JPS6223418B2 - - Google Patents
Info
- Publication number
- JPS6223418B2 JPS6223418B2 JP13641079A JP13641079A JPS6223418B2 JP S6223418 B2 JPS6223418 B2 JP S6223418B2 JP 13641079 A JP13641079 A JP 13641079A JP 13641079 A JP13641079 A JP 13641079A JP S6223418 B2 JPS6223418 B2 JP S6223418B2
- Authority
- JP
- Japan
- Prior art keywords
- field emission
- current
- needle
- metal
- monoatomic layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 37
- 239000002184 metal Substances 0.000 claims description 37
- 238000001179 sorption measurement Methods 0.000 claims description 25
- 239000013078 crystal Substances 0.000 claims description 17
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 15
- 229910001882 dioxygen Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 230000005684 electric field Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 description 24
- 239000010410 layer Substances 0.000 description 15
- 238000010894 electron beam technology Methods 0.000 description 13
- 239000010936 titanium Substances 0.000 description 11
- 239000000523 sample Substances 0.000 description 10
- 230000004075 alteration Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
Landscapes
- Cold Cathode And The Manufacture (AREA)
Description
この発明は針状に形成された尖針が陽極に対向
するように保持され、尖針から電子放出を行わせ
る電界放射陰極とその製造方法に関するものであ
る。
電界放射陰極は、針状の尖針に負電位を、対向
する陽極に正電位をそれぞれ相対的に印加するこ
とによつて、電子放射を行わせるが、このとき、
陽極を蛍光板スクリーンとすることによつて電界
放射電子像が得られる。この電界放射電子像は、
通常、その劣針を構成する金属等の結晶学的規則
性を反映した幾何学的模様を呈し、その像の現れ
る範囲を放射角で定義すると、それは劣針から発
するおよそ1rad.の領域にわたる。
しかし、電界放射陰極を実用に供する場合に
は、上記の如く広い放射角の極く一部分を用いて
いるにすぎない。以下、第1図に示す略図によつ
て説明する。第1図は電界放射陰極を用いた電子
銃における電子線収束光学系の一例を略図によつ
て示したものである。ヘアピン型のフイラメント
2の中央に溶接された針状の電界放射陰極尖針1
は第1陽極3に対して負の電圧が電源5によつて
印加され、その先端より電界放射によつて電子が
放出される。このとき放射された電子の広がり
は、放射角にして前述の如く1rad.程度である。
第1陽極3の絞り孔を通過した電子線は、第1陽
極3と第2陽極4との間に印加される電源6によ
る電位差によつて生ずる静電レンズ作用によつて
収束され、適当な収束面で微細な電子ビームスポ
ツトを提供する。あるいは更に磁気レンズ等を組
み合せて収束をくり返すことによつてさらに微細
な電子ビームスポツトとすることができる。この
時、収束電子ビームとして利用する放射電子は第
1陽極3の絞り孔で制限されているが、その理由
は以下による。静電レンズあるいは磁気レンズを
問わず、電子レンズには補正不可能な収差があ
り、その中で量的に大きい収差は球面収差であ
る。この収差量が大きいために、利用する電子線
が光軸の近傍に限られ、しかも球面収差係数を
Cs、電子線の開き角をαとするときCsα3なる
量が、収差に基くボケの量となる。したがつて収
差量を小さくして、微細な電子ビームを得るには
αを小さく領域に限らなければならない。実用の
装置ではα〓10-3rad.程度である。第1陽極3で
の電流密度分布が、仮に一様であるとするなら
ば、全電子放射の立体角(1sr)と絞り孔を通過
する電子線の立体角(πα2)の比が、電界放射
の全電流と、微細な電子ビームとして利用した電
流の割合となる。実際には、前述の如く、結晶性
の反映によつて第1陽極3での電流密度が一様で
はなく、また尖針1の軸方位を中心部分で電界放
射電子像の電流密度が高くなるように選択するた
め、上記の場合でおおよそ1000:1が全電流と利
用する電流の割合である。
一方、実用の装置では電子線収束はできるだけ
微細に、しかも電流(プローブ電流と呼ぶことに
する)は大きく引き出すことが要求される。例え
ば0.1μAのオーダーのプローブ電流を得ようと
すれば全放射電流として1mAのオーダーの電流
が必要となる。
他方、電界放射電流は一定真空度のもとでは、
電流値が小さい程安定であるが、電流値を大きく
する程、電流変動が大となり不安定となり易い。
また、一定電流を引き出すとき真空度が良い程、
電流は安定である。したがつて前述の要請によつ
て、大きい全放射電流を得ようとしても、電流変
動が大きくなるため、使用不可能な状態になる。
実際に、通常の真空容器で真空度が5×
10-10Torr程度であつたとしても100μAの電界放
射電流を長時間にわたつて安定に引き出す事は極
めて困難な事であり、したがつて、より大きなプ
ローブ電流を得ようとしても不可能であつた。
従つて、本発明の目的は安定でかつ大きなプロ
ーブ電流が取り出せる新規な電界放射陰極とその
製造方法を提供することにある。
この発明は、針状の電界放射陰極の劣針表面に
酸素ガス分子と金属原子のそれぞれの単一層を吸
着させることによつて、電子放射電子が、尖針の
結晶面のうちの特定結晶面の狭い領域に限られて
発生し易くなることに着目して為されたものであ
り、電界放射の放射角として1/4rad.程度かそれ
以下の領域のみに放射全電流を抑えることができ
るものである。以下この発明にかかる電界放射陰
極を詳細に説明する。
この発明に用いる針状陰極の材料としては、高
温の加熱によつて針状の尖針の形状をとどめ、尖
針の表面を清浄化することのできるタングステ
ン、モリブデン等の耐高温金属材料であり、電解
研磨によつて針状の尖針に加工することのできる
ものを用いる。該尖針の清浄表面に該尖針材料の
仕事関数より低い仕事関数をもつ金属でその酸化
物が耐高温酸化物を形成するもの、すなわち、尖
針がタングステン(W)、モリブデン(Mo)であ
れば、アルミニウム(Al)、クローム(Cr)、セ
リウム(Ce)、マグネシウム(Mg)、チタン
(Ti)、シリコン(Si)を、単原子層かそれ以上蒸
着する。次に酸素ガスを該尖針のある真空中に導
入し、尖針表面に酸素ガス分子の単分子層の吸着
が行われる程度曝気する。酸素ガスの場合この曝
気は1L(ラングミユア)程度に相当するから、
1×10-6Torrなら1秒、1×10-8Torrなら100秒
間の露出を行う。その後、酸素ガスを排気し、電
界放射を行える真空雰囲気にて、上記蒸着物質に
よつて異なるが、1300〜1500℃の温度にて、10〜
