JPS62235201A - Method and device for concentrating oxygen in high yield-high concentration - Google Patents
Method and device for concentrating oxygen in high yield-high concentrationInfo
- Publication number
- JPS62235201A JPS62235201A JP7889586A JP7889586A JPS62235201A JP S62235201 A JPS62235201 A JP S62235201A JP 7889586 A JP7889586 A JP 7889586A JP 7889586 A JP7889586 A JP 7889586A JP S62235201 A JPS62235201 A JP S62235201A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- valve
- low
- concentration
- concn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 91
- 239000001301 oxygen Substances 0.000 title claims description 91
- 229910052760 oxygen Inorganic materials 0.000 title claims description 91
- 238000000034 method Methods 0.000 title claims description 13
- 238000001179 sorption measurement Methods 0.000 claims abstract description 18
- 241001494479 Pecora Species 0.000 claims description 10
- 239000002808 molecular sieve Substances 0.000 abstract 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 56
- 239000007789 gas Substances 0.000 description 38
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- 229910052786 argon Inorganic materials 0.000 description 29
- 238000001556 precipitation Methods 0.000 description 17
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 238000003795 desorption Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 150000001485 argon Chemical class 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010407 vacuum cleaning Methods 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
3−1 目的
モレキュラシープスは公知の通り常温度で特定のガスを
選択して吸着する性質がある。この性質を応用して空気
中の酸素を濃縮分離する方法も公知の通りである。併し
この公知の方法では酸素の濃度が95チが限度といわれ
ている。その理由はアルゴンガスの分離除去が困難のた
めといわれている。本発明はこのアルゴンガスを除去し
て酸素の濃度を99%以上トスることとモレキュラシー
プスの低温度の吸着性能を応用しその収率を高めること
を目的とする。DETAILED DESCRIPTION OF THE INVENTION 3-1 Purpose As is well known, molecular sheep have the property of selectively adsorbing a specific gas at room temperature. A method of concentrating and separating oxygen in the air by applying this property is also known. However, in this known method, the oxygen concentration is said to be limited to 95%. The reason is said to be that it is difficult to separate and remove argon gas. The purpose of the present invention is to remove this argon gas to reduce the oxygen concentration to 99% or more, and to increase the yield by applying the low temperature adsorption ability of molecular sheep.
3−2 アルゴンガスの除去方法
公知の酸素濃縮装置に用いられている吸着剤は、モレキ
ュラシープス 5Aである。このモレキュラシープス
5Aは常温のときはアルゴンガスと酸素の分離はしない
が成る低温度(−40〜−70℃)で使用するとアルゴ
ンガスと酸素が分離されると共に窒素の吸着性能が極度
に良くなることも公知の通りである。3-2 Argon Gas Removal Method The adsorbent used in the known oxygen concentrator is Molecular Sheeps 5A. This Molecule Sheeps
It is also known that 5A does not separate argon gas and oxygen at room temperature, but when used at low temperatures (-40 to -70°C), argon gas and oxygen are separated and the nitrogen adsorption performance is extremely improved. It is as follows.
この性質を応用して、高濃度でしかも高収率で酸素を濃
縮することが可能となる。By applying this property, it becomes possible to concentrate oxygen at a high concentration and with a high yield.
3−3 モレキュラシープス 5Aによるアルゴンガス
と酸素の分離実験
図1はガスクロマトグラフによる空気の常温分析の図で
ある。3-3 Separation experiment of argon gas and oxygen using Molecular Sheeps 5A Figure 1 is a diagram of room temperature analysis of air using a gas chromatograph.
