3F were selected. This plasmid is named pTN-G4 (Figure 9)
.

一方、アデノウィルスTypeII (蛋白質核酸酵素
27巻12月号(、1982年〉、井守出版発行〕より
VAI及びVAnを含む約1700bpのSalニーH
indlII断片を含むプラスミドΔDVAよりVAI
およびVAIIを含む断片を回収した。この断片を先に
述べたpTNG4のl−1indI11部位に挿入して
pTNG4VAαおよびpTNG4VAβを得た(図9
)。このプラスミドはアゾンのVA遺伝子によりSV4
0の初期プロモーターからの転写産物の発現効率を高め
るようにしたものである。
On the other hand, from adenovirus Type II (Protein Nucleic Acid Enzyme Vol. 27, December issue, 1982, published by Imori Publishing), Salnie H of approximately 1700 bp containing VAI and VAn was obtained.
VAI from plasmid ΔDVA containing the indlII fragment
and a fragment containing VAII was recovered. This fragment was inserted into the l-1indI11 site of pTNG4 described above to obtain pTNG4VAα and pTNG4VAβ (Fig. 9
). This plasmid is SV4 by Azone's VA gene.
This is designed to increase the efficiency of expression of transcripts from the early promoter of 0.

実施例14  C127細胞の形質転換及びその発現(
+VSE) 実施例13で得たpTN−G4をマウスC127細胞に
形質転換する前に制限酵素3amt−IIで処理する。
Example 14 Transformation of C127 cells and its expression (
+VSE) pTN-G4 obtained in Example 13 is treated with restriction enzyme 3amt-II before being transformed into mouse C127 cells.

即らpTN−04プラスミド20μqを10mM  T
ris−HCI  (pH8,017m)l  M(J
CI2 、100mHNaCl、 2 mM 2−メル
カプドルエタノール、o、oi%BSAの混合液100
μgに溶解uしめ3amHI(宝酒造社製)20単位で
処理し、フェノール処理、エーテル処理、エタノール沈
澱を行った。
That is, 20μq of pTN-04 plasmid was added to 10mM T.
ris-HCI (pH 8,017m) l M(J
CI2, 100mH NaCl, 2mM 2-mercapdolethanol, o, oi% BSA mixture 100
μg was treated with 20 units of U Shime 3amHI (manufactured by Takara Shuzo Co., Ltd.), followed by phenol treatment, ether treatment, and ethanol precipitation.

マウスC1271細胞は10%牛脂児血清(GIBCO
社製)を含むDulbecco’s minimal 
essential培地中で増殖さける。径5cmのプ
レートに増殖したC127I細胞に、プレート化たり上
記調製DNAを10μqの割り合いでリン酸−カルシウ
ム法(tlaynes、J&Weissmann、C(
1983)Nucleic Ac1d Res、 11
巻687−706参照)にて形質転換を行い、グリセロ
ール処理の後、12時間37℃でイン4ユベートした。
Mouse C1271 cells were incubated with 10% tallow serum (GIBCO
Dulbecco's minimal
Avoid growing in essential medium. C127I cells grown on plates with a diameter of 5 cm were plated or treated with 10 μq of the above-prepared DNA using the calcium phosphate method (Tlaynes, J & Weissmann, C.
1983) Nucleic Ac1d Res, 11
Transformation was carried out using the following method (see Vol. 687-706), and after glycerol treatment, the cells were incubated at 37° C. for 12 hours.

次ぎに、この細胞を3枚の新しい径5cmプレートに移
し、1週間2回の割り合いで培地交換をした。16日日
日FOci(集塊)を形成した部分をそれぞれ新しいプ
レートに移し、上述の培地で継代培養し、G−C3F生
産能の高いクローンを選別した。その結果〜1mg/、
l!のレベルのG−C3F生産がみられた。更にクロー
ニングを続けた結果、10my/u以上のレベルのG−
C3F産生を確認した。
Next, the cells were transferred to three new 5 cm diameter plates, and the medium was exchanged twice a week. The portions that formed FOci (clumps) on the 16th day were each transferred to a new plate, subcultured in the above-mentioned medium, and clones with high G-C3F production ability were selected. As a result ~1mg/,
l! A level of G-C3F production was observed. As a result of further cloning, G- levels of over 10 my/u were detected.
C3F production was confirmed.

尚、宿主細胞には上記のC127I細胞のほかNII−
(3T3細胞も用いることができる。
In addition to the above C127I cells, the host cells include NII-
(3T3 cells can also be used.

実施例15 CHO細胞によるG−C3Fの発現(+V
SE) 1)、 DI−IGG4−d b f rの構築実施例
12で得たpHGA410プラスミド20μciを10
 m)t Tr i 5−HCl (DH7,5) 、
7111HIVFC12,175mHNaC+ 、0.
2mHEDTA、0.7m)f  2−メルカプトエタ
ノール、o、 oi%BSAを含む溶液100μgに溶
解し、制限酵素5alI(宝酒造社製>20単位を加え
37°C−晩反応した後、フェノール処理、エーテル洗
浄、エタノール沈澱を行った。
Example 15 Expression of G-C3F by CHO cells (+V
SE) 1) Construction of DI-IGG4-d b fr 20 μci of pHGA410 plasmid obtained in Example 12 was
m) tTri 5-HCl (DH7,5),
7111HIVFC12, 175mHNaC+, 0.
2mHEDTA, 0.7m) f2-mercaptoethanol, o,oi% Dissolved in 100 μg of a solution containing BSA, added restriction enzyme 5alI (manufactured by Takara Shuzo Co., Ltd. >20 units), and reacted at 37°C overnight, treated with phenol, and treated with ether. Washing and ethanol precipitation were performed.

次ぎに、得られたDNA沈澱を50 mt4 T r 
i 5−HCfI、 5 m)f MQCI2.10m
)fDTT、1 mMのdATP、dCTP、dGTP
、TTPからなる反応液100/!ρに溶解し、E、c
oliDNAポリメラ−2−Klenow断片(宝酒造
社製10μg)を加えて14℃2時間反応ざV、フェノ
ール処理、エーテル洗浄、エタノール沈澱を行った。
Next, the obtained DNA precipitate was treated with 50 mt4 T r
i 5-HCfI, 5 m) f MQCI2.10m
) fDTT, 1 mM dATP, dCTP, dGTP
, a reaction solution consisting of TTP 100/! Dissolved in ρ, E, c
oliDNA polymera-2-Klenow fragment (10 μg, manufactured by Takara Shuzo Co., Ltd.) was added, followed by reaction at 14° C. for 2 hours, followed by phenol treatment, ether washing, and ethanol precipitation.

このDNAにEC0RIリンカ−を付加する。Add an EC0RI linker to this DNA.

即ち上記DNAを50μmの50 mHTr i 5−
HCl (pH7,4) 、10 mM DTT、 0
.5 m)l  スペルミジン、2 mW ATP、 
2.5 mM  へキサミン塩化コバルト、20μ(J
/dBsAからなる反応液に溶解し、EC0RIリンカ
−(宝酒造社製)を加え、200単位のT4DNAリガ
ーゼ(宝酒造社製)を加え4°C112〜16時間反応
した。フエーノル処理、エーテル洗浄、エタノール沈澱
を常法に従って行った後、該DNAをEC0RIで部分
消化し、1%アガロースゲル電気泳動で約2.7kbの
フラグメントを3μq回収した。
That is, the above DNA was 50 μm thick with 50 mHTri 5-
HCl (pH 7,4), 10 mM DTT, 0
.. 5 m)l spermidine, 2 mW ATP,
2.5 mM hexamine cobalt chloride, 20μ (J
/dBsA, EC0RI linker (manufactured by Takara Shuzo Co., Ltd.) was added, 200 units of T4 DNA ligase (manufactured by Takara Shuzo Co., Ltd.) was added, and the mixture was reacted at 4°C for 112 to 16 hours. After phenol treatment, ether washing, and ethanol precipitation according to conventional methods, the DNA was partially digested with EC0RI, and 3 μq of a fragment of approximately 2.7 kb was recovered by 1% agarose gel electrophoresis.

一方、pAdD26SVpAプラスミド(Kaufma
n、R,G、&5harp、P、A(1982))io
l、cell 8io1.201304〜1319)を
EC0RIにて処理し、バクテリアアルカリフォスファ
ターゼ(BAP)処理して脱リン酸を行う。即ち、pA
dD26SVl)A20μqとEcoRI20単位を反
応液50mHTri  5−HCl  (pH7,5)
  、 7  mHMgC12,100mM  NaC
l、7 mM 2−メルカプトエタノール、0.01%
BSAの混合液100μgに加え、37℃10時間反応
させ、続いて上記反応液にBAP5単位を加え、68℃
にて30分間反応した。
On the other hand, pAdD26SVpA plasmid (Kaufma
n, R, G, & 5harp, P, A (1982)) io
1, cell 8io1.201304-1319) is treated with ECORI and treated with bacterial alkaline phosphatase (BAP) to perform dephosphorylation. That is, pA
dD26SVl) 20 μq of A and 20 units of EcoRI were added to the reaction solution of 50 mHTri 5-HCl (pH 7,5)
, 7 mHMgC12, 100mM NaC
l, 7mM 2-mercaptoethanol, 0.01%
Add 100 μg of BSA mixture and react at 37°C for 10 hours, then add 5 units of BAP to the above reaction solution and incubate at 68°C.
The reaction was carried out for 30 minutes.

その後フェノール処理をし、電気泳動にてpAdD26
SVpA(7)EcoRI断片ヲ回収シタ(〜5μq)
After that, pAdD26 was treated with phenol and electrophoresed.
SVpA (7) EcoRI fragment collection (~5μq)
.

上Haした約2.zkbの[片とpAdD26SVpA
の断片のそれぞれ0.5μqずつをアニールした。この
プラスミドをE、coli DHI株に塩化ルビジウム
法により形質転換してpHGG4−dhfrのプラスミ
ドを保持するコロニーを選択する。
About 2. [piece of zkb and pAdD26SVpA
0.5 μq of each fragment was annealed. This plasmid is transformed into E. coli DHI strain by the rubidium chloride method, and colonies carrying the pHGG4-dhfr plasmid are selected.

得られたプラスミドをpHGG4−dhfrと命名した
(図10a)。
The obtained plasmid was named pHGG4-dhfr (Fig. 10a).

なお、上記の別法として、1IGG4プラスミドを3a
ll処理し、EC0RIリンカ−を付加することなしに
EC0RIで部分消化し約2.7kbの断片を回収し、
E、coli  DNAポリメラーゼ−klenOW断
片で該DNA断片を処理し末端をプラントエンド化する
In addition, as an alternative method to the above, the 1IGG4 plasmid is
ll treatment and partial digestion with EC0RI without adding an EC0RI linker to recover a fragment of approximately 2.7 kb.
The DNA fragment is treated with E.coli DNA polymerase-klenOW fragment to make the ends into plant-ends.

一方前述と同じ方法でpAdD26SVpAのプラント
エンド化したEC0RI断片を調製し、両者をT4DN
Aリガーゼ処理してpHGG4−dhfrを調製するこ
ともできる。
On the other hand, a plant-ended EC0RI fragment of pAdD26SVpA was prepared in the same manner as described above, and both were added to T4DN.
pHGG4-dhfr can also be prepared by A ligase treatment.

また実施例13の1)で得られたpHGA410([」
)を実施例13の2)記載した如く、制限酵素ト1: 
nd[および5alIにて処理し、Hi ndl[l−
3a l ■断片を上記pAdD26SVpAのプラン
トエンド化したEC0RIに連結してもpHGG4−d
hfrを(qることかできる(図1ob)。
In addition, pHGA410 ([''
) as described in Example 13, 2), restriction enzyme 1:
Treated with Hindl[ and 5alI to produce Hindl[l-
Even if the 3a l ■ fragment is ligated to the plant-ended EC0RI of the above pAdD26SVpA, pHGG4-d
hfr can be (q) (Fig. 1ob).