60秒間尖針を加熱処理することによつて本発明の
尖針を形成することができる。このようにして製
作した針状陰極の電界放射電子像は、W、Mo等
の尖針では、主として(100)面からのみ電子放
射し、1/4rad.程度に放射角の縮小された電界放
射電子像が得られる。
本発明の原理については、尖針の先端曲率半径
が1000Å程度の微小な領域でしかも原子あるいは
分子についての単一層程度の吸着であつて、尖針
の結晶面依存性のある問題なので詳細について未
だ明らかでない部分もあるが、基本的には次のよ
うに考えられる。
簡単のため尖針材料としてWを考えるとき、こ
のW表面にWより仕事関数の低い物質を蒸着して
いくときの表面での仕事関数変化は第2図に示す
如くWの仕事関数(φW)に対して蒸着金属の厚
さがおよそ0.7単原子層程度のとき仕事関数が最
低値をもち以後再び大きくなり、単原子層以上で
ほぼ飽和し、その値は蒸着金属の仕事関数(φ
M)に漸近することが知られている。これは、W
表面の表面電位が蒸着金属の吸着によつて変化す
るためであり一般に次のように理解される。
W表面で起こる現象は、多数の表面原子と吸着
原子の結合からなる多体問題であるが、近似的に
1個の表面原子と1個の吸着原子との結合として
考える。表面原子と吸着原子との間に生ずる電気
双極子モーメントμは電気陰性度の概念を用い
て、Malone(1)によつて次のように表せる。
μ=χad−χp (1)
ここでχadは蒸着金属の、χpはWのそれぞれ
電気陰性度とする。一方、電気陰性度χpと仕事
関数φの間にはGordy−Thomasの関係式(2)があ
り、次のように表せる。
χp=0.44φ−0.15 (2)
吸着によつてうける仕事関数変化Δφは、上記
双極子モーメントμの大きさと、単位面積あたり
の吸着原子数nに比例するから
Δφ=2πμn=2πn(χad−χp) (3)
と表せる(3)。よつて第2図の如き仕事関数の変
化は、吸着の効果が陽に現れる単原子層程度まで
は、Wより仕事関数の小さい、すなわち電気陰性
度の小なる金属を蒸着することによつて生ずるこ
とがわかる。単原子層の吸着が行なわれること
は、W表面の原子密度に見合つた吸着が行われる
ことであり、単原子層以上の吸着では(3)式のnが
増大しない。また0.7〜1原子層の間で最小値を
もつことは、W表面上で拡散できる吸着原子の自
由度がある程度大きいことが電気双極子(モーメ
ントμ)を大きくすると推定できる。
次に、金属以外に酸素ガス分子も吸着した場合
を考える。第3図aに示した如く先にW表面に金
属Mを蒸着し、後から酸素ガスO2分子を吸着さ
せたとしても、蒸着金属Mの酸素ガスO2に対す
る反応の活性度によつて異なるが、そのままの状
態か、あるいは僅かな加熱によつて、通常の酸化
と似たような化学吸着反応により、模型的に第3
図bに示す如く酸素原子O(分子)はWと蒸着金
属Mの間に配置すると推定できる。この反応は、
酸化に対して活性な金属ほど室温に近い状態で起
こり易い。ただし第3図bは全く模型であり、結
合の詳細に関しては不明である。
前記金属のみの吸着とは異なり第3図bの模型
のような配置となれば、その時受ける仕事関数変
化は、双極子モーメントの大きさからいつて更に
大きくなると予測できる。吸着金属原子のイオン
半径をrM、酸素原子のイオン半径又は共有結合
半径をrGとするとき、おおよそのΔφとして次
式を仮定する。
Δφ=2πn(χad−χp)rG+rM/rG (4)
rGとrMが同等の値をもつとすれば、Δφは金
属原子の吸着の場合のほぼ2倍の値が予想され
る。
針状の尖針は、例え多結晶を用いたとしてもわ
ずか1000Å程度の曲率半径の擬球面の領域では、
加熱によるグレイン成長によつて、1つの大きな
グレインに含まれている。すなわち尖針表面は如
何なる場合でも単結晶表面とみなせる。Wの仕事
関数は良く知られているように各結晶面によつて
異なつており、したがつて上記φ、あるいはχp
も厳密には結晶面によつてφhkl、χhklと標示し
なければならない。第1表に例としていくつかの
結晶面に対する値を示す。第3図bに示すような
W−O−Mの吸着が起こつたとき、その仕事関数
変化が、各結晶面で一様に起きるなら、吸着後も
その電界放射電子像の分布には変化がなく、単に
引き出し電界が下がるだけであるが、(4)式に示す
ような仕事関数変化をするとき、明らかに電界放
射電子像の分布は異なつてくる。また(4)式のnの
値として酸素と金属の単一層が吸着するとき、W
の各結晶面での吸着確率が1であるとすれば、n
は各結晶面の表面での原子密度をとり、第1表に
示す値をもつ。これらの値をもとに吸着金属とし
てCe、Tiの場合の計算例は第1表に示すように
なる。尚rGとしては酸素のイオン半径をとつ
た。
The present invention relates to a field emission cathode in which a point formed in the shape of a needle is held so as to face an anode and electrons are emitted from the point, and a method for manufacturing the same. The field emission cathode emits electrons by applying a negative potential to the needle-like point and a positive potential to the opposing anode, but at this time,
A field emission electron image can be obtained by using a fluorescent screen as the anode. This field emission electron image is
Usually, it exhibits a geometric pattern that reflects the crystallographic regularity of the metals that make up the inferior needle, and if the range in which the image appears is defined in terms of radiation angle, it covers an area of approximately 1 rad. from the inferior needle. However, when the field emission cathode is put to practical use, only a small portion of the wide emission angle as described above is used. The following description will be made with reference to the schematic diagram shown in FIG. FIG. 1 schematically shows an example of an electron beam focusing optical system in an electron gun using a field emission cathode. A needle-shaped field-emitting cathode needle 1 welded to the center of a hairpin-shaped filament 2
A negative voltage is applied to the first anode 3 by a power source 5, and electrons are emitted from its tip by field emission. The spread of the emitted electrons at this time is about 1 rad. in terms of radiation angle, as described above.