分析の条件
カラムサイズ 3m/x3m
カラム充填剤 モレキュラシ
ープス5A
カラム温度 30℃
キャリヤーガス へりューム
キャリヤーガス流量 40−/讃
電圧感度 1024MV
チャートスピード 10u/鋼
図1に記載の名称
■酸素とアルゴンガスの析出
■窒素の析出
常温での酸素濃縮の原理
図1の酸素の析出時間T1は濃縮装置の酸素の製品の採
取の時間で約40秒程であるメス1の窒素の析出時間T
2は濃縮装置の脱着時間に相当し約1分40秒程である
。Analysis conditions Column size 3m/x3m Column packing material Molecular Sheeps 5A Column temperature 30°C Carrier gas Helium carrier gas flow rate 40-/Sensitivity voltage sensitivity 1024MV Chart speed 10u/Steel Names listed in Figure 1 ■Oxygen and Precipitation of argon gas ■ Precipitation of nitrogen Principle of oxygen concentration at room temperature Oxygen precipitation time T1 in Figure 1 is the time for collecting the oxygen product from the concentrator and is approximately 40 seconds Nitrogen precipitation time T of scalpel 1
2 corresponds to the desorption time of the concentrator, which is about 1 minute and 40 seconds.
これから解るように脱着時間は吸着時間の25倍近くを
要する。このため酸素濃縮の場合の吸着塔の数を4塔と
して交互に使用するようにしである。最近では窒素の脱
着の時間を早めるために製品の酸素で脱着時に洗滌する
ことにより3塔としている。As can be seen, the desorption time requires nearly 25 times the adsorption time. For this reason, in the case of oxygen concentration, the number of adsorption towers is four and they are used alternately. Recently, in order to speed up the time of nitrogen desorption, three towers have been created by washing the product with oxygen during desorption.
図2はガスクロマトグラフによる空気の低温分析の図で
ある。FIG. 2 is a diagram of low-temperature analysis of air using a gas chromatograph.
分析の条件
カラムサイズ 3馴)X 3 mカラム充填剤
モレキュラシ
ープス5A
カラム温度 −45℃
キャリヤーガス へりューム
キャリヤーガス流量 40 d/m
チャートスピード 10H/四
図2に記載の名称
■アルゴンガスの析出
■酸素の析出
■窒素の析出
低温度での酸素濃縮の原理
図2のアルゴンガスの析出時間T3は濃縮装置のアルゴ
ンガスの放出時間に相当し約40秒程で図2の酸素の析
出時間T4は濃縮装置の酸素の採取時間に相当し約1分
40秒程で図2の窒素の析出時間T5は濃縮装置の窒素
の脱着時間に相当し約3分20秒程である。アルゴンガ
スの放出時間と酸素の採取時間で約2分20秒程これに
対する窒素の脱着時間は約15倍程で、吸着塔を3塔交
互に切替使用することにより酸素の採取出来ることが理
解出来る。Analysis conditions Column size 3) x 3 m Column packing material
Molecular Sheeps 5A Column temperature -45℃ Carrier gas Helium Carrier gas flow rate 40 d/m Chart speed 10H/4 Names shown in Figure 2 ■ Argon gas precipitation ■ Oxygen precipitation ■ Nitrogen precipitation At low temperature Principle of oxygen concentration The argon gas precipitation time T3 in Figure 2 corresponds to the release time of argon gas from the concentrator, which is about 40 seconds, and the oxygen deposition time T4 in Figure 2 corresponds to the oxygen collection time from the concentrator. The nitrogen precipitation time T5 in FIG. 2, which is about 1 minute and 40 seconds, corresponds to the nitrogen desorption time of the concentrator, which is about 3 minutes and 20 seconds. The time for releasing argon gas and collecting time for oxygen is about 2 minutes and 20 seconds.The desorption time for nitrogen is about 15 times longer than this, so it can be seen that oxygen can be collected by alternately using three adsorption towers. .
3−3−8 図3はガスクロマトグラフによる酸素約5
0%と窒素約50チの他にアルゴンガス約2.5チ含む
ガスを低温分析した図である。3-3-8 Figure 3 shows the oxygen concentration measured by gas chromatography.
This is a low-temperature analysis of a gas containing about 2.5 g of argon gas in addition to about 50 g of nitrogen.