2)、 pG4DR’lおよびpG4DR2の構築1)
の項で述べたpAdD26SVpAIOμびを50mM
  Tr i 5−HC(PH7,5> 、7mMMg
CfI2.100mM  NaCf1,7mM  2−
メルカプトエタノール、0.01%BSAを含む反応液
50mに溶解し、制限酵素[:coRIおよびBam)
(Iそれぞれ10単位を加え、37℃10時間反応させ
た。常法に従いフエーノル処理、エーテル洗浄を行った
。1%低融点アガロース電気泳動にて、約2KbのDN
A断片を回収した後、DNAポリメラーゼ−KlenO
W断片にて、常法に従いプラントエンド化して、フェノ
ール処理、エーテル洗浄、エタノール沈澱を行った。
2), Construction of pG4DR'l and pG4DR2 1)
pAdD26SVpAIOμ described in section 50mM
Tri 5-HC (PH7,5>, 7mMMg
CfI2.100mM NaCf1,7mM 2-
Restriction enzymes [:coRI and Bam] were dissolved in 50ml of reaction solution containing mercaptoethanol and 0.01% BSA.
(10 units of each I was added and reacted for 10 hours at 37°C. Phenol treatment and ether washing were performed according to the usual method. Approximately 2 Kb DNA
After collecting the A fragment, DNA polymerase-KlenO
The W fragment was converted into a plant end according to a conventional method, and subjected to phenol treatment, ether washing, and ethanol precipitation.

一方、実施例13の1)で得られた1IGA410(H
)10μ9を10mM  Tris−1−104)  
(PH7,5> 、7mM MgCG 2.60mM 
 NaC,l!を含む反応液50μpに溶解し、Hin
dl[[10単位を加えて37℃、6時間反応させた。
On the other hand, 1IGA410 (H
) 10μ9 to 10mM Tris-1-104)
(PH7,5>, 7mM MgCG 2.60mM
NaC,l! Hin
dl[[10 units were added and reacted at 37°C for 6 hours.

常法に従い1%低融点アガロース電気泳動にてDNA断
片を回収し、更にBAP処理をした後、K1enow断
片にてプラントエンド化した。フェノール処理、エーテ
ル洗浄を行った後、先に述べた約2KbのDNA断片と
T4DNAリガーゼを用いてプラントエンド結合させた
。即ちそれぞれのDNA断片1μfを66mM  Tr
 i 5−H(j!  (pH7,5)、6.6mM 
 MgCN2.5mM  DTT、1mMATPを含む
反応液30μ7に溶解せしめ、T4DNAリガーピ50
単位を加え、6℃、12時間反応せしめた後、E、Co
 l 1DHI株に形質転換した。このようにして、図
10Gに示すpG4 DR1およびpG4DR2を得た
DNA fragments were collected by 1% low-melting-point agarose electrophoresis according to a conventional method, further treated with BAP, and then converted into plant-ends using K1enow fragments. After phenol treatment and ether washing, plant-end ligation was performed using the approximately 2 Kb DNA fragment described above and T4 DNA ligase. That is, 1μf of each DNA fragment was added to 66mM Tr.
i 5-H (j! (pH 7,5), 6.6mM
MgCN was dissolved in 30μ7 of a reaction solution containing 2.5mM DTT and 1mM ATP, and T4DNA ligapi 50
After adding the units and reacting at 6°C for 12 hours, E, Co
It was transformed into the l1DHI strain. In this way, pG4 DR1 and pG4DR2 shown in FIG. 10G were obtained.

3)形質転換と発現 CHO細胞(dhfr−株、コロンビア大学Or、 L
3) Transformation and expression CHO cells (dhfr-strain, Columbia University Or, L
.

ChaSinより入手)を9C#!径のプレート(Nt
jnC社製)中10%仔牛血清を含むα最小必須培地(
α−MEM、アデノシン、デオキシアデノシン、チミジ
ン添加)で培養増殖し、これをリン酸−カルシウム法(
Wigler等、Ce1l14巻725頁(1978)
 )によって形質転換した。
(obtained from ChaSin) is 9C#! Diameter plate (Nt
alpha minimal essential medium (manufactured by JnC) containing 10% calf serum (
α-MEM, adenosine, deoxyadenosine, and thymidine were added to culture and proliferate using the phosphate-calcium method (
Wigler et al., Ce1l 14, 725 (1978)
) was transformed.

即ら1)で調製したpHGG4−dhfrプラスミド1
μQにキャリアーDNA (子牛胴線DNA)を適量加
えて、TE溶液375μjに溶解し1M  CaCl2
125μNを加える。3〜5分氷上で冷やし500μ、
11の2xHBS (50mHHepes、 280 
mHN aCl 、1.5 mHリン酸緩衝液)を加え
再び水冷後、上記のCHO細胞培養液1dと混合し、プ
レートに滴下した後、CO2インキュベーター中で9時
間培養した。プレー1〜から培地を除去し、T 133
 (Tris−[3uffered 5aline)に
て洗浄後、20%グリセロール含有TBS添加、再び洗
浄した後、非選択培地(前出α−MEM培地、ヌクレオ
チド添加)を添加して2日間インキュベートし選択培地
(ヌクレオチド無添加)で1:10に細胞を分割した。
That is, pHGG4-dhfr plasmid 1 prepared in 1)
Add an appropriate amount of carrier DNA (calf trunk line DNA) to μQ, dissolve it in 375μJ of TE solution, and add 1M CaCl2.
Add 125 μN. Chill on ice for 3-5 minutes,
11 of 2xHBS (50mHHepes, 280
After adding mHN aCl , 1.5 mH phosphate buffer and cooling with water again, the mixture was mixed with the above CHO cell culture solution 1d, dropped onto a plate, and then cultured in a CO2 incubator for 9 hours. Remove medium from play 1~ and T 133
After washing with (Tris-[3uffered 5aline), TBS containing 20% glycerol was added, and after washing again, a non-selective medium (alpha-MEM medium, supplemented with nucleotides) was added and incubated for 2 days. Cells were split 1:10 (no additives).

次いで2日毎に選択培地にて培地交換を行いながら培養
を続行し生じたコロニーを選別して新しいプレートに移
した。
Next, culturing was continued while replacing the medium with a selective medium every two days, and the resulting colonies were selected and transferred to a new plate.

新しいプレートでは0.02MMメトトレキセート(M
TX)存在下で増殖し、0.05MM、更に0.1MM
  MTX存在下で増殖させてクローニングを行った。
0.02MM methotrexate (M
TX), grown in the presence of 0.05 MM, then 0.1 MM
Cloning was performed by growing in the presence of MTX.

 なおCHO細胞の形質転換はC)−to細胞に対しp
HGG4とpAdD26SVpAを同時形質転換(Co
 transformation )することによって
も行うことができる(Scahill等、 Pr0C,
Natl、ACad、SCi、IJSA80巻4654
−4658(1983)参照)。
In addition, the transformation of CHO cells is performed using p for C)-to cells.
HGG4 and pAdD26SVpA were co-transformed (Co
transformation) (Scahill et al., Pr0C,
Natl, ACad, SCi, IJSA Volume 80 4654
-4658 (1983)).

また、以下に述べる方法にによってもCHO細胞の形質
転換を行った。即ち、上記2)の項で調製したpG4D
R1あるいはpG4DR2をあらかじめそれぞれ5al
IおよびKpnIで処理してDNA断片を得て、そのう
ちの10μJを上記と同様にCHO細胞に形質転換させ
た。このようにして形質転換された細胞を選択培地にて
上記の如く培養を続けると約7日日で明らかなコロニー
が1プレートにつき100個以上出現した。コロニーを
一つ一つ選別することなしに、再び新しいプレートに移
しかえた後、0.01MM  MTX存在下に選択培地
で培養を続けると、士数個のコロニーが出現した。更に
このような手法によりMTXの濃度を0.02MM、0
.05μM、0.1μMと上昇させ、生き残ってきたコ
ロニーを選別した。また、得られた士数個のコロニーを
それぞれ選別した後、MTX濃度を上昇ざぜても同様の
コロニーの選別を行うことかできた。
CHO cells were also transformed by the method described below. That is, pG4D prepared in section 2) above
5al of R1 or pG4DR2 in advance.
DNA fragments were obtained by treatment with I and KpnI, and 10 μJ of them were transformed into CHO cells in the same manner as above. When the thus transformed cells were continued to be cultured in a selective medium as described above, more than 100 distinct colonies appeared on each plate in about 7 days. When the colonies were transferred to a new plate again without being selected one by one and cultured on a selective medium in the presence of 0.01 MM MTX, several colonies appeared. Furthermore, using this method, the concentration of MTX was reduced to 0.02MM, 0.
.. The concentration was increased to 0.05 μM and 0.1 μM, and surviving colonies were selected. Further, after selecting several obtained colonies, it was possible to perform similar colony selection even when the MTX concentration was increased.

又いわゆるポリシストロニツタ遺伝子を有する組換えベ
クターを構築し、これを用いてCHOIIII胞を形質
転換することができた。即ち、pAdD26SVpAを
PstI5I!l理し、2つの断片を回収しこれらとp
BRG4由来のC3FcDNA断片を結合することによ
り、アデノウィルスプロモーター、C3FcDNA、D
HFR,SV40のポリA部位の順序に配列した組換え
ベクターを構築しCHO細胞にいれて実施した。
In addition, we constructed a recombinant vector containing the so-called polycistronitus gene, and were able to transform CHOIII cells using this vector. That is, pAdD26SVpA is PstI5I! 1, collect the two fragments and combine them with p
By joining the C3F cDNA fragment derived from BRG4, the adenovirus promoter, C3F cDNA, D
A recombinant vector arranged in the order of HFR and SV40 polyA sites was constructed and carried out in CHO cells.

実施例16  発現物質のG−C3F活性検定(十VS
E) 実施例14及び実施例15で得られたC127細胞及び
CHO細胞の培養上清を夫々1N酢酸によりpH4に調
整し、等容量のn−プロパツールを加えた後、生じた沈
澱を遠心除去し、C8逆相系担体(山村化学社製)を充
填したオープンカラム(1φX2cm)に通し、50%
n−プロパツールで溶出ざUた。溶出液を水で2倍に希
釈した後、YMC−C8カラム(山村化学社製)を用い
た逆相高速液体クロマトグラフィーにて0.1%TEA
を含む30〜60%の直線濃度勾配のn−プロパツール
にて溶出を行った。n−プロパツール濃度が40%付近
の位置で溶出される両分を分取した後、凍結乾燥し、0
.1Mグリシン緩衝液(pH9>に溶解せしめた。この
ような過程を経ることによって、ヒトG−C3FはC1
27及びCHO細胞上清から約20倍に濃縮された。
Example 16 G-C3F activity assay of expressed substances (10 VS
E) The culture supernatants of C127 cells and CHO cells obtained in Example 14 and Example 15 were adjusted to pH 4 with 1N acetic acid, and an equal volume of n-propatool was added, and the resulting precipitate was removed by centrifugation. and passed through an open column (1φ x 2cm) packed with a C8 reverse phase carrier (manufactured by Yamamura Chemical Co., Ltd.) to reduce 50%
Eluted with n-propatool. After diluting the eluate twice with water, it was purified with 0.1% TEA by reverse phase high performance liquid chromatography using a YMC-C8 column (manufactured by Yamamura Chemical Co., Ltd.).
Elution was performed with a 30-60% linear concentration gradient of n-propatool containing . After separating both fractions eluted at a position where the n-propertool concentration is around 40%, they are lyophilized and
.. It was dissolved in 1M glycine buffer (pH 9). Through this process, human G-C3F was dissolved in C1
27 and CHO cell supernatants approximately 20 times.

コントロールとして、前述の方法に従ってヒトG−C3
F cDNAを含まないプラスミドで細胞を形質転換し
た後その培養上清を濃縮した。得られた標品について参
考例に記載された[ヒトG−C3Aの測定方法(a)]
に基づいた方法にてヒトG−C3F活性を検定した。尚
、発現効率が十分に高い場合には培養上清を直接検定に
供してもよい。ここでは濃縮した例について結果を示し
た。
As a control, human G-C3 was added according to the method described above.
After cells were transformed with a plasmid containing no F cDNA, the culture supernatant was concentrated. [Method for measuring human G-C3A (a)] described in the reference example for the obtained specimen
Human G-C3F activity was assayed using a method based on . In addition, if the expression efficiency is sufficiently high, the culture supernatant may be directly used for assay. Here, results are shown for concentrated examples.