The electron beam that has passed through the aperture of the first anode 3 is focused by an electrostatic lens effect caused by the potential difference caused by the power source 6 applied between the first anode 3 and the second anode 4, and Provides a fine electron beam spot on the converging surface. Alternatively, by repeating convergence by combining a magnetic lens or the like, an even finer electron beam spot can be obtained. At this time, the emitted electrons used as the focused electron beam are restricted by the aperture of the first anode 3, and the reason for this is as follows. Regardless of whether it is an electrostatic lens or a magnetic lens, electronic lenses have aberrations that cannot be corrected, and among these aberrations, the quantitatively largest aberration is spherical aberration. Because of this large amount of aberration, the electron beam used is limited to the vicinity of the optical axis, and the spherical aberration coefficient
Cs, and when α is the aperture angle of the electron beam, the amount Csα3 is the amount of blur based on aberration. Therefore, in order to reduce the amount of aberration and obtain a fine electron beam, α must be limited to a small area. In a practical device, α is about 10 -3 rad. Assuming that the current density distribution at the first anode 3 is uniform, the ratio of the solid angle of the total electron radiation (1sr) to the solid angle of the electron beam passing through the aperture (πα 2 ) is This is the ratio of the total radiation current to the current used as a fine electron beam. In reality, as mentioned above, the current density at the first anode 3 is not uniform due to the crystallinity, and the current density in the field emission electron image is higher in the center of the axial direction of the pointed needle 1. Therefore, in the above case, the ratio of the total current to the current to be used is approximately 1000:1. On the other hand, in a practical device, it is required to converge the electron beam as finely as possible and draw out a large current (referred to as probe current). For example, in order to obtain a probe current on the order of 0.1 μA, a total radiation current on the order of 1 mA is required. On the other hand, the field emission current under a constant degree of vacuum is
The smaller the current value is, the more stable it is, but the larger the current value is, the larger the current fluctuation becomes, making it more likely to become unstable.
Also, the better the degree of vacuum when drawing a constant current, the better
The current is stable. Therefore, even if an attempt is made to obtain a large total radiation current due to the above-mentioned requirements, current fluctuations will become large, making the device unusable.
In fact, in a normal vacuum container, the degree of vacuum is 5×
Even if the current is about 10 -10 Torr, it is extremely difficult to draw out a field emission current of 100 μA stably over a long period of time, and therefore it is impossible to obtain a larger probe current. Ta. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a novel field emission cathode from which a stable and large probe current can be extracted, and a method for manufacturing the same. In this invention, by adsorbing a single layer of each of oxygen gas molecules and metal atoms on the inferior needle surface of a needle-shaped field emission cathode, electron emitted electrons can This was done by focusing on the fact that the electric field radiation tends to occur only in a narrow area, and the total radiation current can be suppressed only in the area where the radiation angle of the electric field radiation is about 1/4 rad. or less. It is. The field emission cathode according to the present invention will be explained in detail below. The material of the needle-like cathode used in this invention is a high-temperature-resistant metal material such as tungsten or molybdenum, which can maintain the shape of the needle-like point and clean the surface of the point by heating at high temperature. A material that can be processed into a needle-like point by electrolytic polishing is used. The clean surface of the point is made of a metal whose oxide has a work function lower than the work function of the point material and whose oxide forms a high temperature resistant oxide, that is, the point is made of tungsten (W) or molybdenum (Mo). If available, deposit a monoatomic layer or more of aluminum (Al), chromium (Cr), cerium (Ce), magnesium (Mg), titanium (Ti), and silicon (Si). Next, oxygen gas is introduced into the vacuum where the needle is located, and aerated to an extent that a monomolecular layer of oxygen gas molecules is adsorbed on the surface of the needle. In the case of oxygen gas, this aeration is equivalent to about 1L (Langmiure), so
Exposure is for 1 second at 1×10 -6 Torr and 100 seconds at 1×10 -8 Torr. After that, the oxygen gas is evacuated, and in a vacuum atmosphere where electric field radiation can be performed, the temperature is 1300 to 1500℃, depending on the vapor deposition material, for 10 to 10 minutes.