分析の条件
カラムサイズ 3ag/X3m
カラム充填剤 モレキュラシ
ープス5A
カラム温度 −45℃
キャリヤーガス へりューム
キャリヤーガス流量 40 m/W
電圧感度 1024MV
チャートスピード 10m/”
図3に記載の名称
■アルゴンガスの析出
■酸素の析出
■窒素の析出
酸素濃度50%、窒素濃度50%、アルゴンガス2.5
%のガスの低温度での酸素濃縮の原理
図3のアルゴンガスの析出時間T6は濃縮装置のアルゴ
ンガスの放出時間に相当し約40秒程で図3の酸素の析
出時間T7は濃縮装置の酸素の採取時間に相当し約1分
40秒程で、図3の窒素の析出時間T8は濃縮装置の脱
着時間に相当し約1分40秒程である。これから解るよ
うに脱着時間と吸着時間ははソ同じとなり吸着塔は2塔
を交互に切替使用すれば良いことが理解出来る。父、常
温濃縮装置のように製品酸素で吸着塔の脱着時に洗滌す
ればその収率をより良く出来る。Analysis conditions Column size 3ag/X3m Column packing material Molecular Sheeps 5A Column temperature -45℃ Carrier gas Helium carrier gas flow rate 40 m/W Voltage sensitivity 1024MV Chart speed 10m/'' Names shown in Figure 3 ■Argon Gas precipitation ■ Oxygen precipitation ■ Nitrogen precipitation Oxygen concentration 50%, nitrogen concentration 50%, argon gas 2.5
% of oxygen concentration at low temperature The argon gas precipitation time T6 in Figure 3 corresponds to the argon gas release time of the concentrator, which is about 40 seconds, and the oxygen deposition time T7 in Figure 3 corresponds to the argon gas release time of the concentrator. This corresponds to the collection time of oxygen, which is about 1 minute and 40 seconds, and the nitrogen precipitation time T8 in FIG. 3 corresponds to the desorption time of the concentrator, which is about 1 minute and 40 seconds. As can be seen from this, the desorption time and the adsorption time are the same, so it can be understood that the adsorption tower can be used by switching between two towers alternately. Father, if the product oxygen is used to wash the adsorption tower during desorption, as in a room-temperature concentrator, the yield can be improved.
3−4 本発明の説明 図4は本発明の酸素濃縮装置のフローシートである。3-4 Description of the present invention FIG. 4 is a flow sheet of the oxygen concentrator of the present invention.
8−4−1 各機器の名称の説明
■原料空気圧縮機
■除湿装置
■原料空気蓄圧器
■常温吸着塔 AXBXC
■低濃度酸素蓄圧器
■真空ポンプ
■熱交換器
■冷却器
■冷却装置
[相]低温吸着塔 D、 E
■アルゴンガス蓄圧器
■高濃度酸素蓄圧器
@低濃度酸素バイパスタンク
[相]酸素濃度計
■1〜V9 切替弁
F1〜F2 絞り板
P 圧力発信器
M 電動機
CVアルゴンガス流量調整弁
3−4−2 図4の酸素濃縮装置の濃縮方法の説明
原料空気圧縮機によって、3〜5#/−に圧縮した空気
を除湿装置を通して露点O〜−10℃程として原料空気
蓄圧器へ送り次に常温吸着塔へ送る常温吸着塔で再度除
湿し露点−50〜−60℃として、かつ炭酸ガス及び窒
素の一部を除去し低濃度酸素蓄圧器へ送る、常温吸着塔
よりの酸素の析出が終了し窒素が析出する前に■弁を閉
じてV2弁を開き次に使用するB塔へ低濃度酸素を流し
て洗滌する。B塔の洗滌が終了するとV2弁を閉じv3
弁を開き塔内圧力が大気圧近くになるとv3弁を閉じ■
弁を開き塔内を真空ポンプによって真空洗滌する。真空
洗滌が終了するとv4弁を閉じる。このようにして3塔
を交互に切替して使用して連続して低濃度酸素の製造を
する。8-4-1 Explanation of names of each equipment ■ Feed air compressor ■ Dehumidification device ■ Feed air pressure accumulator ■ Room temperature adsorption tower AXBXC ■ Low concentration oxygen pressure accumulator ■ Vacuum pump ■ Heat exchanger ■ Cooler ■ Cooling device [phase ] Low-temperature adsorption tower D, E ■Argon gas pressure accumulator ■High concentration oxygen pressure accumulator @ low concentration oxygen bypass tank [Phase] Oxygen concentration meter ■1 to V9 Switching valve F1 to F2 Throttle plate P Pressure transmitter M Motor CV Argon gas Flow rate adjustment valve 3-4-2 Explanation of the concentration method of the oxygen concentrator in Figure 4 Air compressed to 3 to 5 #/- by the raw air compressor is passed through the dehumidifier to a dew point of O to -10°C, and the raw air pressure is accumulated. The water from the room-temperature adsorption tower is dehumidified again to a dew point of -50 to -60°C, and some of the carbon dioxide and nitrogen are removed before being sent to a low-concentration oxygen pressure accumulator. After the precipitation of oxygen is completed and before the precipitation of nitrogen, the valve (1) is closed and the valve (V2) is opened to flush low-concentration oxygen to the B tower to be used next. When the cleaning of the B tower is completed, close the V2 valve and v3
Open the valve and close the V3 valve when the pressure inside the tower becomes close to atmospheric pressure■
Open the valve and vacuum clean the inside of the tower using a vacuum pump. When vacuum cleaning is completed, close the V4 valve. In this way, the three towers are alternately used to continuously produce low concentration oxygen.