その結果は表−1の通りであった。The results were as shown in Table-1.

(以下余白) 実施例17  アミノ酸分析および糖分析(+VSE 
)1)アミノ酸組成の分析 実施例16で得た粗C3F試料を更に実施例2の(ii
i)の方法にしたがって精製した。この精lIC3F試
料を常法により加水分解し、そのタンパク部分のアミノ
酸組成を日立835アミノ酸自動分析装置(日立製作所
社製)を用いて特殊アミノ酸分析法により分析した。こ
の結果を表−2に示した。
(Left below) Example 17 Amino acid analysis and sugar analysis (+VSE
)1) Analysis of amino acid composition The crude C3F sample obtained in Example 16 was further analyzed in (ii) of Example 2.
Purified according to method i). This purified IC3F sample was hydrolyzed by a conventional method, and the amino acid composition of its protein portion was analyzed by a special amino acid analysis method using a Hitachi 835 amino acid automatic analyzer (manufactured by Hitachi, Ltd.). The results are shown in Table-2.

尚、加水分解条件は次の如くである。The hydrolysis conditions are as follows.

■ 6N Ftc+、iio℃、24時間、真空中■ 
4N メタンスルホン酸+0.2%3−(2−7ミノエ
チル)インドール、110℃、24時間。
■ 6N Ftc+, IIO℃, 24 hours, in vacuum ■
4N methanesulfonic acid + 0.2% 3-(2-7minoethyl)indole, 110°C, 24 hours.

48時間、72時間、真空中 試料は、40%n−プロパツールと0.1%トリフルオ
ロ酢酸を含む溶液(1,5m)に溶かした後、各々o、
1rnlをとり、乾燥窒素ガスにより乾燥さじた後、■
又は■の試薬を加えて真空封管し、加水分解に供した。
For 48 h and 72 h, the samples were dissolved in a solution (1.5 m) containing 40% n-propanol and 0.1% trifluoroacetic acid, then o,
After taking 1rnl and drying it with dry nitrogen gas,
Alternatively, the reagent (2) was added, the tube was vacuum-sealed, and the tube was subjected to hydrolysis.

表中、実測値は■の24時間値と■の24.48.72
時間値の合計4回の平均値である。但し、Thr。
In the table, the actual measured value is the 24-hour value in ■ and 24.48.72 in ■.
This is the average value of a total of four time values. However, Thr.

Ser、1/2Cys、Met、Va l、I l e
およびTrpは以下の方法で算出した。(生化学実験講
座、タンパク質化学■(東京化学同人出版)を参照) ・ Thr、Ser、1/2Cys、Metは■の24
.48.72時間値の経時変化をとり、零時間に補外。
Ser, 1/2Cys, Met, Val, Ile
and Trp were calculated by the following method. (Refer to Biochemistry Experiment Course, Protein Chemistry ■ (Tokyo Kagaku Doujin Publishing)) ・Thr, Ser, 1/2Cys, and Met are 24 in ■
.. 48. Take the change over time of the 72-hour value and extrapolate it to zero time.

−Val、lieは■の72時間値。-Val and lie are the 72-hour values of ■.

・ Trpは■の24.48.72時間値の平均値(以
下余白) 表−2(アミノ酸分析表〉 2)糖組成分析 上記アミノ酸組成分析で用いた精製C3F試料200n
gに内部標準としてイノシトール25 n m 。
・Trp is the average value of the 24.48.72 hour values of
g and inositol 25 n m as an internal standard.

1を加えた後、1.5N  HClを含むメタノール溶
液(500μ、lりを加えて窒素ガス置換した封管中、
90℃で4時間反応させた。 開管後炭酸銀(Ag2 
CO3>を加えて中和した後、無水酢酸50μgを加え
振どう後、室温にて08所に一晩放置した。上層をサン
プルチューブにとり、窒素ガスにて乾燥した。沈澱にメ
タノールを加え洗浄後軽く遠沈し、上層を同じサンプル
チューブに加え乾燥した。これに50μgのTMS化試
薬(ピリジン:へキサメチルジシラザン:トリメチルク
ロロシラン=5:1:1に混合したもの)を加え40℃
で20分反応させた後、Deep Freezerに保
存した。尚、スタンダードとしてガラクトース(Gal
)、N−アセチルガラクトサミン(Ga l NAC)
、シアル酸などを各50nmo l及びイノシトール2
5nm01を合わせ同様の操作を行った。
After adding 1.1 methanol solution (500 μl) containing 1.5N HCl, in a sealed tube purged with nitrogen gas,
The reaction was carried out at 90°C for 4 hours. After opening the tube, silver carbonate (Ag2
After neutralization by adding CO3>, 50 μg of acetic anhydride was added, shaken, and left overnight at room temperature. The upper layer was taken into a sample tube and dried with nitrogen gas. Methanol was added to the precipitate, the precipitate was washed, and then briefly centrifuged, and the upper layer was added to the same sample tube and dried. Add 50 μg of TMS reagent (mixture of pyridine: hexamethyldisilazane: trimethylchlorosilane = 5:1:1) and hold at 40°C.
After reacting for 20 minutes, the mixture was stored in a Deep Freezer. In addition, galactose (Gal
), N-acetylgalactosamine (Gal NAC)
, 50 nmol each of sialic acid, etc. and inositol 2
5nm01 was combined and the same operation was performed.

このサンプルについて以下に示す条件でガスクロマド分
析を行った。
Gas chromad analysis was performed on this sample under the conditions shown below.

(分析条件) カラム:2%OV−17VINpOrt HP60〜8
0メツシュ、3m、ガラス 温度:110’C〜250℃まで4°C/分の昇温キャ
リヤーガス:最初は1.2〜1.6 K’j/ci(窒
素圧)   終了時は2〜2.5 Kg/crA感度:
 103MΩレンジ0.1〜0.4 V圧 :水素ガス
 0.8 K’J/ crit空気   0.8 K’
j/ cti サンプル絡:2.5〜3.0μg 分析の結果、本発明のC3Fからガラクトース、N−ア
セチルガラクトサミンおよびシアル酸が確認された。
(Analysis conditions) Column: 2% OV-17VINpOrt HP60-8
0 mesh, 3 m, glass temperature: 4°C/min heating from 110'C to 250°C Carrier gas: 1.2 to 1.6 K'j/ci (nitrogen pressure) at the beginning, 2 to 2 at the end .5 Kg/crA sensitivity:
103MΩ range 0.1 to 0.4 V pressure: Hydrogen gas 0.8 K'J/crit Air 0.8 K'
j/cti sample weight: 2.5 to 3.0 μg As a result of the analysis, galactose, N-acetylgalactosamine, and sialic acid were confirmed from the C3F of the present invention.

実施例1B、  pHGV2ベクターの調製(!!JJ
物細胞用、−VS2系) 実施例10で得られた図4(A)で示されるC[)NA
のEC0RI断片を制限酵素[)ra工にて37℃で2
時間で処理した後、DNAポリメラ−1m’王のKle
nOW断片(宝酒造社製)で処理し、末端を平滑末端と
した。1μqのBgl IIクリンカ(8mer;宝酒
造社製)をATPを用いてリン酸化した後、上記で得ら
れた約1μqのDNA断片混合物と結合させた。次いで
制限酵素BIIIで処理してアガロースゲル電気泳動を
行い、最も大きいDNA断片だけを回収した。
Example 1B, Preparation of pHGV2 Vector (!!JJ
(for physical cells, -VS2 system) C[)NA shown in FIG. 4(A) obtained in Example 10
The EC0RI fragment was digested with restriction enzyme [)ra at 37℃ for 2 hours.
After treatment with DNA polymer-1m'Kle
It was treated with nOW fragment (manufactured by Takara Shuzo Co., Ltd.) to make the ends blunt. 1 μq of Bgl II clinker (8mer; manufactured by Takara Shuzo Co., Ltd.) was phosphorylated using ATP, and then combined with the approximately 1 μq DNA fragment mixture obtained above. Next, the DNA fragments were treated with restriction enzyme BIII and subjected to agarose gel electrophoresis, and only the largest DNA fragment was recovered.

このDNA断片は図6に示すようにヒトG−C3Fポリ
ペプチドをコードする部分を含む約700塩基対に相当
していた。ベクターDdKCR(Fukunaga等;
 Proc、Natl、Acad、Sci、USA、 
81巻5086頁(1984))ヲ制限酵素BamHI
で処理した後、アルカリフォスファターゼ(宝酒造社製
)で脱リン酸して得られたベクターDNAをT4DNA
リガーゼ(宝酒造社製)を加えてcDNA断片と結合さ
せ1)HGV2をi?Jだ(図71)、 図11に示c
5れるごとくこのプラスミドは、SV40初期遺伝子の
プロモーター、SV40の複製開始領域、ウサギβ−グ
ロビン遺伝子の一部、pBR322の複製開始領域およ
びpBR322由来のβ−ラクタマーゼ遺伝子(Amp
’ )を含み、SV40初期道仏子のプロモーター下流
にヒトG−C3Fi伝子が接続されている。
As shown in FIG. 6, this DNA fragment corresponded to approximately 700 base pairs including a portion encoding human G-C3F polypeptide. Vector DdKCR (Fukunaga et al.;
Proc, Natl, Acad, Sci, USA,
Volume 81, page 5086 (1984)) Restriction enzyme BamHI
The vector DNA obtained by treatment with T4 DNA and dephosphorylation with alkaline phosphatase (manufactured by Takara Shuzo)
Add ligase (manufactured by Takara Shuzo Co., Ltd.) and combine with the cDNA fragment. 1) HGV2 i? J (Figure 71), shown in Figure 11c
5, this plasmid contains the promoter of the SV40 early gene, the replication initiation region of SV40, part of the rabbit β-globin gene, the replication initiation region of pBR322, and the β-lactamase gene derived from pBR322 (Amp
), and the human G-C3Fi gene is connected to the downstream of the promoter of SV40 early Dobutsu child.

実施例19  C127細胞用組換えベクターの構築(
−VSE) 1) pHGV2 (H) の構築 実施例18で得られたpHGV2プラスミド(図11)
20Ii9を用いて、実施例13の1)に記載した方法
と同様にしてpHGV2 (H)と命名するプラスミド
を得た(図12)。
Example 19 Construction of recombinant vector for C127 cells (
-VSE) 1) Construction of pHGV2 (H) pHGV2 plasmid obtained in Example 18 (Figure 11)
A plasmid named pHGV2 (H) was obtained using 20Ii9 in the same manner as described in Example 13, 1) (FIG. 12).

2)発現用組換えベクターpTN−V2ならびにpTN
VAαおよびpTNVAβの構築上記1) テ得らhた
I)HGV2 (H)20μ9を用いて、実施例13の
2)に記載した方法と同様にLTllGV2山来G−C
3FのcDNAを有するプラスミドを保持するE、co
liコロニーを選別した。得られたプラスミドをpTN
−V2と命名する(図12)。
2) Recombinant vectors for expression pTN-V2 and pTN
Construction of VAα and pTNVAβ Using the above 1) HGV2 (H) 20μ9, LTllGV2Yamaki G-C
E,co carrying a plasmid carrying the cDNA of 3F
li colonies were selected. The obtained plasmid is pTN
−V2 (Figure 12).