The needle points of the present invention can be formed by heat-treating the needle points for 60 seconds. The field emission electron image of the needle-shaped cathode produced in this way shows that for the needles made of W, Mo, etc., electrons are mainly emitted only from the (100) plane, and the field emission is reduced to about 1/4 rad. An electronic image is obtained. Regarding the principle of the present invention, since the radius of curvature of the tip of the needle is a minute region of about 1000 Å, and the adsorption of atoms or molecules is about a single layer, the problem is dependent on the crystal plane of the needle, so the details are still unknown. Although some parts are not clear, the basic idea is as follows. For the sake of simplicity, when considering W as a point material, the change in work function on the W surface when a substance with a lower work function than W is deposited on the W surface is expressed as the work function of W (φ W ), the work function reaches its lowest value when the thickness of the deposited metal is about 0.7 monoatomic layer, then increases again, and becomes almost saturated above a monoatomic layer, and that value is equal to the work function of the deposited metal (φ
M ) is known to be asymptotic. This is W
This is because the surface potential of the surface changes due to the adsorption of vapor-deposited metal, and is generally understood as follows. The phenomenon that occurs on the W surface is a many-body problem consisting of bonds between a large number of surface atoms and adatoms, but it can be approximated as a bond between one surface atom and one adatom. The electric dipole moment μ generated between a surface atom and an adatom can be expressed as follows by Malone (1) using the concept of electronegativity. μ=χ ad −χ p (1) Here, χ ad is the electronegativity of the deposited metal, and χ p is the electronegativity of W. On the other hand, there is a Gordy-Thomas relational expression (2) between electronegativity χ p and work function φ, which can be expressed as follows. χ p =0.44φ−0.15 (2) Since the work function change Δφ caused by adsorption is proportional to the magnitude of the dipole moment μ and the number n of adatoms per unit area, Δφ=2πμn=2πn(χ ad −χ p ) (3) (3) Therefore, the change in work function as shown in Figure 2 is caused by depositing a metal with a smaller work function than W, that is, a metal with smaller electronegativity, up to the level of a monoatomic layer where the effect of adsorption becomes apparent. I understand that. Adsorption of a monoatomic layer means that adsorption is performed commensurate with the atomic density of the W surface, and n in equation (3) does not increase with adsorption of a monoatomic layer or more. Moreover, the fact that the minimum value is between 0.7 and 1 atomic layer suggests that the electric dipole (moment .mu.) increases because the degree of freedom of adatoms that can diffuse on the W surface is large to some extent. Next, consider the case where oxygen gas molecules are also adsorbed in addition to metals. As shown in Figure 3a, even if metal M is first vapor-deposited on the W surface and oxygen gas O 2 molecules are adsorbed afterwards, the reaction activity of the vapor-deposited metal M with respect to oxygen gas O 2 will differ. However, when left as is or by slight heating, a chemical adsorption reaction similar to normal oxidation causes tertiary oxidation.
As shown in FIG. b, it can be assumed that oxygen atoms O (molecules) are arranged between W and the deposited metal M. This reaction is
The more active the metal is against oxidation, the more likely it is to occur at temperatures close to room temperature. However, FIG. 3b is only a model, and the details of the connection are unknown. Unlike the case where only metal is adsorbed, if the arrangement is as shown in the model shown in FIG. 3b, the work function change experienced at that time can be predicted to be even larger due to the magnitude of the dipole moment. When the ionic radius of the adsorbed metal atom is r M and the ionic radius or covalent bond radius of the oxygen atom is r G , the following equation is assumed as the approximate Δφ. Δφ=2πn(χ ad −χ p )r G +r M /r G (4) If r G and r M have the same value, Δφ is almost twice the value in the case of adsorption of metal atoms. is expected. Even if a polycrystalline material is used, the needle-like point has a pseudospherical surface with a radius of curvature of only about 1000 Å.