次に低濃度酸素蓄圧器から出るガスを熱交換器でO〜−
10℃迄冷却してさらに冷却器で、−40〜−70℃迄
冷却して低温吸着塔へ送る。低温吸着塔の塔頂より最初
にアルゴンガスが析出されるのでこのアルゴンガスはv
6弁を開いてアルゴンガス蓄圧器を通して大気中に放出
する。アルゴンガスの放出が終わり酸素が析出しようと
するとv6弁を閉じて■7弁を開き析出して来る酸素を
高濃度酸素蓄圧器を通して製品として採取する。Next, the gas coming out of the low concentration oxygen pressure accumulator is passed through a heat exchanger to O~-
The mixture is cooled to 10°C, further cooled to -40 to -70°C in a cooler, and sent to a low-temperature adsorption tower. Since argon gas is first deposited from the top of the low-temperature adsorption tower, this argon gas is
Open valve 6 and release the argon gas to the atmosphere through the pressure accumulator. When the argon gas has been released and oxygen is about to precipitate, the v6 valve is closed and the v7 valve is opened and the precipitated oxygen is collected as a product through a high concentration oxygen pressure accumulator.
酸素の析出が終了して窒素が析出しようとする前に■弁
を閉じてv8弁を開き次に使用するE塔へ高濃度酸素を
流し洗滌する。E塔の洗滌が終わるとv8弁を閉じてv
9弁を開き脱着ガスを低濃度酸素バイパスタンクへ送る
。このバイパスされる低濃度酸素は空気よりも酸素濃度
が高いため原料空気の酸素濃度を高くし製品酸素の収率
を高くする。After the precipitation of oxygen is completed and before nitrogen is about to be precipitated, close the valve (1) and open the valve (V8) to flush highly concentrated oxygen to the E tower to be used next. When the cleaning of the E tower is finished, close the v8 valve and
Open valve 9 and send the desorption gas to the low concentration oxygen bypass tank. Since this bypassed low-concentration oxygen has a higher oxygen concentration than air, it increases the oxygen concentration of the raw material air and increases the yield of product oxygen.
このようにして高濃度の酸素を連続して製造することが
出来る。In this way, high concentration oxygen can be produced continuously.
3−5 本発明の高濃度酸素濃縮装置の運転方法
3−5−1 低濃度酸素濃縮装置の運転方法常温吸着
塔によって濃縮する低濃度酸素の濃度はその低濃度酸素
の使用量の変化にほぼ逆比例する。その性質を応用して
切替弁の切替時間を任意に調整して酸素の濃度を一定に
保つことが出来る。3-5 Operation method of high concentration oxygen concentrator of the present invention 3-5-1 Operation method of low concentration oxygen concentrator be inversely proportional. Applying this property, it is possible to arbitrarily adjust the switching time of the switching valve to keep the oxygen concentration constant.