一方アデノウィルスTypeII (蛋白質核酸酵素2
7巻12月号(1982年)、井守出版発行〕よりVA
IおよびVAI[を含む約1yoobpのSa I l
−HlndlI[断片を含むプラスミドΔpVAよりV
AIおよびVAI[を含む断片を回収した。この断片を
先に述べたpTN−V2のHi ndl[1部位に挿入
してpTNVAαおよびpTNVAβを得た(図12)
。このプラスミドはアゾンのvA遺伝子によりSV40
の初期プロモーターからの転写産物の発現効率を高める
ようにしたものである。
On the other hand, adenovirus Type II (protein nucleic acid enzyme 2
VA from Volume 7, December issue (1982), published by Imori Publishing
Approximately 1 yoobp of Sa I l containing I and VAI [
- HlndlI [V from plasmid ΔpVA containing the fragment
Fragments containing AI and VAI were recovered. This fragment was inserted into the Hin dl [1 site of pTN-V2 described above to obtain pTNVAα and pTNVAβ (Fig. 12).
. This plasmid is SV40 by Azone's vA gene.
This is designed to increase the efficiency of expression of transcripts from the early promoter.

実施例20 0127細胞の形質転換およびその発現(
−VSE) 実施例19で得たpTN−V2をマウスC127細胞に
形質転換する前に制限酵素3amHIで処理する。
Example 20 Transformation of 0127 cells and their expression (
-VSE) pTN-V2 obtained in Example 19 is treated with restriction enzyme 3amHI before being transformed into mouse C127 cells.

次いでマウスCl27I細胞を上記調製DNAで形質転
換して発現させ(実施例14参照)G−C3F生産能の
高いクローンを選別した。その結果〜”11Q/1のレ
ベルのG−C8F生産がみられた。
Next, mouse Cl27I cells were transformed with the above-prepared DNA and expressed (see Example 14), and clones with high G-C3F production ability were selected. As a result, G-C8F production at the level of 11Q/1 was observed.

更にクローニングを続けていくことにより、10m1/
flレベルのG−C3F生産能を有するクローンが選別
できた。同様にして実施例19で得たpTNvAαおよ
びpTNVAβでC127細胞をそれぞれ形質転換し、
G−C3F生産能の高いクローンを選別した結果、pT
NVAαについては20mg/ρ以上の高生産クローン
を得ることができた。
By continuing cloning further, 10m1/
Clones having fl level G-C3F production ability were selected. Similarly, C127 cells were transformed with pTNvAα and pTNVAβ obtained in Example 19,
As a result of selecting clones with high G-C3F production ability, pT
Regarding NVAα, we were able to obtain clones with high production of 20 mg/ρ or more.

またpTNVAβからは数1n’j/flの生産能を有
するクローンを得ることができた。
Furthermore, a clone with a production capacity of several 1 n'j/fl could be obtained from pTNVAβ.

尚、宿主細胞には上記のC127I細胞のほかにNIH
3T3細胞も用いることができる。
In addition to the C127I cells mentioned above, the host cells include NIH
3T3 cells can also be used.

実施例21 CHO細胞によるG−C3Fの発現(−V
SE) 1)l)HGV2−dhfr(7)構築実施例18で得
たpf−(GV2プラスミド20μ3から実施例15の
1)に記載した方法によって得られる約2.7kbの断
片とpAdD26sVpAの断片のそれぞれ0.5μq
ずつをアニールした。このプラスミドをE、coli 
 DHI株に塩化ルビジウム法により形質転換してpH
GV2−dhfrのプラスミドを保持するコロニーを選
択した。得られたプラスミドをDHGV2−dhfrと
命名した(図13a)。
Example 21 Expression of G-C3F by CHO cells (-V
SE) 1) l) HGV2-dhfr (7) Construction of the approximately 2.7 kb fragment obtained from pf-(GV2 plasmid 20μ3 obtained in Example 18 by the method described in Example 15-1) and the pAdD26sVpA fragment. 0.5μq each
Annealed each. This plasmid was used in E. coli
DHI strain was transformed by the rubidium chloride method and the pH
Colonies carrying the GV2-dhfr plasmid were selected. The obtained plasmid was named DHGV2-dhfr (Fig. 13a).

尚、上記の別法として、pHV 2プラスミドを5al
I処理し、EC0RIリンカ−を付加することなしにE
C0RIで部分消化し、約2.7kbの断片を回収し、
E、coli  DNAポリメラーゼ−1<+enow
断片で該DNA断片を処理し末端をプラントエンド化し
た。
In addition, as an alternative method to the above, the pHV 2 plasmid is
I processing and E without adding the EC0RI linker.
Partially digested with C0RI, a fragment of approximately 2.7 kb was recovered,
E. coli DNA polymerase-1<+enow
The DNA fragment was treated with the fragment to make the ends into plant ends.

一方前述と同じ方法でpAdD26SVpAのプラント
エンド化したEC0RI断片を調製し、両者をT4DN
Aリガーゼ処理してpHGV2−dhfrを調製するこ
ともできた。
On the other hand, a plant-ended EC0RI fragment of pAdD26SVpA was prepared in the same manner as described above, and both were added to T4DN.
pHGV2-dhfr could also be prepared by A ligase treatment.

また実施例19の1)テ得られた1lGV2 (H)を
実施例13の2)で記載した如く制限酵素、1(ind
l[IおよびSaI工にて処理し、HindlII−3
al■断片を上記pAdD26SVpAのプラントエン
ド化したEC0RI断片に連結してもpHGV2−dh
frを得ることができた(図13b)。
In addition, the obtained 11GV2 (H) in 1) of Example 19 was treated with restriction enzyme 1(ind) as described in 2) of Example 13.
HindlII-3
Even if the al■ fragment is ligated to the plant-ended EC0RI fragment of pAdD26SVpA, pHGV2-dh
It was possible to obtain fr (Fig. 13b).

2)、 pV2DR1cLLCFpV2DR2(7)構
築1)ノ項テ述べたpAdD26sVpA10gを50
mM  Tr  i  5−HCj!  (PH7,5
>  、 7mMMCJCI   100mM  Na
Cj!、7mM  2−メルカプトエタノール、o、 
oi%BSAを含む反応液5(7に溶解し、制限酵素E
C0RIおよびBam1−tIそれぞれ10単位を加え
、37℃10時間反応させた。常法に°従いフェール処
理、エーテル洗浄を行った。1%低融点アガロース電気
泳動にて、約2KbのDNA断片を回収した後、DNA
ポリメラーゼ−に1enow断片にて、常法に従いプラ
ントエンド化して、フェノールff1ll、エーテル洗
浄、エタノール沈澱を行った。
2), pV2DR1cLLCFpV2DR2 (7) Construction 10g of pAdD26sVpA mentioned in section 1)
mM Tri 5-HCj! (PH7,5
>, 7mMMCJCI 100mM Na
Cj! , 7mM 2-mercaptoethanol, o,
Reaction solution 5 (7) containing oi% BSA and restriction enzyme E
10 units each of C0RI and Bam1-tI were added and reacted at 37°C for 10 hours. Fail treatment and ether cleaning were performed according to conventional methods. After recovering a DNA fragment of about 2 Kb by 1% low melting point agarose electrophoresis, the DNA
Plant-endization was performed using polymerase using the 1enow fragment according to a conventional method, followed by washing with phenol ff11, ether washing, and ethanol precipitation.

一方、実施例19の1)で得られたpHGV2 (H)
10μ57を10mM  Tr i 5−1−1cf1
(PH7,5>、7mM  MgC42,60mM  
NaC1を含む反応液50μgに溶解し、1−(ind
I1110単位を加えて37℃、6時間反応させた。常
法に従い1%低融点アガロース電気泳動にてDNA断片
を回収し、更に、BAP処理をした後、KlenOW断
片にてプラントエンド化した。フェノール処理、エーテ
ル洗浄を行った後、先に述べた約2KbのDNA断片と
T4DNAリガーゼを用いてプラントエンド結合させた
。即ち、それぞれのDNA断片1μ9を66mM  T
r i 5−)−1cd!  (1)H7,5>、6.
6mM  MgC,l! 2.5mM  DTT、1m
MATPを含む反応液30μgに溶解せしめ、T4DN
Aリガーヒ50単位を加え、6℃、12時間反応せしめ
た後、E、co l 1Df−tI株に形質転換した。
On the other hand, pHGV2 (H) obtained in Example 19 1)
10μ57 to 10mM Tri 5-1-1cf1
(PH7,5>, 7mM MgC42, 60mM
Dissolved in 50 μg of reaction solution containing NaCl, 1-(ind
1110 units of I1 were added and reacted at 37°C for 6 hours. DNA fragments were collected by 1% low-melting-point agarose electrophoresis according to a conventional method, treated with BAP, and then converted into plant-ends using KlenOW fragments. After phenol treatment and ether washing, plant-end ligation was performed using the approximately 2 Kb DNA fragment described above and T4 DNA ligase. That is, 1μ9 of each DNA fragment was mixed with 66mM T.
r i 5-)-1cd! (1) H7,5>, 6.
6mM MgC,l! 2.5mM DTT, 1m
T4DN was dissolved in 30 μg of reaction solution containing MATP.
After adding 50 units of A. ligature and reacting at 6° C. for 12 hours, the mixture was transformed into E. col 1Df-tI strain.

このようにして、図130に示″tpV2DR1および
pV2DR2を得た。
In this way, tpV2DR1 and pV2DR2 shown in FIG. 130 were obtained.

3)形質転換と発現 上記1)で調製したpHGV2−dhfrプラスミドを
用いて、実施例15の3)に記載の方法と同様にしてC
HO細胞株を形質転換して発現させた。
3) Transformation and expression Using the pHGV2-dhfr plasmid prepared in 1) above, C
The HO cell line was transformed and expressed.

なお、CHO細胞の形質転換はCHO細胞に対し1)H
GV2と1)AdD26SVpAを同時形質転換(Co
 transformation)することによっても
行うことができる。
In addition, for the transformation of CHO cells, 1) H
GV2 and 1) AdD26SVpA were co-transformed (Co
This can also be done by (transformation).

また、以下に述べる方法にによってもCHO細胞の形質
転換を行った。即ち、上記2)の項で調ML、たpV2
DR1あるいG、tpv2DR2をaらかしめそれぞれ
Sal工およびKpnIで処理してDNA断片を1qで
、そのうちの10.U 9を上記と同様にCHO細胞に
形質転換させた。このようにして形質転換された細胞を
選択培地にて上記の如く培養を続けると約71目で明ら
かなコロニーが1プレートにつき100個以上出現した
。コロニーを一つ一つ選別することなしに、再び新しい
プレートに移しかえた後、0.01μM  MTX存在
下に選択培地で培養を続けると、十数側のコロニーが出
現した。更にこのような手法によりMTXの濃Wを0.
02μM10.05μM10.1 μM、!:上昇すu
1生き残ってきたコロニーを選別した。また、冑られた
十数側のコロニーをそれぞれ選別した後、MT X 5
.8度を上昇ざぜても同様のコロニーの選別を行うこと
ができた。
CHO cells were also transformed by the method described below. That is, in the above section 2), ML, pV2
DR1, G, and tpv2DR2 were clarified and treated with Sal and KpnI to obtain 1q of DNA fragments, of which 10. U9 was transformed into CHO cells as described above. When the thus transformed cells were continued to be cultured in a selective medium as described above, more than 100 distinct colonies appeared on each plate after about 71 cells. After transferring the colonies to a new plate again without selecting them one by one, culturing was continued on a selective medium in the presence of 0.01 μM MTX, and more than a dozen colonies appeared. Furthermore, by such a method, the concentration W of MTX can be reduced to 0.
02μM10.05μM10.1μM,! : rise u
1. The surviving colonies were selected. In addition, after selecting each of the more than ten colonies that were destroyed, MT
.. Similar selection of colonies was possible even when the temperature was raised to 8 degrees.

又、いわゆるポリジストロニック遺伝子を有する組換え
ベクターを構築し、これを用いてCHO細胞を形質転換
することができた。叩ら、1)AdD26SVl)Aを
PstI処理し、2つの断片を回収しこれらとpBRV
2由来のC3F  cDNA断片を結合することにより
、アデノウィルスプロモーター、C3F  cDNA、
Df−IFR,SV40のポリ八部位の順序に配列した
組換えベクターを構築しCHO細胞にいれて実施した。
Furthermore, we constructed a recombinant vector containing a so-called polydystronic gene, and were able to transform CHO cells using this vector. 1) Treat AdD26SVl)A with PstI, collect two fragments, and combine these with pBRV.
By joining the C3F cDNA fragments derived from 2, the adenovirus promoter, C3F cDNA,
A recombinant vector in which the poly8 sites of Df-IFR and SV40 were arranged in the order was constructed and carried out in CHO cells.