Contained into one large grain due to grain growth due to heating. In other words, the needle surface can be regarded as a single crystal surface in any case. As is well known, the work function of W differs depending on each crystal plane, and therefore the above φ or χ p
Strictly speaking, they must also be labeled as φ hkl and χ hkl depending on the crystal plane. Table 1 shows values for some crystal planes as examples. When adsorption of W-O-M occurs as shown in Figure 3b, if the work function change occurs uniformly on each crystal plane, there will be no change in the distribution of the field emission electron image even after adsorption. The extraction electric field simply decreases, but when the work function changes as shown in equation (4), the distribution of the field emission electron image clearly changes. Also, as the value of n in equation (4), when a single layer of oxygen and metal is adsorbed, W
If the adsorption probability on each crystal plane of is 1, then n
is the atomic density at the surface of each crystal plane, and has the values shown in Table 1. Based on these values, calculation examples for Ce and Ti as adsorbed metals are shown in Table 1. Note that r G is the ionic radius of oxygen.
【表】
この計算結果は、(110)面が最も低い仕事関数
をもち、次に(100)面が低い。これはWの場合
主として(100)面に放射電子像が限られる事実
と反するが、その理由は次による。上で、各結晶
面での吸着確率が1として表面の原子密度をnと
して計算したが、実際には吸着確率には結晶面に
よつて差があると思われる。すなわち、(110)面
はW結晶の中で最も熱的に安定な面であり、針状
の尖針とすれば最も平坦で広い表面を有する。こ
のような表面では吸着確率が小さくなることが知
られており、このため、実際には(110)面の仕
事関数は第1表の値程低くなつていないことが予
想される。他の面についてはそれほどの表面積の
差はない。以上の理由によつて、W尖針上では、
Wより低い仕事関数の金属と酸素からなる単一層
の吸着を行うとき放射電子像が、主として
(100)面に限られることが、半定量的に理解され
る。尚第1表の吸着後の(100)面での仕事関数
は、電界放射のFowler−Nordheimプロツトによ
つて実験的に求めた値と良く一致している。
これらの現象は、Wよりわずかに低い仕事関数
をもつMoに対しても全く同等であり、更に他の
金属であつても放射電子像の現れる結晶面が異な
る場合もあるが、放射電子像が特定の結晶面に制
限される点では同様である。
また本発明の吸着金属と酸素からなる単一層
は、X線励起光電子分光法等の表面分析装置での
分析結果によつて明らかに化学的結合をしてお
り、化学吸着である。すなわち、単原子層金属の
一種の酸化とみなせるが、単原子層以上の吸着金
属を蒸着して酸化した場合には、仕事関数は逆に
増大し、非常に高い電界を印加しなければ電子を
放射できなくなる。したがつて、本発明による吸
着金属と酸素からなる単一層は、尖針表面に通常
の酸化物からなる薄膜が構成された場合とは大き
く異なる。
以下、実施例により具体的に説明する。第4図
は本発明になる電界放射陰極の1つの実施例を示
す。ガラスベース7に固定されたコバール製のス
テム14に溶接固定された直径0.15mmのヘアピン
型のタングステン線2の中央に溶接された直径
0.15mmの軸方位<100>の単結晶をNaOH水溶液
にて電界研磨して作製した尖針1をヘアピン型の
タングステン線2に通電することによつて超高真
空容器中で瞬間高温加熱して表面清浄化してお
く。このとき陽極として蛍光板11を用いると第
5図aに示すような(100)面を中心とするW清
浄表面の電界放射電子像が得られる。同図におい
て暗い部分は電流密度が小さく、以下横線、斜
線、白い部分の順に密度が高いことを示す。この
電子像の見える領域が放射角として第1図に示し
た約1rad.(立体角で1sr)の開き角に相当してい
る。尖針1に対して約5mm陽極側に直径10〜15mm
の円形状に成形した直径0.3mmのTi線8に電源1
2を用いて通電して1400〜1500℃に加熱し、尖針
1に対してTiを蒸発する。蒸着量の制御を行う
には次の操作による。尖針1に高電圧を電源5に
よつて印加して陽極の蛍光板11でうける電流が
0.1μA程度となるようにし、Tiの蒸着と共に第
2図の説明の如く下がる仕事関数によつて電流値
は増大し、第2図の仕事関数と全く逆の傾向で第
6図に示す如く最大値を持つた後、一定値に近づ
く。最大値を持つところを0.7単原子層とみなす
か、あるいは第6図の変曲点から直接単原子層を
知ることができる。Tiの蒸着量は最小単原子層
とする。過多な蒸着は後で蒸発によつて減少でき
る。その後、前出の如く酸素ガスを導入し最低1
ラングミユア程度の曝気を行う。酸素ガスを排気
し、もとの真空度に回復させた後Wフイラメント
2に電源13を用いて通電し尖針1を加熱する。
加熱温度と時間はTi蒸着量、酸素ガス曝気量に
より異なるが1300〜1500℃の範囲で10〜60秒間加
熱すれば良い。1300℃未満であつてもより長時間
加熱すれば同等の処理となるが非能率的である。
また熱処理の効果は800℃未満ではほとんどない
ので800℃以上で行なわねばならない。また、
1500℃では60秒間を超えて加熱すると本発明にな
る吸着層が破壊される。なお、上述の製造工程に
おいて、酸素ガスで曝気を行なつた後、フイラメ
ント2に通電して尖針1を適当な温度に加熱する
ことによつて一層酸化を促進できる。このように
処理して作製された電界放射陰極の電界放射電子
像を第5図bに示す。第5図aの清浄表面の電子
像では中心の(100)面の電流密度が非常に小さ
いのに対して同図bでは(100)面を中心とした
スポツト状に限られた電子像を示す。放射角は電
子像の分布と対応するから第5図が1rad.とすれ
ば同図bは1/5rad.程度の放射角である。
第4図において他の実施例は、Ti線8の代り
に直径0.1〜0.3mmのW線等からなるヒータ9に
Al、Mg、Ce、Si、Crの蒸着金属10を予め溶融
させて用いる場合である。蒸着量の制御は、Ti
線の場合と同様には出来ないが、蒸着金属の温度
を正確に測定して蒸気圧の値からおおよそ単原子
層の蒸着を行う。他の処理は前述の実施例と同等
である。
上記の如き実施例によつて得られた放射電子像
は、1/4〜1/5rad.程度かそれ以下の放射角を与
え、プローブ電流に対する全放射電流の効率が非
常に良く、且つ全放射電流を大きくすることな
く、従来困難であつた大きなブローブ電流を得る
ことができる。電子線装置への実施例では、第1
図の開き角αがおよそ1×10-3rad.でプローブ電
流0.1μAを引き出すとき、全放射電流は30μA
で良いのに対して、通常のW、Moの全放射電流
とプローブ電流の比率が最も大きくとれる軸方位
<310>の尖針を用いた場合には、同じプローブ
電流を引き出すのにおよそ1mAの全放射電流を
必要とする。電界放射陰極で1mAという全放射
電流を安定に引き出すことは、特に電子顕微鏡、
電子線描画装置等の汎用の装置においては電子銃
室の超高真空化にも限度があるため、非常に困難
である。
これに対して本発明の陰極では上記の比較の如
く、従来困難であつた大きいプローブ電流も容易
に得られる。
本発明で用いる尖針は、主としてW、Moであ
るが、電界放射陰極としての適性を具備すれば、
他の材料であつても次に述べる吸着金属との組み
合せで使用できる。
吸着金属として使用できる条件は、(i)尖針材料
より低い仕事関数をもつこと、耐高温性の考慮か
ら、酸素との結合を酸化と同等とみなせば、(ii)該
吸着金属の酸化物は耐高温性であること、そして
(iii)吸着処理について、実施例で示したようなでき
るだけ簡易な方法で吸着を行えること、等であ
る。
尚、本発明の尖針は、W、Mo等の何ら処理を
施していない尖針と比較して仕事関数が低いた
め、室温で用いる場合、放射電流の減衰量が大き
くなる。この影響を含む電流のドリフト量を小さ
くするため、本発明の尖針を750〜1000℃に加熱
して用いると長時間にわたつて安定な電流特性を
得ることができる。上記温度範囲は、(i)真空中残
留ガス分子の尖針への吸着によつてうける電流の
減衰量に対して、すなわち、減衰が一定値で飽和
するようにして加熱温度の下限が定まり、一方、
(ii)本発明の吸着金属と酸素からなる単一層が熱的
に分解しないように加熱温度の上限が定まる。
本発明をW、Moについて用いるとき、実施例
で述べた如く、軸方位<100>の単結晶を用いれ
ば、放射角の中心と光軸が一致し実用上非常に便
利であるが、目的によつては軸方位が<310>の
放射角の中心がやや光軸からずれる場合でも使用
可能である。
参考文献
(1) J.G.Malone:J.Chem.Phys.29(1958)、
1154.