図4の低濃度酸素蓄圧器前の酸素濃度計の出力電圧をイ
ンバーターの大刀に入れ酸素濃度が低くなるとインバー
ターの周波数が高くなり又酸素濃度が高くなるとインバ
ーターの周波数が低くなるように連絡する。The output voltage of the oxygen concentration meter in front of the low-concentration oxygen pressure accumulator shown in FIG. 4 is connected to the inverter so that when the oxygen concentration decreases, the inverter frequency increases, and when the oxygen concentration increases, the inverter frequency decreases.
このインバーターによって同期モーターを回転させる、
同期モーターに取付けた切欠円板に近接スイッチをセッ
トして各弁の切替を行うようにする。This inverter rotates a synchronous motor,
A proximity switch is set on the notched disc attached to the synchronous motor to switch each valve.
図5はそのプロセスの図で図6はパルプ切替タイムの図
である。FIG. 5 is a diagram of the process, and FIG. 6 is a diagram of pulp switching time.
図5記載の名称
■原料空気圧縮機
■低濃度酸素濃縮装置
■高濃度酸素濃縮装置
■酸素濃度計
■インバーター
■同期モーター
■切欠き円板
■近接スイッチ
■シーケンサー
[相]■1〜v4 各切替弁
図6記載の名称
V1原料空気導入弁の開放時間
■ 低濃度酸素の採取時間
V2洗滌用弁の開放時間
■3大気放出弁の開放時間
■4真空洗滌弁の開放時間
3−5−2 高濃度濃縮装置の運転方法低湿吸着塔を
出る高濃度酸素の濃度は高濃度酸素の使用量の変化に逆
比例して変化する。その性質を利用して切替弁の切替時
間を調整することによって高濃度酸素の濃度を高濃度酸
素の使用量に関係なく一定に保つことが出来る。Names listed in Figure 5 ■ Raw air compressor ■ Low concentration oxygen concentrator ■ High concentration oxygen concentrator ■ Oxygen concentration meter ■ Inverter ■ Synchronous motor ■ Notch disk ■ Proximity switch ■ Sequencer [phase] ■ 1 to v4 each switching Names listed in valve diagram 6 V1 Raw air inlet valve opening time ■ Low concentration oxygen collection time V2 Cleaning valve opening time ■ 3 Atmospheric release valve opening time ■ 4 Vacuum cleaning valve opening time 3-5-2 High How to operate the concentration concentrator The concentration of concentrated oxygen leaving the low-humidity adsorption tower changes in inverse proportion to the change in the amount of concentrated oxygen used. By adjusting the switching time of the switching valve using this property, the concentration of high concentration oxygen can be kept constant regardless of the amount of high concentration oxygen used.
図4の高濃度酸素蓄圧器前の酸素濃度計の出力電圧をイ
ンバーターの入力に入れ酸素濃度が高くなるとインバー
ターの周波数が低くなり酸素濃度が低くなるとインバー
ターの周波数が高くなるように連絡する。このインバー
ターにより同期モーターを回転させて、同期モーターに
取付だ切替円板によって近接スイッチを作動させて各弁
の切替を行うようにすることが出来る。図7はそのプロ
セスで図8はバルブ切替タイムの図である。The output voltage of the oxygen concentration meter in front of the high-concentration oxygen pressure accumulator shown in FIG. 4 is input to the input of the inverter, and as the oxygen concentration increases, the inverter frequency decreases, and as the oxygen concentration decreases, the inverter frequency increases. This inverter rotates a synchronous motor, and a switching disc attached to the synchronous motor operates a proximity switch to switch each valve. FIG. 7 shows the process, and FIG. 8 shows the valve switching time.