実施例22発現物質のG−C3F活性検定(−VSE) 実施例20および実施例21で得られたC127細胞及
σCHO細胞の培養上清から、実施例16に記載の方法
と同様にしてヒトG−C3Fを得、そのヒトG−C3F
活性を検定した。その結果は表−3の通りであった。
Example 22 G-C3F activity assay (-VSE) of expressed substances From the culture supernatants of C127 cells and σCHO cells obtained in Examples 20 and 21, human G -C3F was obtained, and the human G-C3F
Activity was assayed. The results were as shown in Table-3.

以下余白 表−3ヒトG−C3F活性の検定 実施例23アミノ酸分析および糖分析(−VSE)1)
アミノ酸組成の分析 実施例22で得た粗C3F試料を更に実施例2の(ii
i)の方法にしたがって精製した。この精製C3F試料
を実施例17の1)に記載の方法によってアミノ酸組成
分析に付した。この結果を表−4に示す。
Margin Table-3 Human G-C3F Activity Assay Example 23 Amino Acid Analysis and Sugar Analysis (-VSE) 1)
Analysis of Amino Acid Composition The crude C3F sample obtained in Example 22 was further analyzed in Example 2 (ii
Purified according to method i). This purified C3F sample was subjected to amino acid composition analysis by the method described in Example 17, 1). The results are shown in Table 4.

(以下余白) 表−4(アミノ酸分析表) 2)糖組成分析 上記アミノ酸組成分析で用いた精製C3F試料をもらい
て、実施例11の2)に記載したのと同じ方法及び同じ
分析条件によって糖組成を分析した。
(Leaving space below) Table 4 (Amino acid analysis table) 2) Sugar composition analysis The purified C3F sample used in the above amino acid composition analysis was obtained, and the sugar The composition was analyzed.

分析の結果、本発明のC3Fからガラクトース、N−ア
セチルガラクトサミン及びシアル酸が確認された。
As a result of the analysis, galactose, N-acetylgalactosamine, and sialic acid were confirmed from the C3F of the present invention.

実施例24  CO3細胞用染色体由来遺伝子含有組換
えベクターの構築 実施例11で得られた図5で示される染色体遺伝子を含
むプラスミドpBRCE3βをEC0RIで処理した。
Example 24 Construction of a recombinant vector containing a chromosome-derived gene for CO3 cells The plasmid pBRCE3β containing the chromosomal gene shown in FIG. 5 obtained in Example 11 was treated with EC0RI.

一方Banerj i等の文献(Cel12γ巻299
1 (1981) ) ニ記載されれているpSvH+
K プラスミドをKpnIで処理してグロビン遺伝子を
除き、さらにHindlIIで部分消化してSV40の
後期遺伝子の一部を除いた後、再結合させて発現用ベク
ターpML−E  を調製した。
On the other hand, the literature of Banerj et al. (Cel12γ volume 299
1 (1981)) pSvH+ described in
The K plasmid was treated with KpnI to remove the globin gene, further partially digested with HindlII to remove part of the SV40 late gene, and then religated to prepare the expression vector pML-E.

このベクターを、制限酵素EC0RIで処理した後、ア
ルカリホスファターゼ(宝酒造社製)で脱リン酸して得
られたベクターDNAをT4DNAリガービ(宝酒造社
製)を加えて上記染色体DNA断片と結合させ、pML
CE3αをjqた。図14に示される如くこのプラスミ
ドは、5V40i仏子のエンハン+J−1SV40のW
製開始領域、pBR322の複製開始領域およびpBR
322由来のβ−ラクタマーゼ遺伝子(Arr+p’ 
)を含むプラスミドで、SV40遺伝子のエンハンリー
下流にヒトG−C5F染色体遺伝子が接続されている。
This vector was treated with the restriction enzyme EC0RI, and then dephosphorylated with alkaline phosphatase (manufactured by Takara Shuzo Co., Ltd.), and the resulting vector DNA was ligated with the above chromosomal DNA fragment by adding T4 DNA ligavi (manufactured by Takara Shuzo Co., Ltd.) to form pML.
I jqed CE3α. As shown in FIG.
replication initiation region, pBR322 replication initiation region and pBR
β-lactamase gene derived from 322 (Arr+p'
), and the human G-C5F chromosomal gene is connected downstream of the enhancer of the SV40 gene.

実施例25  CO3細胞でのヒトG−C8F染色体遺
伝子の発現 仔牛血清10%を含むDMEM (日本製薬社製。
Example 25 Expression of human G-C8F chromosomal gene in CO3 cells DMEM containing 10% calf serum (manufactured by Nippon Pharmaceutical Co., Ltd.).

ダルベツコ変法イーグル培地「ニツスイ」)培地(io
威)を用いて、直径9cmのベトリ皿(NUnC社製)
中で約10%密にまで増殖させたCO3−1細胞(米国
、Co1d Spring Harbor研究所DI’
、 GIUZmanより譲受)をリン酸−カルシウム法
(WiCILQr等;Ce1l 14巻725頁(19
γ8))およびDEAE−デキストラン:クロロキン法
(例えば、Gordon  ;5cience 22靴
巻810頁(1985)を参照)によって形質転換した
Dulbetsko's modified Eagle medium ``Nitsui'') medium (io
A 9cm diameter Vetri dish (manufactured by NUnC)
CO3-1 cells grown to approximately 10% confluency (Col. Spring Harbor Laboratory DI', USA)
, received from GIUZman) using the phosphate-calcium method (WiCILQr et al.; Ce1l Vol. 14, p. 725 (19
γ8)) and the DEAE-dextran:chloroquine method (see, eg, Gordon; 5science 22 Shoe Volume 810 (1985)).

リン酸−カルシウム法の場合は以下の如〈実施した。In the case of the phosphate-calcium method, it was carried out as follows.

実施例24で調製したプラスミドpMLcE3α160
μJをTE溶液320μJに溶解せしめ、3.2−の蒸
溜水を加えた後さらに504μgの2MCaCu2を加
えた。
Plasmid pMLcE3α160 prepared in Example 24
[mu]J was dissolved in 320 [mu]J of TE solution, 3.2-distilled water was added, and then 504 [mu]g of 2MCaCu2 was added.

この溶液に4rIdlの2Xl−IBs [50mM 
 Hepes、280mM  NaQ、Il、1.5m
Mリン酸緩衝液、  U)t−17,12’) ]を加
えて20〜30分間水冷した後、CO3−1細胞の増殖
したベトリ皿1枚につき1dずつ滴下した。37℃のC
Q2インキュベーターにて4時間培養させた後、無血清
のDMEM培地で細胞を洗浄し、次いで20%のグリセ
ロールを含むDMEM培地5g1Nを加えて室温で約3
分間放置し、再び無血清のDMEM培地で洗浄した。
To this solution was added 4rIdl of 2Xl-IBs [50mM
Hepes, 280mM NaQ, Il, 1.5m
After adding M phosphate buffer, U)t-17,12') and cooling with water for 20 to 30 minutes, 1 d of the solution was added dropwise to each vetri dish in which CO3-1 cells had grown. 37℃C
After culturing in a Q2 incubator for 4 hours, the cells were washed with serum-free DMEM medium, and then 5 g 1N of DMEM medium containing 20% glycerol was added and incubated at room temperature for about 3 hours.
The plate was left for a minute and washed again with serum-free DMEM medium.

無血清のDMEM培地を除いた後、仔牛血清10%を含
むDMEM培地10m1を加えて一夜CO2インキュベ
ーター中で培養し、再び同培地にて培地交換を行ってざ
らに3日間培養した。
After removing the serum-free DMEM medium, 10 ml of DMEM medium containing 10% calf serum was added and cultured overnight in a CO2 incubator.The medium was replaced with the same medium again and cultured for approximately 3 days.

DEAE−デキストラン:クロロキン法を用いた場合は
以下の如くである。
DEAE-Dextran: When using the chloroquine method, the procedure is as follows.

リン酸カルシウム法と同様にCO3−1細胞を70%密
にまで培養し、無血清のDMEM培地で細胞を2回洗浄
した。これに250μg/dのDEAE−デキストラン
および実施例24で調製した2μg/m12のプラスミ
ドpMLcE3αを含む無血清DMEM培地を加え、3
7℃、12時間培養した。次いで、細胞を無血清DME
M培地で2回洗浄し、10%仔牛血清と1mMクロロキ
ンを含むDMEM培地にて、37℃、2時間培養を続け
た。その後細胞を無血清DMEM培地で2回洗浄した後
、10%仔牛血清を含むDMEM培地を添加し、37℃
にて3日間培養した。
CO3-1 cells were cultured to 70% confluency in the same manner as the calcium phosphate method, and the cells were washed twice with serum-free DMEM medium. To this was added serum-free DMEM medium containing 250 μg/d DEAE-dextran and 2 μg/ml plasmid pMLcE3α prepared in Example 24, and
The cells were cultured at 7°C for 12 hours. Cells were then treated with serum-free DME.
The cells were washed twice with M medium, and cultured at 37° C. for 2 hours in DMEM medium containing 10% calf serum and 1 mM chloroquine. After that, the cells were washed twice with serum-free DMEM medium, and then DMEM medium containing 10% calf serum was added and incubated at 37°C.
The cells were cultured for 3 days.

このようにして得られたCO3−1細胞の培養上清を1
N酢酸によりpH4に調整し、等容量の「)−プロパツ
ールを加えた後、生じた沈澱を遠心除去し、C8逆相系
担体(山村化学社製)を充填したオープンカラム(1φ
X2cm>に通し、50%n−プロパツールで溶出ざじ
た。溶出液を水て2倍に希釈した後、YMC−08カラ
ム(山村化学社製)を用いた逆相系高速液体クロマトグ
ラフィーにてo、i%TFAを含む30〜60%の直線
11度勾配のn−プロパツールで溶出させた。n−プロ
パツール濃度が40%付近の位置で溶出される両分を分
取した後、凍結乾燥し、0.1Mグリシシン緩衝液(p
H9>に溶解せしめた。このような経過を経ることによ
って、ヒトG−C3FはCO3−1細胞上清から約20
倍に濃縮された。
The culture supernatant of CO3-1 cells obtained in this way was
After adjusting the pH to 4 with N acetic acid and adding an equal volume of ")-propatool," the resulting precipitate was removed by centrifugation, and an open column (1φ
x2cm> and eluted with 50% n-propertool. After diluting the eluate twice with water, it was subjected to reverse phase high performance liquid chromatography using a YMC-08 column (manufactured by Yamamura Kagaku Co., Ltd.) to obtain a linear 11 degree gradient of 30 to 60% containing o, i% TFA. It was eluted with n-propatool. Both fractions eluted at a position where the concentration of n-propertool was around 40% were separated, lyophilized, and added to 0.1M glycicin buffer (p
H9>. Through this process, human G-C3F is extracted from CO3-1 cell supernatant by approximately 20%.
concentrated twice.

コントロールとして、前述の方法に従ってヒトG−C3
F染色体遺伝子を含まないDML−E”でCO3−1細
胞を形質転換した後、その培養上清を濃縮した。
As a control, human G-C3 was added according to the method described above.
After transforming CO3-1 cells with DML-E'' which does not contain the F chromosome gene, the culture supernatant was concentrated.

得られた標品について参考例に記載された「ヒトG−C
3Aの測定方法(a)」に基づいた方法にてヒトG−C
8F活性を検定した。結果は表−5の通りであった。
Regarding the obtained specimen, “Human G-C” described in the reference example
3A measurement method (a)"
8F activity was assayed. The results were as shown in Table-5.