(2) W.Gordy and W.J.O.Thomas:J.Chem.
Phys.24(1956)439.
(3) L.W.Swanson and A.E.Bell:Advances in
Electronics and Electron Physics 32、
(1973)285.[Table] This calculation result shows that the (110) plane has the lowest work function, followed by the (100) plane. This is contrary to the fact that in the case of W, the emitted electron image is mainly limited to the (100) plane, but the reason is as follows. In the above calculation, the adsorption probability on each crystal plane is assumed to be 1, and the atomic density on the surface is set to n, but in reality, it is thought that the adsorption probability differs depending on the crystal plane. That is, the (110) plane is the most thermally stable plane in a W crystal, and if it is made into a needle-like point, it has the flattest and widest surface. It is known that the probability of adsorption is small on such a surface, and therefore, it is expected that the work function of the (110) surface is actually not as low as the values shown in Table 1. There is no significant difference in surface area on other surfaces. For the above reasons, on the W point needle,
It is semi-quantitatively understood that when a single layer consisting of oxygen and a metal with a lower work function than W is adsorbed, the emitted electron image is mainly limited to the (100) plane. The work functions on the (100) plane after adsorption in Table 1 are in good agreement with the values experimentally determined by the Fowler-Nordheim plot of field emission. These phenomena are exactly the same for Mo, which has a slightly lower work function than W, and even for other metals, the crystal plane on which the radiated electron image appears may be different, but the radiated electron image is They are similar in that they are restricted to specific crystal planes. Furthermore, the single layer of the adsorbed metal and oxygen of the present invention is clearly chemically bonded as determined by analysis results using a surface analyzer such as X-ray excitation photoelectron spectroscopy, which indicates chemisorption. In other words, it can be regarded as a type of oxidation of a monoatomic layer metal, but when a monoatomic layer or more of an adsorbed metal is evaporated and oxidized, the work function increases, and unless a very high electric field is applied, electrons cannot be oxidized. It becomes impossible to emit radiation. Therefore, the single layer of adsorbed metal and oxygen according to the present invention is significantly different from a case where a thin film of an ordinary oxide is formed on the surface of the needle. Hereinafter, this will be explained in detail using examples. FIG. 4 shows one embodiment of a field emission cathode according to the invention. A hairpin-shaped tungsten wire 2 with a diameter of 0.15 mm is welded to the center of the stem 14 made of Kovar and fixed to the glass base 7.
A pointed needle 1 made by electropolishing a 0.15 mm single crystal with an axial orientation of <100> using an aqueous NaOH solution is instantaneously heated to a high temperature in an ultra-high vacuum container by applying electricity to a hairpin-shaped tungsten wire 2. Clean the surface. At this time, if the fluorescent screen 11 is used as an anode, a field emission electron image of the W-cleaned surface centered on the (100) plane as shown in FIG. 5a can be obtained. In the figure, the dark areas have low current densities, and the horizontal lines, diagonal lines, and white areas indicate higher densities in this order. The area where this electron image is visible corresponds to the radiation angle of about 1 rad. (1 sr in solid angle) shown in Figure 1. Approximately 5 mm to the needle 1, diameter 10 to 15 mm on the anode side
A power source 1 is connected to a Ti wire 8 with a diameter of 0.3 mm formed into a circular shape.
2 and heated to 1400 to 1500°C to evaporate Ti to the point needle 1. The amount of vapor deposition can be controlled by the following operation. When a high voltage is applied to the point needle 1 by the power source 5, the current received by the fluorescent screen 11 of the anode is
The current value was set to about 0.1 μA, and as the Ti was deposited, the current value increased due to the decreasing work function as explained in Figure 2, and reached the maximum value as shown in Figure 6, with a tendency completely opposite to the work function in Figure 2. After having a value, it approaches a constant value. The point with the maximum value can be regarded as the 0.7 monoatomic layer, or the monoatomic layer can be determined directly from the inflection point in Figure 6. The amount of Ti deposited is a minimum monoatomic layer. Excessive deposition can be reduced later by evaporation. After that, as mentioned above, introduce oxygen gas for at least 1 hour.
Perform aeration to the level of langumiure. After exhausting the oxygen gas and restoring the original degree of vacuum, the W filament 2 is energized using the power source 13 to heat the needle 1.
The heating temperature and time vary depending on the amount of Ti evaporated and the amount of oxygen gas aeration, but heating may be performed for 10 to 60 seconds in the range of 1300 to 1500°C. Even if the temperature is less than 1300°C, heating for a longer time will result in the same treatment, but it will be inefficient.
Furthermore, since heat treatment has little effect at temperatures below 800°C, it must be carried out at temperatures above 800°C. Also,
If heated for more than 60 seconds at 1500°C, the adsorption layer of the present invention will be destroyed. In the above manufacturing process, oxidation can be further promoted by aerating with oxygen gas and then heating the point 1 to an appropriate temperature by applying electricity to the filament 2. FIG. 5b shows a field emission electron image of the field emission cathode prepared in this manner. In the electron image of the clean surface in Figure 5a, the current density on the central (100) plane is very small, whereas in Figure 5b, the electron image is limited to a spot centered on the (100) plane. . The radiation angle corresponds to the distribution of the electron image, so if Fig. 5 is 1 rad., the radiation angle in Fig. 5b is about 1/5 rad. In FIG. 4, another embodiment uses a heater 9 made of a W wire or the like with a diameter of 0.1 to 0.3 mm instead of the Ti wire 8.
This is a case where the vapor-deposited metals 10 of Al, Mg, Ce, Si, and Cr are melted in advance and used. The amount of evaporation can be controlled using Ti.