図7記載の名称
■原料空気圧縮機
■低濃度酸素濃縮装置
■高濃度酸素濃縮装置
■酸素濃度計
■インバーター
■同期モーター
■切欠円板
■近接スイッチ
■シーケンサー
[相]■5〜V9 切替弁
図8記載の名称
v5 原料ガス導入弁開放時間
V6 アルゴンガス放出弁開放時間
v7 高濃度酸素採取弁開放時間
v8 洗滌用弁開放時間
V9 低濃度酸素リサイクル弁開放時間3−5−3
高濃度濃縮装置の放出アルゴンガスの放出量の調整方法
アルゴンガスの放出量は、高濃度酸素の使用量と比例さ
せる必要があるので高濃度酸素の出口側及びアルゴンガ
スの放出側に各々絞り板を挿入してその絞り板の前後の
各比較検出してシーケンサ−によりアルゴンガスの放出
量を高濃度酸素の使用量に比例させる。Names listed in Figure 7 ■ Raw air compressor ■ Low concentration oxygen concentrator ■ High concentration oxygen concentrator ■ Oxygen concentration meter ■ Inverter ■ Synchronous motor ■ Notched disc ■ Proximity switch ■ Sequencer [phase] ■ 5 to V9 switching valve diagram Names listed in 8 v5 Raw material gas introduction valve opening time V6 Argon gas release valve opening time v7 High concentration oxygen collection valve opening time v8 Cleaning valve opening time V9 Low concentration oxygen recycling valve opening time 3-5-3
How to adjust the amount of argon gas released from a high concentration concentrator The amount of argon gas released needs to be proportional to the amount of high concentration oxygen used, so there are aperture plates on the high concentration oxygen outlet side and the argon gas release side. A sequencer compares and detects the front and back of the diaphragm plate and makes the amount of argon gas released proportional to the amount of high concentration oxygen used.
図9はこのプロセスである。Figure 9 shows this process.
図9記載の名称
■原料空気圧縮機
■常温濃縮装置
■低温濃縮装置
■アルゴンガス放出側絞り板
■高濃度酸素側絞り板
■アルゴンガス側差圧変換器
■酸素側差圧変換器
■シーケンサー
Cvアルゴンガス流量調整弁
3−5−4 高濃度酸素の使用量による原料空気量の
調整方法
高濃度酸素の使用量が減少した場合に高濃度酸素の蓄圧
器の圧力が上昇して酸素の濃度が高くなり切替時間が長
くなる。するとイ氏潟奮酸去のfF:F:基の圧力≠;
μ界1−てキ入この低濃度酸素の蓄圧器圧力を圧力変換
器で電圧に変換してインバーターの入力に入れるとイン
バーターの周波数が降下する。Names listed in Figure 9 ■ Raw material air compressor ■ Room temperature concentrator ■ Low temperature concentrator ■ Argon gas release side throttle plate ■ High concentration oxygen side throttle plate ■ Argon gas side differential pressure converter ■ Oxygen side differential pressure converter ■ Sequencer Cv Argon gas flow rate adjustment valve 3-5-4 How to adjust the amount of raw air according to the amount of high-concentration oxygen used When the amount of high-concentration oxygen used decreases, the pressure of the high-concentration oxygen accumulator increases and the oxygen concentration increases. This increases the switching time. Then, the pressure of F: F: group pressure≠;
μ field 1 - When the accumulator pressure of this low concentration of oxygen is converted into voltage using a pressure converter and input to the input of the inverter, the frequency of the inverter drops.
すると原料空気圧縮機のモーターの回転数が低下し原料
空気の圧縮量が減少して来る。Then, the rotational speed of the motor of the raw air compressor decreases, and the amount of compressed raw air is reduced.
又逆に高濃度酸素の使用量が増加すると原料空気の圧縮
量が増加する。このようにすることにより高濃度酸素の
使用量によって原料空気の圧縮量を調整して電力の節約
をすることが出来る。Conversely, as the amount of highly concentrated oxygen used increases, the amount of compression of the raw material air increases. By doing so, it is possible to save power by adjusting the amount of compression of the raw material air depending on the amount of high concentration oxygen used.
図10記載の名称 ■原料空気圧縮機 ■常温酸素濃縮装置 ■低温酸素濃縮装置 ■低晶度酸素蓄圧器 ■圧力 電圧変換器 ■インバーター ■原料空気圧縮機用電動機 以上Names listed in Figure 10 ■Raw material air compressor ■Normal temperature oxygen concentrator ■Low temperature oxygen concentrator ■Low crystalline oxygen pressure accumulator ■Pressure voltage converter ■Inverter ■Electric motor for raw material air compressor that's all
Claims (2)
たプレッシャースイング方式による空気中の酸素を高濃
度・高収率で濃縮する方法(1) A method for concentrating oxygen in the air at high concentration and yield using a pressure swing method that utilizes the low-temperature adsorption properties of Molecular Sheeps.