(以下余白) 表−5 実施例26C127細胞によるヒトG−C3F染色体遺
伝子の発現 実施例24で1qられたpMLCE3αプラスミドをE
C0RIで処理し、前出のMo1ecular C1o
ninQに記載された方法によって、約4Kbの断片を
回収して染色体由来のG−C3F遺伝子の源とする。
(Space below) Table 5 Example 26 Expression of human G-C3F chromosomal gene by C127 cells The pMLCE3α plasmid 1q generated in Example 24 was
Processed with C0RI, the aforementioned Molecular C1o
By the method described in ninQ, an approximately 4 Kb fragment is recovered and used as the source of the chromosome-derived G-C3F gene.

これをDNAポリメラーゼI−KIenOW断片で処理
し、プラントエンドにしておく(A)。
This is treated with DNA polymerase I-KIenOW fragment to form plant ends (A).

一方、実施例12で調製したpHGA410プラスミド
から、上記と同様)iolecLIIar Cl0ni
n(lの方法によりSV40プロモータ一部分(ECO
RI−ECORIの約0.4Kb断片)を切り出し、D
NAポリメラーゼI−Klenow断片で処理する(B
)。
On the other hand, from the pHGA410 plasmid prepared in Example 12, iolecLIIar Cl0ni (same as above)
A portion of the SV40 promoter (ECO
The approximately 0.4 Kb fragment of RI-ECORI) was excised and D
Treat with NA polymerase I-Klenow fragment (B
).

更に、ウシ乳頭腫ウィルス(BPV)を有するプラスミ
ドpdspv−1(Sarver、N、、5byrne
In addition, plasmid pdspv-1 (Sarver, N., 5byrne) harboring bovine papilloma virus (BPV)
.

J、C&tlowley、P、H,(1982)Pro
c、Natl、Acad、Sci、。
J, C & tlowley, P, H, (1982) Pro.
c, Natl, Acad, Sci.

USA 79巻7147〜7151 : Or tlo
wieyより入手)をHi ndl[Iおよびpvu[
で処理し約8.4KbのDNA断片を得、これをDNA
ポリメラーゼニーKlenow断片処理後、バクテリヤ
アルカリフtスフ1ターゼにて脱リン酸しておく(C)
USA Volume 79 7147-7151: Or tlo
wiey) from Hindl[I and pvu[
A DNA fragment of approximately 8.4 Kb was obtained, which was transformed into a DNA fragment.
After processing the polymerase Klenow fragment, dephosphorylate it with bacterial alkaline riftase (C)
.

以上の(A>、(B)及び(C)のDNAを各々0.1
μ9ずつ20μnの反応液(50mM  Tr i 5
−HCu (pH7,6>、 10mM  MgCl2
 、10mM  DTT、1mM  ATP>に溶解し
、T4DNAリガーゼ180単位を加えて、4℃にて一
晩反応した。
0.1 each of the above (A>, (B) and (C) DNA)
20 μn of each μ9 reaction solution (50 mM Tri 5
-HCu (pH 7,6>, 10mM MgCl2
, 10mM DTT, 1mM ATP>, 180 units of T4 DNA ligase was added, and the mixture was reacted at 4°C overnight.

この反応液を用い、前出の)folecular Cl
oningに記載された塩化ルビジウム法によりpTN
CE3αプラスミドを得た。
Using this reaction solution, the above-mentioned) molecular Cl
pTN by the rubidium chloride method described in
A CE3α plasmid was obtained.

なお、染色体由来のG−C3F遺伝子の源としては、上
記(A)のかわりに、pMLcE3α2Gμ9を10m
M   Tr  i  5−HCl   t:pt−1
a、o  )  。
In addition, as a source of the chromosome-derived G-C3F gene, instead of the above (A), pMLcE3α2Gμ9 is used as a source of 10 m
M Tri 5-HCl t:pt-1
a, o).

7mM  McJC12,100mM  NaGfl 
、 7mM2−メルカプトエタノール、 0.01%B
SAの混合液100μgに溶解し、5tu120単位を
加え、37°C,5時間インキュベートした後、1.2
%アガロースゲル電気電気泳動にて約1.78KbのD
NA断片を得て、この断片を用いてもよい。
7mM McJC12, 100mM NaGfl
, 7mM 2-mercaptoethanol, 0.01% B
Dissolved in 100 μg of SA mixture, added 5tu120 units, incubated at 37°C for 5 hours, and then added 1.2
% agarose gel electrophoresis of approximately 1.78 Kb D
An NA fragment may be obtained and used.

このようにして得たDTNCE3αプラスミドで実施例
14と同様にしてマウスC127I細胞を形質転換し、
発現させ、G−C5F生産能の高いクローンを選別した
Mouse C127I cells were transformed with the DTNCE3α plasmid thus obtained in the same manner as in Example 14,
The clones were expressed and clones with high G-C5F production ability were selected.

実施例27  CHO細胞によるヒトG−C3F染色体
遺伝子の発現 実施例26の0127細胞の場合と同様にpMLCE3
αプラスミドを3tu工で処理して約1.78KbのD
NA断片を回収するか、或いはECOR工処理して約4
KbのEC0RI断片を回収して染色体由来のG−C8
Fm伝子の源とする。
Example 27 Expression of human G-C3F chromosomal gene by CHO cells pMLCE3 as in the case of 0127 cells in Example 26
α plasmid was treated with 3tu engineering to produce approximately 1.78 Kb D
Collect the NA fragments or process them with ECOR and
The EC0RI fragment of Kb was recovered and the chromosome-derived G-C8
It is considered as the source of Fm gene.

これをDNAポリメラーゼI−Klenow断片で処理
しておく(a)。
This is treated with DNA polymerase I-Klenow fragment (a).

また、実施例26と同じく、pHGA410からSV4
0プロモータ一部分(EcoRI−ECORI断片)を
切り出して、約0.4Kbの断片を得て、同様にDNA
ポリメラーピI−KIenOW断片処理をしておく(b
)。
Also, as in Example 26, from pHGA410 to SV4
A portion of the 0 promoter (EcoRI-ECORI fragment) was excised to obtain a fragment of approximately 0.4 Kb, and the DNA was similarly cut out.
Polymerapi I-KIenOW fragment processing (b
).

一方、pAdD26SVpAプラスミド(Kaufma
n、R,G & 5harp、t’、^(1982) 
Ho1.Ce11.Biol、 2巻1304〜131
9)をEC0RIで処理した後、DNAポリメラーゼI
−KlenOW断片で処理し、続いてバクテリアアルカ
リフォスファターゼ処理して脱リン酸する(G)。
On the other hand, pAdD26SVpA plasmid (Kaufma
n, R, G & 5harp, t',^ (1982)
Ho1. Ce11. Biol, vol. 2, 1304-131
After treating 9) with EC0RI, DNA polymerase I
- treatment with KlenOW fragment followed by bacterial alkaline phosphatase treatment to dephosphorylate (G).

上記の(a>、(b)および(C)を各々0.1μtず
ツ20μflの反応液(50mM  Tr i S−H
C,+!   (pH7,8)  、  10mlv1
0m1vi  2 、  iomMDT7.1mM  
ATP>に溶解し、T4DNAリガーゼ180単位を加
え、4°Cにて一晩反応せしめた。
0.1 μt each of the above (a>, (b) and (C)) was added to 20 μfl of the reaction solution (50 mM Tri S-H
C,+! (pH7,8), 10mlv1
0m1vi2, iomMDT7.1mM
ATP>, 180 units of T4 DNA ligase was added, and the mixture was reacted at 4°C overnight.

次いで、その反応液を前出のMo1ecular Cl
oningに記載された塩化ルビジウム法により、E、
G。
Next, the reaction solution was mixed with the above-mentioned Molecular Cl.
By the rubidium chloride method described in Oning, E,
G.

+;DHr株に形質転換しTet’のコロニーを得て、
プラスミドpD26SVCE3αを含む菌を選択した。
+: Transformed into DHr strain to obtain Tet' colonies,
Bacteria containing plasmid pD26SVCE3α were selected.

プラスミドpD26SVCE3αは図15に示す通りS
V40の初期遺伝子にC3FJ伝子を連結し、更にアデ
ノウィルス主後期プロモーターの下流にDHFRi仏子
を連結した形となっている。
Plasmid pD26SVCE3α is S as shown in Figure 15.
The C3FJ gene is linked to the V40 early gene, and DHFRi Butsuko is further linked downstream of the adenovirus main late promoter.

一方、pAdD26sVpAを実施例15の2)で)ホ
べた如<ECOR工およびBamHIで処理して(7ら
れた約2KbのDHFI伝子を含むDNA断片と上述の
(a)およびDHGA410 (H>のEcoRI−3
a I I断片と連結させることによりAmp  の発
現ベクターpDRCE3α(図15)を構築した。
On the other hand, pAdD26sVpA was treated with ECOR and BamHI (7) in Example 15, 2) to obtain a DNA fragment containing the approximately 2 Kb DHFI gene and the DNA fragments of (a) and DHGA410 (H) described above. EcoRI-3
Amp expression vector pDRCE3α (FIG. 15) was constructed by ligation with the a II fragment.

このpD26SVCE3αプラスミドおよびpDRCE
3αプラスミドを実施例15と同様にしてCHO細胞に
形質転換しMTX選択を繰り返してG−C3F生産株を
得た。
This pD26SVCE3α plasmid and pDRCE
The 3α plasmid was transformed into CHO cells in the same manner as in Example 15, and MTX selection was repeated to obtain a G-C3F producing strain.

実施例28  発現物質のG−C3F活性検定(ヒト染
色体由来遺伝子) 実施例26および実施例27で得られたC127細胞お
よびCHO細胞の培養上清から、実施例25に記載の方
法と同様にしてヒトG−C3Fを得、そのヒトG−C3
F活性を検定した。その結果は表−6の通りであった。
Example 28 G-C3F activity assay of expressed substance (human chromosome-derived gene) From the culture supernatants of C127 cells and CHO cells obtained in Examples 26 and 27, the same method as described in Example 25 was carried out. Human G-C3F was obtained, and the human G-C3
F activity was assayed. The results were as shown in Table-6.

以下余白 表−6ヒトG−C3F活性の検定 実施例29  ヒトG−C3Fの感染防御効果く試験方
法〉 8〜9週令(体重35.3±1.38y>のIICR系
マウス(雄)にエンドキサン(ジオツギ社社製、商品名
>  200my/ Ksを腹腔内投与した後3群に分
け、その・2群にヒトG−C5F (25000U/マ
ウス又は50000 u/マウス)を含む溶媒(生理食
塩水中1 %70ハ/−)Lt、0.5%((W /V
)マウス血清アルブミン)を、そして別の1群には溶媒
のみを、それぞれ24時間毎に0.IIIfずつ4回皮
下投与した。4回目の投与後3時間して各々の群にシュ
ードモナス アエルギノーザ(Pseud。
Margin Table-6 Testing Example 29 of Human G-C3F Activity Test Method for Infection Prevention Effect of Human G-C3F Endoxan (manufactured by Geotsugi Co., Ltd., trade name > 200 my/Ks) was administered intraperitoneally, then divided into 3 groups, and 2 groups were treated with a vehicle (in physiological saline) containing human G-C5F (25,000 U/mouse or 50,000 u/mouse). 1%70H/-)Lt, 0.5%((W/V
) mouse serum albumin), and one group received vehicle only, each at 0.005 mg every 24 hours. IIIf was administered subcutaneously four times each. Three hours after the fourth dose, each group was treated with Pseudomonas aeruginosa (Pseud).

monas aeruginosa) GNB −13
9(3,9xlO” CFU/マウス)を皮下投与して
感染させた。感染後21時間して、さらにもう一度ヒト
G−C3F(25000u/vウス又は50000 u
/マウス)を含む溶媒又は溶媒のみをそれぞれ対応する
群に皮下投与した。
monas aeruginosa) GNB-13
9 (3,9xlO" CFU/mouse) was subcutaneously administered. Twenty-one hours after infection, human G-C3F (25,000 u/v mouse or 50,000 u/mouse) was administered once again.
/mouse) or only the vehicle was subcutaneously administered to the corresponding groups.

感染後10日目までの生存マウス数により感染防御効果
を調べた。
The protective effect against infection was examined by the number of surviving mice up to 10 days after infection.

(菌液の調製) ハートインフュージョン液体培地([)ifc。(Preparation of bacterial solution) Heart infusion liquid medium ([)ifc.