Although it cannot be done in the same way as with a wire, it is possible to accurately measure the temperature of the deposited metal and determine the vapor pressure to approximately evaporate a monoatomic layer. Other processing is the same as in the previous embodiment. The radiation electron image obtained by the above embodiment gives a radiation angle of about 1/4 to 1/5 rad. or less, and the efficiency of the total radiation current with respect to the probe current is very good, and the total radiation A large probe current, which has been difficult to obtain in the past, can be obtained without increasing the current. In the embodiment for the electron beam device, the first
When the opening angle α in the figure is approximately 1×10 -3 rad. and the probe current is 0.1 μA, the total radiation current is 30 μA.
On the other hand, when using a point needle with the axial direction <310> where the ratio of the total radiation current and probe current of normal W or Mo is the largest, it takes about 1 mA to draw out the same probe current. Requires total radiated current. Stably drawing out a total emission current of 1 mA with a field emission cathode is particularly important for electron microscopes,
In general-purpose equipment such as electron beam lithography equipment, there is a limit to creating an ultra-high vacuum in the electron gun chamber, so it is extremely difficult to do so. On the other hand, with the cathode of the present invention, as in the above comparison, a large probe current, which has been difficult in the past, can be easily obtained. The point used in the present invention is mainly made of W or Mo, but if it has suitability as a field emission cathode,
Other materials can also be used in combination with the adsorbed metals described below. The conditions under which it can be used as an adsorbed metal are: (i) It must have a lower work function than the pointed material, and if the bonding with oxygen is considered to be equivalent to oxidation, considering high temperature resistance, (ii) The oxide of the adsorbed metal be high temperature resistant, and
(iii) With regard to adsorption processing, adsorption can be performed using the simplest possible method as shown in the examples. In addition, since the point needle of the present invention has a lower work function than the point needle which is not subjected to any treatment such as W or Mo, the amount of attenuation of the radiation current increases when used at room temperature. In order to reduce the amount of current drift including this effect, stable current characteristics can be obtained over a long period of time by heating the point needle of the present invention to 750 to 1000°C. The above temperature range is determined by (i) the lower limit of the heating temperature with respect to the amount of attenuation of the current caused by the adsorption of residual gas molecules in vacuum to the needle, that is, the attenuation is saturated at a constant value; on the other hand,
(ii) The upper limit of the heating temperature is determined so that the single layer consisting of the adsorbed metal and oxygen of the present invention does not thermally decompose. When using the present invention for W and Mo, as described in the examples, if a single crystal with an axial orientation of <100> is used, the center of the radiation angle and the optical axis coincide, which is very convenient in practice. Therefore, it can be used even when the center of the radiation angle with an axial orientation of <310> is slightly shifted from the optical axis. References (1) JGMalone: J.Chem.Phys. 29 (1958),
1154. (2) W. Gordy and WJOTomas: J. Chem.
Phys. 24 (1956) 439. (3) LWSwanson and AEBell: Advances in
Electronics and Electron Physics 32 ,
(1973) 285.
第1図は電界放射陰極を用いた電子銃における
電子線収束光学系の構成図、第2図は吸着量と仕
事関数との関係を示すグラフ、第3図a,bは吸
着状態を説明するための模式図、第4図は本発明
による電界放射陰極の製造工程の説明図、第5図
a,bは本発明による電界放射陰極の電界放射電
子像を説明するための模式図、第6図は本発明に
よる電子放射陰極の吸着量と電界放射電流との関
係を示すグラフである。
1……尖針、2……フイラメント、3……第1
陽極、4……第2陽極、5,6,12,13……
直流電源、8……Ti線ループ、9……ヒータ
ー、10……蒸着金属、11……蛍光板。
Figure 1 is a configuration diagram of an electron beam focusing optical system in an electron gun using a field emission cathode, Figure 2 is a graph showing the relationship between adsorption amount and work function, and Figures 3a and b explain the adsorption state. FIG. 4 is an explanatory diagram of the manufacturing process of the field emission cathode according to the present invention, FIGS. 5 a and b are schematic diagrams for explaining the field emission electron image of the field emission cathode according to the present invention, and FIG. The figure is a graph showing the relationship between the adsorption amount of the electron emitting cathode and the field emission current according to the present invention. 1... point needle, 2... filament, 3... first
Anode, 4... Second anode, 5, 6, 12, 13...
DC power supply, 8... Ti wire loop, 9... heater, 10... evaporated metal, 11... fluorescent plate.