たプレッシャースイング方式による空気中の酸素を高濃
度・高収率で濃縮する装置(2) A device that condenses oxygen in the air at high concentration and yield using a pressure swing method that utilizes the low-temperature adsorption properties of Molecular Sheeps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7889586A JPS62235201A (en) | 1986-04-05 | 1986-04-05 | Method and device for concentrating oxygen in high yield-high concentration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7889586A JPS62235201A (en) | 1986-04-05 | 1986-04-05 | Method and device for concentrating oxygen in high yield-high concentration |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62235201A true JPS62235201A (en) | 1987-10-15 |
Family
ID=13674545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7889586A Pending JPS62235201A (en) | 1986-04-05 | 1986-04-05 | Method and device for concentrating oxygen in high yield-high concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62235201A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03205305A (en) * | 1990-01-06 | 1991-09-06 | Mitsui Toatsu Chem Inc | Method for recovering oxygen |
JP2008100222A (en) * | 2006-10-04 | 2008-05-01 | Air Products & Chemicals Inc | Performance stability in shallow beds in pressure swing adsorption systems |
US8016918B2 (en) | 2006-10-04 | 2011-09-13 | Air Products And Chemicals, Inc. | Performance stability in rapid cycle pressure swing adsorption systems |
-
1986
- 1986-04-05 JP JP7889586A patent/JPS62235201A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03205305A (en) * | 1990-01-06 | 1991-09-06 | Mitsui Toatsu Chem Inc | Method for recovering oxygen |
JP2008100222A (en) * | 2006-10-04 | 2008-05-01 | Air Products & Chemicals Inc | Performance stability in shallow beds in pressure swing adsorption systems |
US7717981B2 (en) | 2006-10-04 | 2010-05-18 | Air Products And Chemicals, Inc. | Performance stability in shallow beds in pressure swing adsorption systems |
US8016918B2 (en) | 2006-10-04 | 2011-09-13 | Air Products And Chemicals, Inc. | Performance stability in rapid cycle pressure swing adsorption systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3891773B2 (en) | Gas separation and purification method and apparatus therefor | |
EP0460636B1 (en) | Improved membrane nitrogen process and system | |
US4013429A (en) | Fractionation of air by adsorption | |
KR830001666A (en) | Vacuum Swing Absorber for Air Classification | |
JPS60246206A (en) | Preparation of oxygen with high concentration | |
RU1816229C (en) | Helium enrichment method | |
CN1060792A (en) | The pressure swing adsorption method that is used for separating gas mixture | |
JPS6225407B2 (en) | ||
JPH07277702A (en) | Process and apparatus for adsorptively separating argon and hydrogen in high concentration from ammonia plant purge gas | |
JPS62235201A (en) | Method and device for concentrating oxygen in high yield-high concentration | |
JPH08318121A (en) | Method for purifying inert gas | |
US3355859A (en) | Selective adsorption of gases at low temperature | |
CN210915955U (en) | Device for increasing combustion heat value of blast furnace gas | |
JP3462677B2 (en) | Isotope gas separation method using velocity separation type adsorbent | |
CN112062095A (en) | Double-air-passage mixed flow oxygen and nitrogen making machine | |
JPH02282682A (en) | Argon recoverying method | |
CN210134071U (en) | Device for increasing combustion heat value of blast furnace gas | |
CN210150733U (en) | Combined recovery device for carbon dioxide, nitrogen and oxygen in flue gas | |
CN205773347U (en) | A kind of air compressor machine nitrogen gas generating device | |
CN112357931A (en) | Method for synthesizing integral NaKA molecular sieve with controllable pore structure and application | |
CN213286118U (en) | Gas separation and purification device | |
JPH0531331A (en) | Separation of hydrogen isotope | |
CN210133891U (en) | Combined recovery device for carbon dioxide, nitrogen and oxygen in flue gas | |
CN115121135B (en) | Mixed matrix membrane, preparation method and application thereof, and space division nitrogen production device | |
CN112627287B (en) | Device and method for directly preparing liquid water from air |