社製、商品名)を用いて31℃で一夜シュードモナス 
アエルギノーザGNB−139を振とう培養する。培養
液を生理食塩水に懸濁させて調製した。
Pseudomonas overnight at 31°C using
A. aeruginosa GNB-139 is cultured with shaking. A culture solution was prepared by suspending it in physiological saline.

〈結 果〉 ■ 実施例17のアミノ酸組成分析に用いたのと同じC
)10細胞由来の精製ヒトG−C3F試料(十VSE)
について上記試験を行った。
<Results> ■ The same C used for the amino acid composition analysis in Example 17
) Purified human G-C3F samples derived from 10 cells (10 VSE)
The above test was conducted for.

その結果を表−7に示す。The results are shown in Table-7.

表−7 シュードモナス アエルギノーザに対する効果同様にし
て前記実施例17のアミノ酸組成分析に用いたのと同じ
C127細胞由来の精製ヒトG−C3F試料を用いて上
記試験の感染防禦効果を調べたところ、はぼ同様の結果
が得られた。
Table 7 Effect on Pseudomonas aeruginosa When the infection prevention effect in the above test was investigated using the same C127 cell-derived purified human G-C3F sample used for the amino acid composition analysis in Example 17, it was found that Similar results were obtained.

■ 実施例23のアミノ酸組成分析に用いたのと同じC
HO細胞由来の精製ヒトG−C3F試料(−VSE)に
ついて上記試験を行った。
■ The same C used for the amino acid composition analysis in Example 23.
The above test was conducted on a purified human G-C3F sample (-VSE) derived from HO cells.

その結果を表−8に示す。The results are shown in Table-8.

表−8 同様にして前記実施例23のアミノ酸組成分析に用いた
のと同じC127細胞由来の精製ヒトG−C3F試料を
用いて上記試験の感染防禦効果を調べたところ、はぼ同
様の結果が得られた。
Table 8 In the same manner, the infection prevention effect of the above test was investigated using the same purified human G-C3F sample derived from C127 cells used for the amino acid composition analysis in Example 23, and the results were similar to that of Habo. Obtained.

〔発明の効果〕〔Effect of the invention〕

本発明のヒトG−C8F活性を有する糖蛋白質は、白血
球減少症治療剤、骨髄性白血病治療剤、造血機能回復促
進剤或いはll!染防禦剤等の有効成分として極めて有
用なものである。
The glycoprotein having human G-C8F activity of the present invention can be used as a leukopenia therapeutic agent, a myeloid leukemia therapeutic agent, a hematopoietic function recovery promoter, or ll! It is extremely useful as an active ingredient in dye repellents and the like.

又、待望されていたこれら医薬品を具現化眩しめた遺伝
子組換えによるヒトG−C3Fの製法確立も、本発明の
大きな成果ということができよう。
Furthermore, the establishment of a method for producing human G-C3F through genetic recombination, which has made these long-awaited pharmaceutical products a reality, can also be considered a major achievement of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図1はプローブ(IWQ)、プローブ(A>およびプロ
ーブ(LC)の配列を示す。 図2はpHcs−1インナートの塩基配列を示す。 図3(A)はpBRG4のCDNAインサートの塩基配
列を示す。 図3(B)(I>はpBRG4  cDNAから演えき
したヒトG−C3F前駆体のアミノ酸配列を示す。 図3(B)(n)はpBR04CDNAから演えきした
ヒト成熟G−C3Fのアミノ酸配列を示す。 図4(A)はpBRv2のCDNAインサートの塩基配
列を示す。 図4 (B)(I>はpBRV2  CDNAか’3演
えきしたヒトG−C8F前駆体のアミノ酸配列を示す。 図4 (8)(II)はpBRV2  cDNAから演
えきしたヒト成熟G−C3Fのアミノ酸配列を示す。 図5はヒトG−C5Fをコードするヒト染色体遺伝子の
塩基配列を示す。 図6 ハpB RG 4 t tc ハpB RV 2
由来ヒトG−C3F  CDNAの制限酵素切断部位を
示す。 図7はヒトG−C3Fをコードするヒト染色体遺伝子制
限酵素切断部位を示す。 図8はpHGA410の概略構造を示す。 図9は発現用組換えベクターpTN−G4. pTN−
G4VAcrおよびpTN−G4VAβの構築プロセス
を示す。 図10aおよび図10bは1)HGG4−d h f 
rの構築プロセスを示す。 図10cはpG4DR1およびpG4DR2の構築プロ
ヒスを示す。 図11はL)HGV2の概略構造を示す。 図12は発現用組換えベクターpTN−V2.ρTN−
VA(rct:LにヒpTN−VAB(7)構築7’O
tスを示す。 図13aおよび図13bは発現用組換えベクターpHG
V2  dhfrの構築プロセスを示す。 図13cはpV2()R1#よびpv2DR2(7)構
築プロセスを示す。 図14はpMLcE3αの概略構造を示す。 図15はpD26SVCE3crとpDRCE3(2の
概略構造を示ず。
Figure 1 shows the sequences of the probe (IWQ), probe (A>, and probe (LC). Figure 2 shows the base sequence of pHcs-1 inner. Figure 3 (A) shows the base sequence of the cDNA insert of pBRG4. Figure 3(B)(I> shows the amino acid sequence of human G-C3F precursor extracted from pBRG4 cDNA. Figure 3(B)(n) shows the amino acid sequence of human mature G-C3F extracted from pBR04cDNA. Figure 4 (A) shows the nucleotide sequence of the CDNA insert of pBRv2. Figure 4 (B) (I> shows the amino acid sequence of the human G-C8F precursor extracted from pBRV2 CDNA. 4 (8) (II) shows the amino acid sequence of human mature G-C3F derived from pBRV2 cDNA. Figure 5 shows the base sequence of the human chromosomal gene encoding human G-C5F. Figure 6 HapB RG 4 t tc HapB RV 2
Restriction enzyme cleavage sites of the derived human G-C3F CDNA are shown. Figure 7 shows the restriction enzyme cleavage site of the human chromosomal gene encoding human G-C3F. FIG. 8 shows the schematic structure of pHGA410. Figure 9 shows the expression recombinant vector pTN-G4. pTN-
The construction process of G4VAcr and pTN-G4VAβ is shown. 10a and 10b are 1) HGG4-d h f
The construction process of r is shown. Figure 10c shows the construction of pG4DR1 and pG4DR2. FIG. 11 shows the schematic structure of L)HGV2. Figure 12 shows the recombinant expression vector pTN-V2. ρTN−
HypTN-VAB(7) construction 7'O in VA(rct:L
Indicates t-s. Figures 13a and 13b are expression recombinant vector pHG.
The construction process of V2 dhfr is shown. Figure 13c shows the pV2()R1# and pv2DR2(7) construction process. Figure 14 shows the schematic structure of pMLcE3α. Figure 15 does not show the schematic structures of pD26SVCE3cr and pDRCE3(2).

Claims (1)

【特許請求の範囲】 1 下記のアミノ酸配列またはその一部で表わされるポ
リペプチドと糖鎖部分を有しヒト顆粒球コロニー刺激因
子活性を有する糖蛋白質。 【アミノ酸配列があります】 (ただしmは0又は1を表わす) 2 ヒト顆粒球コロニー刺激因子活性を有するポリペプ
チドをコードする遺伝子を得、次にこれを組み込んだ組
換えベクターを調製した後、該ベクターを用いて宿主細
胞を形質転換し、次いで得られた形質転換株を培養し、
その培養物から目的糖蛋白質を採取することを特徴とす
る下記のアミノ酸配列またはその一部で表わされるポリ
ペプチドと糖鎖部分を有しヒト顆粒球コロニー刺激因子
活性を有する糖蛋白質の製造方法。 【アミノ酸配列があります】 (ただしmは0又は1を表わす) 3 ヒト顆粒球コロニー刺激因子活性を有するポリペプ
チドをコードする遺伝子が、ショ糖密度勾配遠心法によ
り15〜17S画分として得られる、ヒト顆粒球コロニ
ー刺激因子活性を有するポリペプチドをコードするメッ
センジャーRNAに相補的なDNAであることを特徴と
する特許請求の範囲第2項記載の糖蛋白質の製造方法。 4 ヒト顆粒球コロニー刺激因子活性を有するポリペプ
チドをコードする遺伝子が、ヒト染色体由来の遺伝子で
あることを特徴とする特許請求の範囲第2項記載の糖蛋
白質の製造方法。 5 ヒト染色体由来の遺伝子が、転写調節に関与する塩
基配列を含んでいることを特徴とする特許請求の範囲第
4項記載の糖蛋白質の製造方法。 6 ヒト顆粒球コロニー刺激因子活性を有するポリペプ
チドをコードする遺伝子が以下に示されるポリペプチド
配列またはその一部をコードするものである特許請求の
範囲第2項記載の糖蛋白質の製造方法。 【ポリペプチド酸配列があります】 7 ヒト顆粒球コロニー刺激因子活性を有するポリペプ
チドをコードする遺伝子が以下に示されるポリペプチド
配列またはその一部をコードするものである特許請求の
範囲第2項に記載の糖蛋白質の製造方法。 【ポリペプチド酸配列があります】 (ただしmは0または1を表わす) 8 ヒト顆粒球コロニー刺激因子活性を有するポリペプ
チドをコードする遺伝子が以下に示される塩基配列また
はその一部を有するものである特許請求の範囲第2項に
記載の糖蛋白質の製造方法。 【塩基配列があります】 (ただしmは0または1を表わす) 9 ヒト顆粒球コロニー刺激因子活性を有するポリペプ
チドをコードする遺伝子が以下に示される塩基配列また
はその一部を有するものである特許請求の範囲第2項に
記載の糖蛋白質の製造方法。 【塩基酸配列があります】 (ただしmは0または1を表わす) 10 ヒト顆粒球コロニー刺激因子活性を有するポリペ
プチドをコードする遺伝子が図3(A)に示される塩基
配列またはその一部を有するものである特許請求の範囲
第2項に記載の糖蛋白質の製造方法。 11 ヒト顆粒球コロニー刺激因子活性を有するポリペ
プチドをコードする遺伝子が図4(A)に示される塩基
配列またはその一部を有するものである特許請求の範囲
第2項記載の糖蛋白質の製造方法。 12 ヒト顆粒球コロニー刺激因子活性を有するポリペ
プチドをコードするヒト染色体由来の遺伝子が図5に示
される塩基配列またはその一部を有するものである特許
請求の範囲第2項記載の糖蛋白質の製造方法。 13 宿主細胞が動物細胞であることを特徴とする特許
請求の範囲第2項記載の糖蛋白質の製造方法。
[Scope of Claims] 1. A glycoprotein having human granulocyte colony-stimulating factor activity, which has a polypeptide represented by the following amino acid sequence or a portion thereof and a sugar chain moiety. [There is an amino acid sequence] (where m represents 0 or 1) 2. Obtain a gene encoding a polypeptide having human granulocyte colony stimulating factor activity, then prepare a recombinant vector incorporating this, and then Transforming host cells using the vector, then culturing the resulting transformed strain,
A method for producing a glycoprotein having human granulocyte colony-stimulating factor activity and having a polypeptide represented by the following amino acid sequence or a part thereof and a sugar chain moiety, the method comprising collecting the target glycoprotein from the culture. [There is an amino acid sequence] (where m represents 0 or 1) 3. A gene encoding a polypeptide having human granulocyte colony stimulating factor activity is obtained as a 15-17S fraction by sucrose density gradient centrifugation. 3. The method for producing a glycoprotein according to claim 2, wherein the DNA is complementary to messenger RNA encoding a polypeptide having human granulocyte colony stimulating factor activity. 4. The method for producing a glycoprotein according to claim 2, wherein the gene encoding the polypeptide having human granulocyte colony stimulating factor activity is a gene derived from a human chromosome. 5. The method for producing a glycoprotein according to claim 4, wherein the human chromosome-derived gene contains a base sequence involved in transcriptional regulation. 6. The method for producing a glycoprotein according to claim 2, wherein the gene encoding a polypeptide having human granulocyte colony stimulating factor activity encodes the polypeptide sequence shown below or a part thereof. [There is a polypeptide acid sequence] 7. According to claim 2, the gene encoding a polypeptide having human granulocyte colony stimulating factor activity encodes the polypeptide sequence shown below or a part thereof. A method for producing the described glycoprotein. [There is a polypeptide acid sequence] (where m represents 0 or 1) 8. The gene encoding a polypeptide having human granulocyte colony stimulating factor activity has the base sequence shown below or a part thereof. A method for producing a glycoprotein according to claim 2. [There is a base sequence] (where m represents 0 or 1) 9. A patent claim in which a gene encoding a polypeptide having human granulocyte colony-stimulating factor activity has the base sequence shown below or a part thereof A method for producing the glycoprotein according to item 2. [There is a base acid sequence] (where m represents 0 or 1) 10 A gene encoding a polypeptide having human granulocyte colony stimulating factor activity has the base sequence shown in Figure 3 (A) or a part thereof A method for producing a glycoprotein according to claim 2. 11. The method for producing a glycoprotein according to claim 2, wherein the gene encoding a polypeptide having human granulocyte colony stimulating factor activity has the base sequence shown in FIG. 4(A) or a part thereof. . 12. Production of the glycoprotein according to claim 2, wherein the gene derived from a human chromosome encoding a polypeptide having human granulocyte colony stimulating factor activity has the base sequence shown in FIG. 5 or a part thereof. Method. 13. The method for producing a glycoprotein according to claim 2, wherein the host cell is an animal cell.
JP61166710A 1985-09-17 1986-07-17 Novel glycoprotein and production thereof Granted JPS62236497A (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
IE242786A IE63992B1 (en) 1985-09-17 1986-09-11 Human granulocyte colony stimulating factor
IE930852A IE64489B1 (en) 1985-09-17 1986-09-11 Human granulocyte colony stimulating factor
NO863674A NO179373C (en) 1985-09-17 1986-09-15 Recombinant vector capable of expressing a glycoprotein, transformant expressing a glycoprotein and method for producing a glycoprotein
DK198604432A DK175336B1 (en) 1985-09-17 1986-09-16 DNA sequence coding for a peptide having granulocyte stimulating effect, recombinant vector and transformant containing this sequence, and method for producing the polypeptide
HU863963A HU209147B (en) 1985-09-17 1986-09-16 Method for producing stimulating factor of human granulocytae colony
CA000518286A CA1341389C (en) 1985-09-17 1986-09-16 Human granulocyte colony stimulating factor
AU62980/86A AU598477C (en) 1985-09-17 1986-09-17 Human granulocyte colony stimulating factor
KR1019860007835A KR910005624B1 (en) 1985-09-17 1986-09-17 Method for producing of human garnulocyte colony stimulating factor
FI863757A FI104982B (en) 1985-09-17 1986-09-17 Method of Preparation of Human Granulocyte Colon Stimulating Factor, Gene Coding Gene Sequence, Vector and Host Cell
CN 86106815 CN1021461C (en) 1985-09-17 1986-09-17 Human granulocytosis colony stimulative factor
IL80058A IL80058A (en) 1985-09-17 1986-09-17 Human granulocyte colony stimulating factor
DE8686113446T DE3681551D1 (en) 1985-09-30 1986-09-30 HUMAN GRANULOCYTE COLONY STIMULATING FACTOR.
EP86113446A EP0220520B1 (en) 1985-09-30 1986-09-30 Human granulocyte colony stimulating factor
AT86113446T ATE67517T1 (en) 1985-09-30 1986-09-30 HUMAN GRANULOCYTE COLONY STIMULATING FACTOR.
KR1019890006201A KR920002312B1 (en) 1985-09-17 1989-05-09 Method for producing colony stimulating factor
KR1019910019455A KR920005752B1 (en) 1985-09-17 1991-11-01 Human garnulocyte colony stimulating factor
HR920628A HRP920628B1 (en) 1985-09-17 1992-09-30 Human granulocyte colony stimulating factor
SG650/93A SG65093G (en) 1985-09-30 1993-05-18 Human granulocyte colony stimulating factor
HK655/93A HK65593A (en) 1985-09-30 1993-07-08 Human granulocyte colony stimulating factor
YU75295A YU48523B (en) 1985-09-30 1995-12-04 Human granulocyte colony stimulating factor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP20606685 1985-09-17
JP60-206066 1985-09-17
JP60-209638 1985-09-20
JP20963885 1985-09-20
JP60-217150 1985-09-30
JP21715085 1985-09-30
JP60-269456 1985-12-02
JP26945685 1985-12-02
JP60-270839 1985-12-03
JP27083985 1985-12-03