Claims (1)
金属の単結晶からなる針状陰極の少なくとも電子
が放射される領域の表面にCr、Al、Ce、Mg、
Ti、Siからなる群から選択した少なくとも1つの
金属を酸素を介して単原子層を超えない厚さで吸
着させたことを特徴とする電界放射陰極。 2 上記単結晶の結晶軸方位が<100>あるいは
<310>であることを特徴とする特許請求の範囲
第1項記載の電界放射陰極。 3 電界放射を行ない得る真空雰囲気中におい
て、WおよびMoからなる群から選択した1つの
金属の単結晶からなる針状陰極の少なくとも電子
が放射される領域の表面にCr、Al、Ce、Mg、
Ti、Siからなる群から選択した少なくとも1つの
金属をほぼ単原子層の厚さで蒸着する蒸着工程
と、その後、上記真空雰囲気中に適量の酸素ガス
を導入して上記金属単原子層上にほぼ単分子層の
厚さの酸素ガスを吸着させる吸着工程と、その
後、上記酸素ガスを排気して上記電界放射を行な
い得る真空雰囲気に戻す排気工程と、その後、上
記針状陰極を1300〜1500℃の温度範囲で10〜60秒
間の加熱を行なう熱処理工程とを具備してなる上
記金属を酸素を介して単原子層を越えない厚さで
吸着させた電界放射陰極の製造方法。 4 上記吸着工程後に上記針状陰極を適当な温度
に加熱する加熱工程を経由してから上記排気工程
を行なうことを特徴とする特許請求の範囲第3項
記載の電界放射陰極の製造方法。[Claims] 1. Cr, Al, Ce, Mg,
A field emission cathode characterized in that at least one metal selected from the group consisting of Ti and Si is adsorbed via oxygen to a thickness not exceeding a monoatomic layer. 2. The field emission cathode according to claim 1, wherein the crystal axis orientation of the single crystal is <100> or <310>. 3. In a vacuum atmosphere where field emission can occur, Cr, Al, Ce, Mg,
A vapor deposition step of depositing at least one metal selected from the group consisting of Ti and Si to a thickness of approximately a monoatomic layer, and then introducing an appropriate amount of oxygen gas into the vacuum atmosphere to deposit the metal monoatomic layer on the metal monoatomic layer. An adsorption step in which oxygen gas is adsorbed to a thickness of approximately a monomolecular layer, followed by an evacuation step in which the oxygen gas is evacuated and returned to a vacuum atmosphere in which the electric field emission can be performed; A method for producing a field emission cathode in which the above metal is adsorbed via oxygen to a thickness not exceeding a monoatomic layer, the method comprising a heat treatment step of heating in a temperature range of 10 to 60 seconds at a temperature of .degree. 4. The method of manufacturing a field emission cathode according to claim 3, wherein after the adsorption step, the evacuation step is performed after passing through a heating step of heating the needle cathode to an appropriate temperature.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13641079A JPS5661733A (en) | 1979-10-24 | 1979-10-24 | Field emission cathode and its manufacture |
DE19803039283 DE3039283A1 (en) | 1979-10-19 | 1980-10-17 | FIELD EMISSION CATHODE AND METHOD FOR THEIR PRODUCTION |
US06/198,176 US4379250A (en) | 1979-10-19 | 1980-10-17 | Field emission cathode and method of fabricating the same |
NL8005772A NL8005772A (en) | 1979-10-19 | 1980-10-20 | FIELD EMISSION CATHOD AND METHOD FOR MANUFACTURING SUCH A CATHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13641079A JPS5661733A (en) | 1979-10-24 | 1979-10-24 | Field emission cathode and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5661733A JPS5661733A (en) | 1981-05-27 |
JPS6223418B2 true JPS6223418B2 (en) | 1987-05-22 |
Family
ID=15174504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13641079A Granted JPS5661733A (en) | 1979-10-19 | 1979-10-24 | Field emission cathode and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5661733A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01247877A (en) * | 1988-03-30 | 1989-10-03 | Aisin Seiki Co Ltd | Electromagnetic pressure control valve |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5971232A (en) * | 1982-10-14 | 1984-04-21 | Natl Inst For Res In Inorg Mater | Surface oxidation carbide field emitter |
JPH0782803B2 (en) * | 1983-10-07 | 1995-09-06 | 株式会社日立製作所 | Thermal field emission cathode and its application equipment |
JPS6086728A (en) * | 1983-10-19 | 1985-05-16 | Natl Inst For Res In Inorg Mater | Field emitter |
JP2678757B2 (en) * | 1988-01-18 | 1997-11-17 | キヤノン株式会社 | Electron emitting device and method of manufacturing the same |
JP3080142B2 (en) * | 1996-05-10 | 2000-08-21 | 日本電気株式会社 | Method of manufacturing field emission cold cathode |
JP4543129B2 (en) * | 2004-11-04 | 2010-09-15 | 学校法人早稲田大学 | Electron beam source for electron optical device and manufacturing method thereof |
US7888654B2 (en) | 2007-01-24 | 2011-02-15 | Fei Company | Cold field emitter |
JP5173516B2 (en) * | 2008-03-26 | 2013-04-03 | 学校法人早稲田大学 | Electron source and electron source manufacturing method |
JP5363413B2 (en) * | 2010-05-10 | 2013-12-11 | 電気化学工業株式会社 | Electron source |
US8736170B1 (en) | 2011-02-22 | 2014-05-27 | Fei Company | Stable cold field emission electron source |
-
1979
- 1979-10-24 JP JP13641079A patent/JPS5661733A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01247877A (en) * | 1988-03-30 | 1989-10-03 | Aisin Seiki Co Ltd | Electromagnetic pressure control valve |
Also Published As
Publication number | Publication date |
---|---|
JPS5661733A (en) | 1981-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4379250A (en) | Field emission cathode and method of fabricating the same | |
US3604970A (en) | Nonelectron emissive electrode structure utilizing ion-plated nonemissive coatings | |
US6329745B2 (en) | Electron gun and cathode ray tube having multilayer carbon-based field emission cathode | |
US7777404B1 (en) | Field emission type electron gun comprising single fibrous carbon electron emitter and operating method for the same | |
US9984846B2 (en) | High brightness boron-containing electron beam emitters for use in a vacuum environment | |
JPS6223418B2 (en) | ||
US20050174030A1 (en) | HIgh brightness thermionic cathode | |
JP4167917B2 (en) | Method for forming an electron emitter | |
JP2002523860A (en) | Cathode structure having getter material and diamond film and method of manufacturing the same | |
CN112088417A (en) | Metal protective layer for electron emitters with diffusion barrier | |
US7588475B2 (en) | Field-emission electron source, method of manufacturing the same, and image display apparatus | |
Mackie et al. | Transition metal carbide field emitters for field-emitter array devices and high current applications | |
JPH0817373A (en) | Thermo-electric field emission electron gun | |
JPH0864110A (en) | Carbide film coating electron emitting material and manufacture thereof | |
JP2584534B2 (en) | Dispenser cathode | |
US20040032194A1 (en) | Field-emission electron source element and image display apparatus | |
Tuck | Surface studies of thermionic emitters by methods unique to them | |
EP1596418B1 (en) | Electron gun | |
Mackie et al. | Emission characteristics of NbC/Nb field emitter array cathodes | |
JP2006049293A (en) | Field-emission electron gun and electron beam application apparatus using the same | |
US7179148B2 (en) | Cathode with improved work function and method for making the same | |
JPH08171879A (en) | Action temperature setting method for shottky emission electron source | |
JPH0145695B2 (en) | ||
JPH01176641A (en) | Electron gun | |
JPS628409A (en) | Formation of transparent conducting metal oxide film |