Publications (2)

Publication Number Publication Date
JPS62236497A true JPS62236497A (en) 1987-10-16
JPH025395B2 JPH025395B2 (en) 1990-02-01

Family

ID=27529395

Family Applications (4)

Application Number Title Priority Date Filing Date
JP61166709A Expired - Lifetime JPH0657152B2 (en) 1985-09-17 1986-07-17 CSF genes
JP61166710A Granted JPS62236497A (en) 1985-09-17 1986-07-17 Novel glycoprotein and production thereof
JP63184486A Expired - Lifetime JPH0657156B2 (en) 1985-09-17 1988-07-26 New glycoprotein manufacturing method
JP5183134A Expired - Lifetime JPH0783717B2 (en) 1985-09-17 1993-06-30 Gene encoding human granulocyte colony-stimulating factor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP61166709A Expired - Lifetime JPH0657152B2 (en) 1985-09-17 1986-07-17 CSF genes

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP63184486A Expired - Lifetime JPH0657156B2 (en) 1985-09-17 1988-07-26 New glycoprotein manufacturing method
JP5183134A Expired - Lifetime JPH0783717B2 (en) 1985-09-17 1993-06-30 Gene encoding human granulocyte colony-stimulating factor

Country Status (1)

Country Link
JP (4) JPH0657152B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252729A (en) * 1986-01-22 1987-11-04 Chugai Pharmaceut Co Ltd Promote for recovering hematopoietic function
JPS63299A (en) * 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン Development of human g-csf protein
JPS63500636A (en) * 1985-08-23 1988-03-10 麒麟麦酒株式会社 DNA encoding multipotent granulocyte colony stimulating factor
JPH02209895A (en) * 1988-06-03 1990-08-21 Chugai Pharmaceut Co Ltd Crystalline human granulocytic colony stimulation factor and production thereof
JPH0690751A (en) * 1985-08-23 1994-04-05 Kirin Amgen Inc Transformation cell
US5505944A (en) * 1992-09-09 1996-04-09 Nippon Kayaku Kabushiki Kaisha Physiologically active substance NK175203, process for production thereof and pharmaceutical use thereof
US5824778A (en) * 1988-12-22 1998-10-20 Kirin-Amgen, Inc. Chemically-modified G-CSF
US6166183A (en) * 1992-11-30 2000-12-26 Kirin-Amgen, Inc. Chemically-modified G-CSF
US6559322B1 (en) 2001-12-21 2003-05-06 Council Of Scientific And Industrial Research Process for preparation of a lactone from a cyclic ketone
US6956027B2 (en) 1994-10-12 2005-10-18 Amgen Inc. N-terminally chemically modified protein compositions and methods
US7090835B2 (en) 1994-10-12 2006-08-15 Amgen, Inc. N-terminally chemically modified protein compositions and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102021B2 (en) * 1985-12-03 1994-12-14 中外製薬株式会社 Novel polypeptide
CN102180944A (en) 2001-10-10 2011-09-14 诺和诺德公司 Remodeling and glycoconjugation of peptides
ES2544453T3 (en) 2009-05-14 2015-08-31 Keiichi Fukuda Use of G-CSF in the treatment of muscle injuries
WO2012067262A1 (en) 2010-11-17 2012-05-24 Fukuda Keiichi Therapeutic agent for muscular dystrophy

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500636A (en) * 1985-08-23 1988-03-10 麒麟麦酒株式会社 DNA encoding multipotent granulocyte colony stimulating factor
JPH0331437B2 (en) * 1985-08-23 1991-05-07 Kirin Amgen Inc
JPH0690751A (en) * 1985-08-23 1994-04-05 Kirin Amgen Inc Transformation cell
JP2660178B2 (en) * 1985-08-23 1997-10-08 麒麟麦酒株式会社 DNA encoding a polypeptide having human pluripotent granulocyte colony stimulating factor activity
JPS62252729A (en) * 1986-01-22 1987-11-04 Chugai Pharmaceut Co Ltd Promote for recovering hematopoietic function
JPS63299A (en) * 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン Development of human g-csf protein
JPH02209895A (en) * 1988-06-03 1990-08-21 Chugai Pharmaceut Co Ltd Crystalline human granulocytic colony stimulation factor and production thereof
US5824778A (en) * 1988-12-22 1998-10-20 Kirin-Amgen, Inc. Chemically-modified G-CSF
US5505944A (en) * 1992-09-09 1996-04-09 Nippon Kayaku Kabushiki Kaisha Physiologically active substance NK175203, process for production thereof and pharmaceutical use thereof
US6166183A (en) * 1992-11-30 2000-12-26 Kirin-Amgen, Inc. Chemically-modified G-CSF
US6956027B2 (en) 1994-10-12 2005-10-18 Amgen Inc. N-terminally chemically modified protein compositions and methods
US7090835B2 (en) 1994-10-12 2006-08-15 Amgen, Inc. N-terminally chemically modified protein compositions and methods
US7662933B2 (en) 1994-10-12 2010-02-16 Amgen Inc. N-terminally chemically modified protein compositions and methods
US8258262B2 (en) 1994-10-12 2012-09-04 Amgen Inc. N-terminally chemically modified protein compositions and methods
US6559322B1 (en) 2001-12-21 2003-05-06 Council Of Scientific And Industrial Research Process for preparation of a lactone from a cyclic ketone

Also Published As

Publication number Publication date
JPS62236488A (en) 1987-10-16
JPH06339381A (en) 1994-12-13
JPH0657156B2 (en) 1994-08-03
JPH0657152B2 (en) 1994-08-03
JPH025395B2 (en) 1990-02-01
JPS6485098A (en) 1989-03-30
JPH0783717B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JPS62236497A (en) Novel glycoprotein and production thereof
JPH09294590A (en) Recombinant human endothelial-cell growth factor
JPS61501490A (en) recombinant DNA molecule
KR100397244B1 (en) Megakaryocyte differentiation factor
JPS63267292A (en) Novel polypeptide
EP1029045A2 (en) EXTENDED cDNAs FOR SECRETED PROTEINS
JPS5890596A (en) Dna, recombined dna, host polypeptide containing them and manufacture
JPH04506342A (en) Non-glycosylated human interleukin-3 similar protein
CA2296398A1 (en) 5&#39; ests for secreted proteins expressed in endoderm
JPS63159399A (en) B-cell stimulant factor
CZ289498A3 (en) Recombinant protein gm-csf of humans and pharmaceutical composition containing thereof
JPS62129298A (en) Novel polypeptide
WO1986004506A1 (en) Infection-protective agent containing human granulocyte colony-stimulating factor as effective ingredient
JPS62132899A (en) Novel polypeptide
JPS6034915A (en) Polypeptide
KR920002312B1 (en) Method for producing colony stimulating factor
RU2057809C1 (en) Method of preparing factor stimulating granulocyte colony formation
WO1999055863A1 (en) NOVEL POLYPEPTIDE, cDNA ENCODING THE SAME AND UTILIZATION THEREOF
JPH01110629A (en) Phylactic
KR920005752B1 (en) Human garnulocyte colony stimulating factor
WO1999033873A1 (en) NOVEL POLYPEPTIDES, cDNAS ENCODING THE SAME AND UTILIZATION THEREOF
JP2623807B2 (en) Serine protease and serine protease gene
JPS61502514A (en) growth related hormones
JPH07165795A (en) Human interleukin-2 receptor
JPH09173087A (en) Protein estimated to bind to atp and nucleic acid and have properties of helicase and atpase

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 22

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 22